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Virtual Reality (VR) has shown promising potentials inmany applications, such as e-business, healthcare, and social networking.

Rich information regarding user’s activities and their online accounts is stored in VR devices. If it is carelessly unattended,

then attackers, including insiders, can make use of the stored information to, for example, perform in-app purchases at the

legitimate owner’s expenses. Current solutions, mostly following schemes designed for general personal devices, have been

proved vulnerable to shoulder-surfing attacks due to the sight blocking caused by the headset. Although there have been efforts

trying to fill this gap, they either rely on some highly advanced equipment, such as electrodes to read brainwaves, or introduce

heavy cognitive load that has users perform a series of cumbersome authentication tasks. Therefore, an authentication method

for VR devices that is robust and convenient is in dire need.

In this paper, we present the design, implementation, and evaluation of a two-factor user authentication scheme, BlinKey,
for VR devices that are equipped with an eye tracker. A user’s secret passcode is a set of recorded rhythms when he/she blinks,

together with the unique pupil size variation pattern. We call this passcode as a blinkey, which can be jointly characterized by

knowledge-based and biometric features. To examine the performances, BlinKey is implemented on an HTC Vive Pro with

a Pupil Labs eye tracker. Through extensive experimental evaluations with 52 participants, we show that our scheme can

achieve the average EER as low as 4.0% with only 6 training samples. Besides, it is robust against various types of attacks.

BlinKey also exhibits satisfactory usability in terms of login attempts, memorability, and impact of user motions. We also carry

out questionnaire-based pre-/post-studies. The survey result indicates that BlinKey is well accepted as a user authentication

scheme for VR devices.

CCS Concepts: • Security and privacy → Usability in security and privacy; • Human-centered computing → Ubiq-
uitous and mobile computing systems and tools.
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1 INTRODUCTION

1.1 Motivation
Virtual Reality (VR) is an immersive technology that allows users to experience a virtual world with a head mount

device. The rapid development of VR has been seen in the past few years with a consistently growing popularity.

According to [22], 20.8 million people in the US used VR headset in 2019. This number is forecast to grow to 28.1

million by 2021. Statistics also show that the worldwide shipment of VR devices has grown over 60% in the past

two years [18]. By 2025, the value of the VR market is expected to reach USD 87.97 billion, from USD 11.52 billion

in 2019 [38]. While VR is traditionally used for recreational purposes, it is now rapidly permeating a variety

of mission-critical applications ranging from e-business [2, 14, 71], healthcare [16, 63, 74], social networking

[28, 37, 75], manufacturing [11, 25, 49], military training [41, 68, 73], and education [1, 7, 31].

In these applications, VR devices store their users’ personal information, such as emails, photos, videos, and

browsing history, as well as their online login accounts and passwords. Recently, online shopping and in-app

purchases have emerged as important e-commerce opportunities for VR. For example, eBay launched a VR

department store, where users can shop around in a virtual environment and make transactions online [9]. VR is

also deemed as the future of social media interactions. In March 2020, Facebook started beta testing for its new VR

social network “Horizons” where users engage with news content, share information, and entertain themselves

in the virtual world by logging into Horizons using their accounts and passwords [52]. In the above scenarios, as

the process of inputting data to current VR systems tends to be tedious, users may store their account and credit

card information for auto-login and in-app purchase [54]. As a result, such practices may result in the security

breach and even financial loss if the device is accidentally left unattended to people with ill purposes, including

close friends and roommates. Therefore, the employment of user authentication mechanisms is crucial for VR

devices. Only the owner or authorized users are able to unlock the device, while outliers are prohibited from

access.

Unfortunately, user authentication on VR devices is yet far from well investigated. Current solutions, includ-

ing password, digital PIN, and drawing pattern, mostly follow conventional approaches for general personal

devices. However, these schemes have been proved vulnerable to shoulder-surfing attacks [21, 30, 32], as how

password/PIN/pattern entered in VR device leaves little leverage to obfuscate the secret entry process. If the

adversary is aware of the virtual digit board layout, it can easily decode hand movements to infer PIN inputs.

The inference is even easier for the pattern-based authentication since the attacker only needs to track the hand

movement trajectory without exquisite knowledge of the virtual board input design. Moreover, because a user’s

view is completely blocked from the physical world by the headset, it renders the user challenging to be aware of

the presence of shoulder-surfing attackers.

To resist shoulder-surfing attacks, a shuffled keyboard has been proposed [3, 60]; the system adopts a new

randomly generated keyboard layout each time a user intends to enter the credential. While leaving the key

inference almost impossible, it sacrifices the authentication usability. Extra effort is incurred to the user in

searching for keys on a shuffled keyboard. Recently, some novel user authentication methods for VR devices

have been introduced. A couple of them focus on the improvement of the explicit knowledge-based authenti-

cation schemes, such as 3D password [29, 79] and spatial targets [27, 39]. These methods provide more robust

authentication by implementing more complicated secret codes. However, they do not improve usability, if not

further worsening it. For example, in [79], users are required to remember and enter a complicated 3D drawing

pattern for authentication, which results in longer authentication time and a higher error rate. Some existing

efforts employ the implicit biometrics to defend against shoulder-surfing attacks [6, 42, 50, 58]. Nonetheless, using

biometrics alone suffer from irrevocability, which renders replay attacks a severe threat if even a single user’s

biometric sample is acquired by an attacker [24]. There are also some prior works on two-factor authentication

[4, 10, 44]. So far, the existing solutions either rely on highly advanced equipment, such as a customized sensory
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headset with a number of electrodes to capture the brain signals[44], which is not readily available on current VR

devices, or introduce heavy cognitive load that has users to perform complex and tedious authentication tasks.

1.2 Proposed Methodology
In this paper we propose BlinKey, a practical two-factor authentication scheme for VR devices that are equipped

with eye trackers. Users authenticate themselves by blinking eyes following certain rhythm only known by

themselves. It is a new passcode-style authentication. Rather than numbers, letters, or characters, users choose

different beats/rhythms when blinking. Basically, a blinkey
1
can be easily created by the user, for example,

by extracting some beats from his/her favorite songs or jingles. The knowledge-based feature of a blinkey is

characterized by the timing of its blinks, which can be recorded by the eye tracker together with the system

clock. Additionally, a blinkey is also characterized by its biometric features. We observe that how human pupils

adapt to light after blinks, more specifically, the variation of pupil size, is unique for each person. As a blinkey

is composed of multiple blinks, we then treat the pupil size variation, captured by the eye tracker, between

blinks as a biological marker. Incorporating the above knowledge-based and biometric features, BlinKey serves as

two-factor authentication to determine whether a user is legitimate or not.

BlinKey can be an ideal solution for user authentication on VR devices. First, it can effectively resist shoulder-

surfing attacks. Unlike conventional PIN/password/pattern authentication, which requires users to hold the

controller to enter credentials, BlinKey is simply performed by user blinking eyes. As the visual sight is blocked

by the headset, it is impossible for the adversary to observe the passcode entry process. Second, it is convenient

to perform. BlinKey is a hand-free authentication without imposing effort-demanding tasks. Third, as it involves

both explicit knowledge and implicit biometric features, it is robust against attacks, such as guessing attacks and

shoulder-surfing attacks. Although BlinKey only works for VR devices that are equipped with eye trackers, they

are not a small population. To our knowledge, many VR headsets, such as HTC Vive Pro Eye [35], FOVE 0 [26],

Pico Neo 2 [59], and Varjo VR-1 [72], are all in this category. These devices can therefore provide eye blinks and

pupil size variations to the authentication unit on the device. We would like to note that integrating eye-tracking

technology is a trend of VR headsets [64, 70], as it significantly improves user experience. For example, it helps VR

headsets to simulate depth of field and focus, providing a more realistic and natural visual experience. BlinKey, as
another user authentication scheme, can be employed for accessing both stand-alone devices and online accounts.

This is also the case for many other user authentication schemes. For example, fingerprint-based authentication

is widely adopted not only by a broad set of personal devices but also by some online services, such as online

banking [23, 53].

BlinKey is composed of two phases. In the enrollment phase, users are asked to create their own blinkeys and

enter them multiple times for the training purpose. During the login phase, the user simply enters the previously

enrolled blinkey to unlock the device. If it matches the training samples, the user is authorized; otherwise, the

access request is denied. To investigate the performance of BlinKey, we recruit 52 volunteers and collect 1306
blinkey samples from them. Classification accuracy is studied concerning different parameter settings. Based on

the result, we implement our scheme on a commercial VR device with the parameter values that optimize the

authentication performance. Another 43 participants are recruited. Multiple in-field experiments are conducted

to evaluate the system performance in terms of attack resistance, time consumption, login attempts, the impact

of user motions, and memorability, which outperform state-of-the-art solutions.

1
In this paper, we utilize the Italian font BlinKey to represent the authentication scheme, while the regular font blinkey as the password itself.
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Table 1. Comparison among different user authentication approaches on VR devices. (*) The work [30] discusses both PIN
and pattern lock for VR.

System Key space Hand-free Extra sensors Accuracy Security Login time Memorability

PIN [30]* Low No No High Low Short High

Pattern lock [30] Low No No High Low Short High

Shuffled keyboard [3] Low No No High Medium Medium High

LookUnlock [27] Low Yes No High Medium Medium Low

3D Pattern [79] Medium No No High Medium Short Low

RubikAuth [48] Medium No No High Medium Short Low

Hand gesture[42] Medium No No Low Medium Short -

Brain biometrics [44] High Yes Yes Medium Medium Medium -

Head movement [50] Medium Yes No Low Medium Long -

SkullConduct [66] Medium Yes Yes Low Medium Short -

Eye Movements [67] Medium Yes Yes Medium Medium Short -

3D Password [4] High No No Medium High Medium High

RubikBiom [47] High No No Medium High Short Low

BlinKey (this work) High Yes No Medium High Medium Medium

2 RELATED WORK

2.1 Knowledge-based Authentication
In recent years, how to authenticate users in VR devices has been increasingly explored in both computing and

security research communities. George et al. carried out user study for the direct transfer of well-established user

authentication concepts, including PIN and pattern lock, into VR [30]. Due to their vulnerability to shoulder-

surfing attacks, a shuffled keyboard is proposed [3, 60]. Users enter their credentials on a virtual keyboard with a

randomly generated layout each time. Yu et al. then develop a 3D pattern lock that creates an additional entropy

for user’s secret credentials [79]. Funk et at. [27] developed a graphical authentication mechanism based on

gaze-tracking, called LookUnlock. The passcode consists of a set of virtual objects that a user’s gaze focuses

on in the correct sequence. A similar idea is adopted by [29, 39]. These schemes produce rather limited key

space. For a passcode constructed by selecting 4 objects in a sequence from a total of 9 objects, the key space is

merely 𝑃 (9, 4) = 3, 024, even smaller than that of the 4-digit PIN
2
. Moreover, it is not an easy task to remember

the correct sequence of 4 objects. For example, according to the result [29], their 7-day recall rate is 74.1%. As

shown in Section 6.3.3, this value is 89.6% for BlinKey. Mathis et al. proposed RubikAuth [48], where users select

digits from a virtual 3D cube manipulated with a handheld controller. Following a similar idea, RubikBiom [47]

further takes into account user behavioral biometric features such as hand movement when entering credentials

from the virtual 3D cube. With the introduction of an additional layer of protection, RubikBiom is more robust

against guessing attacks and shoulder-surfing attacks. As noted by the authors, both schemes require two-handed

interactions which are inconvenient for users with motor disabilities. BlinKey is free from such a restriction for

allowing users to enter their authentication credentials with eye blinks. Alsulaiman and Saddik [4] propose a 3D

password that combines textual passwords and the user’s behavior biometrics for entering the password.

2
We will discuss in Section 7 that BlinKey offers the key space orders of magnitude higher than conventional passcodes, such as digit-PIN

and password, of the same length.
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2.2 Biometric Authentication
Unlike knowledge-based authentication, which is based on “what you know”, biometric authentication leverages

“who you are” by looking into the unique biometrics that people are naturally born with. It has gained preference

in certain situations due to its robustness against guessing attacks and shoulder-surfing attacks.

Gesture biometrics: Priorworks [42, 50, 58] extract user’s distinctive biometric features from their head/hand/body

movements for user authentication. These schemes require users to turn the head, bend the body in different

directions, or throw/catch particular virtual objects. The involved actions may be awkward to perform especially

in public places.

Gaze biometrics: Gaze tracking has recently been explored for user authentication. Existing solutions either

examine the position or the content that a user is looking at or eye movement. The former is based on the

hypotheses that each user’s gaze behaves uniquely when watching the screen [13, 61, 62]. These schemes rely on

a large number of data samples to extract sufficient features for accurate authentication. As a result, they typically

take more than one minute to authenticate a user. The second class of gaze-based authentication leverages the

uniqueness of eye movement to fingerprint each user [8, 20, 33, 34, 40]. Relevant features include eye movement

velocity and saccade latency. As pointed out by [81], these solutions suffer from irrevocability, which is in fact a

common pitfall for many pure biometric-based authentication schemes. To address this issue, [67, 81] introduce

the idea of random stimuli. As a result, the biometric features observed in each authentication trial become

dynamic, leaving reply attacks infeasible. Nonetheless, they only work with precise eye movement tracking. For

example, [67] requires a sampling rate of up to 500 Hz and tracking error within 0.4◦, which cannot be met by

current add-on eye trackers for VR devices.

Other biometrics. Schneegass et al. [66] present SkullConduct, a biometric system that uses bone conduction of

sound through the user’s skull for user identification. Amicrophone is used to capture the skull vibration. Recently,

Lin et al. [44] utilized responsive brainwaves when a user is presented with visual stimuli for authentication.

Sophisticated electrodes should be integrated into VR headsets to capture the human brainwave.

2.3 Rhythm-Based Authentication
Only a few rhythm-based authentication schemes have been proposed so far. Wobbrock [78] developed an

authentication system for single-key devices called “TapSongs”, which enables user authentication on a single

“binary” sensor (e.g., button) by matching the rhythm of tap down/up events to a jingle timing model created

by the user. A group authentication scheme, Thumprint [17], was proposed by Das et al., using the rhythm of

a secret knock to authenticate a group of users, while each user’s expression of the secret is discernible. Chen

[15] built a two-factor rhythm-based authentication scheme for multi-touch mobile devices. Recently, Hutchins

et al. [36] developed a rhythm-based authentication scheme for wearable devices equipped with a touching

sensor. TapMeIn [51] is another authentication method for smartwatches. On top of the secret tapping rhythm, it

jointly considers biometric features, such as pressure and finger size of tapping. All these features are captured by

smartwatch’s touching screen/sensors that are missing from current VR devices. Thus, TapMeIn is inapplicable

to our case. Observing that how human pupils adapt to light after blinks, more specifically, the variation of pupil

size, is unique for each person, we then treat it as a biological marker. Together with the user’s blinking rhythm,

they are both captured by the eye tracker and serve as secret credentials for user authentication.

Summary. Table 1 provides a comprehensive comparison between some representative user authentication

schemes for VR and BlinKey. The existing schemes are categorized into three groups, knowledge-based authenti-

cation (light gray), biometric-based authentication (medium gray), and two-factor authentication (dark gray). The

comparison is made from the aspects of security (including “key space” and “security”) and usability (including

“hand-free”, “extra sensors”, “accuracy”, “login time”, and “memorability”).
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The salient advantage of knowledge-based authentication is mainly on its usability, with the highest accuracy

and the lowest login time among the three groups. As user’s passcodes are mostly entered by hand controllers, no

extra sensor is needed. Nonetheless, these schemes have been criticized for their security, for example, vulnerable

to shoulder-surfing and/or statistic attacks. This issue is partially resolved by some biometric-based authentication

schemes. First, biometric features can barely be eavesdropped. Second, user’s unique biometrics introduce a

much larger key space. On the other hand, due to the hardware restriction, the explorable biometrics from VR

devices are still limited so far. Some approaches require users to perform body/head/hand movement that can

be readily captured by VR devices; some others rely on extra sensors, e.g., EMG and ECG sensors, to extract

biometric features. There also have been a couple of two-factor authentication schemes that combine regular

knowledge-based passcodes and user biometrics. Most of them exhibit better security performances than the

other two. However, due to the involvement of behavior biometric features, which are dynamic even from the

same user, their accuracy is degraded a little bit than knowledge-based schemes. Apparently, BlinKey belongs to

the third group. Compared with [4, 47], it is entered hand free and thus friendly for users with motor disabilities.

Moreover, as discussed in Section 7, rhythmic patterns produce a significantly larger key space than conventional

PIN/password/pattern lock; so is BlinKey compared with [4, 47].

3 THREAT MODEL
The adversary’s goal is to impersonate the legitimate user and successfully authenticate itself to the VR device.

This work pertains to the discussion of the following commonly seen attacks.

• Zero-effort attack. The adversary does not have any side information of the enrolled blinkey and tries to get

authenticated by random guessing. It is also referred to as guessing attack in some other literature.

• Statistical attack. The adversary has access to a large volume of blinkeys and is aware of the set of features

utilized by the scheme. It performs statistical analysis over the dataset and derives probability distribution

over each feature. Then, the adversary forges synthetic blinkeys following the acquired distributions.

• Shoulder-surfing attack. The adversary is able to observe the authentication process while the victim is

entering a blinkey. Then it mimics the legitimate user by repeating what it has observed.

• Credential-aware attack. This attack is even more powerful than the shoulder-surfing attack. We assume that

the adversary has the full information of the legitimate user’s secret blinking rhythm. The only difference

from the shoulder-surfing attack is that the latter acquires blinking rhythm via visual observation.

We also make the following assumptions throughout the paper. The adversary cannot compromise the VR

device or its connected server to access the user’s blinkeys; otherwise, it renders secure user authentication

design impossible. Due to the similar reason, the connection between the VR device and the server is also deemed

secure.

4 BLINKEY CHARACTERIZATION AND FEATURES

4.1 Definition of BlinKey
A blinkey is composed of time instances stamped by the system clock when a user blinks in a self-designed

rhythm, together with variations of pupil size exhibited between consecutive blinks. Both information can be

recorded by the eye tracker. Figure 1 gives three exemplary blinkeys. Blink onset/offset indicates the moment

that eyes are open/closed. An eye is deemed closed when its pupil size is measured zero and open otherwise.

The length of a blinkey is simply the number of blinks it contains. For example, all the three blinkeys in Figure

1 are of length 6. We observe that the pupil size is not fixed between blinks. It experiences some fluctuations

in the following procedures. When the eye is open, the eye tracker quickly captures the pupil’s instantaneous

size, which is at a large value. Then the pupil quickly adapts to ambient light by adjusting its diameter. After

a short period, around dozens to hundreds of milliseconds, the pupil returns to a relatively stable status with
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micro-fluctuations. More importantly, we find that such a pupil’s adaption pattern varies across people. Figure

1(b) and 1(c) demonstrate the same blinking rhythm performed by two users. While the rhythm is almost identical,

the way how pupil size changes is clearly distinct between two trials. This is due to the pupil dilation/constriction

that is controlled by the iris muscles with a biologically unique pattern [65]. Moreover, we also notice in Figure 1

that the pupil size variation pattern is consistent from the same user. Based on the above observation, we thus

treat the pupil size variation between blinks as an additional dimension of features that fingerprint individuals.
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Figure 1. Three exemplary blinkeys.

4.2 Feature Selection
Since a blinkey consists of both knowledge-based features (“something you know”) and biometric features

(“something you are”), we are interested in identifying suitable feature set for user authentication.

4.2.1 Knowledge-based Features. The knowledge-based features are the blink rhythm designed by the legitimate

user. We mainly focus on the following three features blink time instance, blink interval, and relative interval.

• Blink time instance. The blink rhythm can be uniquely identified by a set of blink onsets and blink

offsets, indexed by their timestamps, which are represented by two vectors 𝜶 = {𝛼1, 𝛼2, · · · , 𝛼𝑛} and 𝜷 = {𝛽1,

𝛽2, · · · , 𝛽𝑛}. Here, 𝛼𝑖 and 𝛽𝑖 are the timestamps for the 𝑖th blink onset and offset, respectively, and 𝑛 is the

blinkey length, i.e., the number of blinks contained. For analysis consistency, we index the first blink onset

as 0, 𝛼1 = 0. In other words, we deem the starting point of a blinkey as the moment when a user opens her

eyes for the first time to perform her blinkey.

• Blink intervals. To characterize a blinkey’s rhythm, we further extract the inter-onset intervals of a

blinkey, defined as the time duration between two adjacent blink onsets, as shown in Figure 1: 𝜸 = {𝛾1, 𝛾2,

𝛾3, ..., 𝛾𝑛−1}, where 𝛾𝑖 = 𝛼𝑖+1 − 𝛼𝑖 .

• Relative intervals. In actual scenarios, users’ input speed may be influenced by their moods or other

factors. Thus the time instance for each blink and their intervals may be different even for the same user

entering a same blinkey. To take this into account, we introduce another feature, relative interval, which is

defined as the ratio of a blink interval to its previous one: 𝜼 = {𝜂1, 𝜂2, 𝜂3, ..., 𝜂𝑛−2}, where 𝜂𝑖 =
𝛾𝑖+1
𝛾𝑖

.

4.2.2 Biometric Features. As discussed above, the pupil size variation of each user can be treated as her biometric

identifier. We now investigate the proper set of features to extract for authentication.

• Fourier coefficients. From the perspective of frequency analysis, the pupil size variation consists of com-

ponents under different frequencies. To extract this information, we then apply the fast Fourier transform

(FFT) over time-domain samples. The Fourier coefficient associated with each frequency component then

serves as part of biometric features, 𝝓 = {𝜙1, 𝜙2, · · · , 𝜙𝑚}, where 𝜙𝑖 (𝑖 ∈ [1,𝑚]) is the mean Fourier coefficient

of the 𝑖th frequency component. The larger coefficient of a higher frequency component a user produces,
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the more agile her pupils adapt to luminance. Computation and parameter setting details regarding Fourier

coefficient extraction will be discussed in Section 5.3.

• Statistical features. In addition to Fourier coefficients, we further explore a few statistical features in

both time and frequency domains that have been widely adopted in characterizing signals [5, 43, 46]. A

set of candidate statistical features include, Maximum, Minimum, Mean, Median, Root Mean Square (RMS),
Standard Deviation (StD), Mean Absolute Deviation (MAD), Kurtosis, Skewness, Interquartile
Range (IQR), Roughness, Sharpness, Mean Crossing (MC), Willison Amplitude (WAmp), Slope Sign
Change (SSC), in time (T ) and frequency (F ) domains.
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(a) Statistical features in time domain
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(b) Statistical features in frequency domain

Figure 2. Fisher score and classification accuracy for statistical features.

Since not all of them play essential roles in our task, it is necessary to filter out non-critical ones. For this

purpose, we calculate the Fisher score for each above feature. As one of the most commonly used supervised

feature selection methods [45, 69], the Fisher score takes the inter-class variance and the in-class variance

over the values of a given feature and computes their ratio. A higher ratio indicates that the distances

between classes are much larger than those within the same class. Classification accuracy, an accuracy

indicator of feeding each feature alone into the classifier, shows how well these features work for the

classifier individually. Hence, we compute both the Fisher score and the classification accuracy for each

statistical feature. Their results are shown in Figure 2(a) and Figure 2(b), respectively, in a descending order

of a combination of both metrics. To facilitate the discussion, the Fisher score is normalized. We thus pick

the top-ten best features, i.e., with the highest combined values, to constitute the statistical feature set 𝒔
= {WAmp𝐹 , StD𝐹 , Maximum𝐹 , SSC𝐹 , Skewness𝐹 , SSC𝑇 , Mean𝑇 , Kurtosis𝐹 , Median𝑇 , IQR𝐹 }. The result is

shown in Table 6.

The entire feature set to characterize a blinkey is then written as 𝒇 = {𝜶 , 𝜷 , 𝜸 , 𝜼, 𝝓, 𝒔}.

5 SYSTEM DESIGN

5.1 System Overview
Figure 3 shows an overview of the BlinKey system. It involves registration (or called enrollment) phase and

login (or called testing) phase. For either phase, the workflow of data processing is summarized as follows.

Authentication is turned on when a user awakens the screen, opens an app, or triggers a purchase interface.
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Table 2. The selected statistical features.

Feature Definition Fisher Score Accuracy

WAmp𝐹 The count of significant changes in the signal in frequency domain 0.9999 0.7614

StD𝐹 The extent of deviation for the signal amplitude in frequency domain 0.9998 0.7348

Maximum𝐹 The maximum value of the signal amplitudes in frequency domain 0.9999 0.7129

SSC𝐹 The count of slope sign changes in the signal in frequency domain 0.9992 0.6287

Skewness𝐹 The distortion of the signal values in frequency domain 0.9984 0.6042

SSC𝑇 The count of slope sign changes in the signal in time domain 0.9962 0.5339

Mean𝑇 The average value of the signal amplitudes in time domain 0.9873 0.4758

Kurtosis𝐹 The sharpness of the peak the signal curve in frequency domain 0.9882 0.4677

Median𝑇 The value that divides the signal amplitudes in half in time domain 0.9567 0.3882

IQR𝐹 The difference between the third and the first quartiles in frequency domain 0.9454 0.3538

Figure 3. System overview.

In a pop-up virtual scene, the user is asked to blink in a self-designed pattern as an input blinkey. Once the

authentication procedure is activated, the eye tracker keeps recording the user’s real-time pupil size signals and

transmit them to the server. The signal first passes the start/end detection module so as to segment the entire

blinkey. The raw signal is then denoised and decomposed. Its outputs, including blinking rhythm and pupil size

variations, are then fed into the feature extraction module to distill knowledge-based and biometric features.

Finally, the classifier decides whether the given blinkey is legitimate or not.

5.2 Start and End Detection
A challenge of our approach lies in how to detect a blinkey, more specifically, identify its start and end points.

This task is easy for authentication on regular personal devices, such as smartphones and tablets. For the case
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of pattern lock, the moment that a finger touches/leaves the screen is simply the start/end point of one trial.

These moments can be accurately recognized by touching sensors embedded in the screen. For the case of

password-based authentication, the end of one entry is explicitly indicated by tapping the enter/return key.

Unfortunately, such hardware is unavailable at VR devices. One viable solution is to create a virtual enter/return

key. However, it may incur extra effort for a user to interact with the virtual screen via a controller. Alternatively,

we propose to have a user to indicate the start/end of a blinkey for closing the eyes a while, as shown in Figure 4.

In this way, the moment that the user opens eyes for the first time after the long blink is treated as the start of

the blinkey. Similarly, the moment that the user closes eyes right before the long blink is treated as the end of the

blinkey.
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Figure 4. Illustration of start/end of a blinkey and the long blink.

The remaining question is to decide the duration for the long blink. Recall that a single blink is determined by

the forceful closing of the eyelid. The system should be capable of differentiating between a long blink and a

blink belonging to a blinkey or a spontaneous blink. We start by analyzing the statistics of spontaneous blinks

based on the 434 blink samples collected from 22 volunteers. Its statistical distribution is plotted in Figure 5. We

find that the duration of spontaneous blinks ranges from 0.09 to 0.26 second with its mean as 0.12 second, and

the 95th percentile as 0.18 second. Our discovery concurs with the result of UCL Researcher [12], stating that

the duration of a spontaneous blink is on average 0.1 - 0.15 second, as well as the result of Harvard Database of

Useful Biological Numbers [55], stating that the duration of spontaneous blinks mainly ranges from 0.1 to 0.4

second.

We further investigate the statistics of voluntary blinks of blinkeys. Its distribution is derived based on another

phase of data collection, where we acquired 1306 blinkey samples from 52 volunteers. The details of this data

collection phase are provided in 5.5. We observe in Figure 5 that the 95th percentile exists at 1.95 seconds. Based

on the statistical analysis, we set the duration of the long blink as 2.5 seconds. A longer duration will sacrifice the

usability of authentication, while a shorter value renders the detection error-prone. As a note, a user does not

have to estimate the exact 2.5 seconds before performing a blinkey, as long as the waiting duration is no less than

the threshold. This requirement is easy to meet.

5.3 Pre-processing
The objective of this component is twofold, to filter out noise in the raw signal and to decompose the signal into

ingredients that contain knowledge-based and biometric features separately.

5.3.1 Denoising. As shown in Figure 6, the raw signal is mainly composed of three components: voluntary blinks,

spontaneous blinks, and the pupil adaptive variations between blinks. The useful information includes voluntary

blinks and pupil adaptions. Spontaneous blinks are conducted in the pre-motor brain stem and happen without
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Figure 5. Statistical distribution of duration for spontaneous blinks and voluntary blinks.

conscious efforts, like breathing and digestion. It helps to spread the tear to all parts of the eyes and helps to

keep them moist [76]. They are done involuntary and distinct from the voluntary blinks in a blinkey. As the

involvement of spontaneous blinks brings the noise to the feature extraction and thus authentication accuracy,

the goal of this phase is to eliminate spontaneous blinks from the raw signal.
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Figure 6. The raw signal of a blinkey mainly consisting of voluntary blinks, pupil adaptions, and spontaneous blinks.

As shown in Figure 5, the statistical analysis indicates that the time duration of spontaneous blinks and

voluntary blinks is clearly distinct from each other. It is noticed that the former mostly falls within the range from

0.09 to 0.26 second, while the latter is between 0.45 and 2.5 seconds. Motivated by this observation, we thus set a

detection threshold at 0.35 second. For a blink whose duration is beyond this value, it is treated as a voluntary

one; otherwise, it is a spontaneous one, which is eliminated from the raw signal. Meanwhile, it is infeasible to

directly set their associated pupil size to 0’s, as it will pollute the blinkey’s features. Instead, we apply the spline
interpolation [77]. As a common interpolation technique, it estimates missing data using a mathematical function

that minimizes overall surface curvature. In our case, pupil sizes of spontaneous blinks are treated as the missing

data and interpolated accordingly. In this way, we eliminate spontaneous blinks from the signal while preserving

the blinkey features.

5.3.2 Decomposition. The goal of decomposition is to extract from the denoised signal user’s blinking rhythm
and segments, which carry knowledge-based features and biometric features of a blinkey, respectively. The

decomposition facilitates the feature extraction next. As shown in Figure 7, a segment is simply the set of non-zero

pupil size values between two consecutive blinks. A segment reflects the user’s pupil variations after each

voluntary blink. The decomposition is done by detecting all onsets and offsets in a blinkey. Since humans perform

eyelid opening and closure rapidly, it leads to sharp rises and drops in the observed pupil size. Therefore, the

detection of onsets and offsets can be accomplished via simple edge detection algorithms.
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Figure 7. Illustration of decomposition. The input (top) is denoised signals and the output (bottom) is blinking rhythm and
segments.

5.4 Feature Extraction
Once blinking rhythm and segments are ready, we are ready to extract from them desired features.

Knowledge-based features can be directly derived from the blinking rhythm. Specifically, we first obtain the

time instances of onsets and offsets, i.e., 𝜶 and 𝜷 . Then, the blink interval set 𝜸 and relative interval set 𝜼 are

calculated following their definitions in Section 4.2.1.

Biometric features involved in our scheme are classified into time-domain features and frequency-domain

features. For the former, they include SSC, Mean, Median, etc. They can be computed based on time-series samples

from one blinkey entry following definitions of these metrics. For the latter, they include WAmp, StD, Maximum,

etc. As the first step, we employ FFT to decompose time-domain samples into their constituent frequencies. The

frequency-domain representation can decompose complicated pupil size variations into periodic components that

time-domain analysis cannot realize. FFT is applied over each segment. Before that, we first employ zero-padding

to ensure that each segment has the same length of 1024 data points. The reason for choosing 1024 is twofold.

First, FFT works most efficiently for a signal with length a power of 2 since it recursively folds the size at each

step. Second, we observe from the 1306 collected samples that all segments last within 5 seconds. Given the

sampling rate as 200 Hz in our system, every segment is sampled into 1000 data points the maximum. Based

on the above discussion, we pad the segment into 1024 data points. Once the Fourier coefficients are derived

for each segment, we take their average over all segments for each frequency component. It then produces the

Fourier coefficient feature 𝝓. Frequency-domain statistical features are computed following a similar method for

time-domain statistical features.

5.5 Classification
Once features of a blinkey are extracted following previous steps, the remaining task is to apply classification

methods for user authentication, i.e., to discriminate the legitimate user and imposters. Two common classification

methods are considered, one-class Support Vector Machine (SVM) and K-Nearest Neighbors (k-NN). To determine

which one best serves our system, we conduct comprehensive evaluations based on our dataset consisting of
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Table 3. Demographics of volunteers in the phase-I study.

Gender No. Age range No. Eye color No. Eye wear type No.

Female 36 18-23 19 Black 29 None 25

Male 16 24-29 28 Brown 14 Colorless glasses 21

30-35 5 Hazel 8 Colorless contact lenses 4

Green 1 Colored contact lenses 2

1306 blinkeys from 52 volunteers. These volunteers are all college students, including 36 females and 16 males.

The classification performances are examined through the following metrics.

• False Rejection Rate (FRR). The probability that a legitimate user is rejected by the system. It is calculated

as the ratio of the number of a legitimate user’s incorrect authentications to the total number of attempts.

• False Acceptance Rate (FAR). The probability that an impostor is given access, computed as the ratio of the

number of an impostor’s authentication attempts that are accepted by the system to the total number of

attempts.

• Equal Error Rate (EER). The point at which FRR and FAR are equal, by adjusting parameter values.

Note that FRR reflects the user convenience in our system; a lower FRR implies that a legitimate user can

successfully unlock the VR device at a higher probability. FAR reflects the security aspect; a lower FAR implies

that the imposter will be denied at a higher probability. It is worth noting that two blinkeys are deemed different

with different lengths. For example, if the legitimate blinkey has a length of 6, then any testing input with a

different length will be rejected immediately. Hence, in the following we only focus on the classification over

blinkeys of the same length.

To investigate the performance of BlinKey, we performed two user studies. In phase I, the objective is to collect

blinkeys created by different users so as to carry out statistical analysis and classification model selection as

discussed here. In phase II, a prototype of BlinKey is built. We then conduct a series of in-field experiments to

evaluate the security and utility of our system which will be covered in the next section.

In the phase-I user study, a specialized app is developed and implemented on the VR system to facilitate the

data collection. A total of 52 volunteers are recruited. They are all college students aged from 18 to 35. Among

them, there are 36 females and 16 males. Their demographic details are provided in Table 3. Before the data

collection, they are explained how BlinKey works. Each volunteer is asked to design several different blinking

patterns. For each pattern, a video of the volunteer’s pupils is recorded by an eye tracker in the VR headset.

Afterwards, they are shown the detected pupil size signal and are asked to manually mark the voluntary blinks

from the spontaneous blinks according to their self-designed patterns. In total, we obtain 1306 samples containing

7,528 voluntary blinks and 3,673 spontaneous blinks. The collected dataset is used to derive statistics of blinkeys.

Besides, we also aim to identify suitable parameters for the classifier.

5.5.1 Support Vector Machine. One-class SVM has been successfully applied to a number of classification

problems. It generalizes the idea of finding an optimal hyper-plane in high-dimensional space to perform

classification. Compared to other classification methods, it has advantages in implementation simplicity and

efficiency in dealing with high-dimensional, non-linear datasets. Here, one-class SVM is implemented with the

Radial Basis Function (RBF) kernel.

The number of training samples is an important indicator of classification performances. We tune the value

from 2 to 10 and evaluate its impact. Figure 8(a) shows the authentication accuracy with respect to the training

sample size. We observe that the FRR is as high as 50.5% with only 2 training samples. It drops quickly to 14.6%

under 6 training samples. It mildly decreases to 12.6% as the training sample size grows to 10. The FAR grows
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Figure 8. FRR and FAR under different training sample sizes. (a) One-class SVM. (b) One-class k-NN.

from 10.3% with 2 training samples and keeps relatively stable around 15.0% as the training sample size increases

to 10. The minimum EER 14.6% is achieved with 6 training samples.

We further evaluate the performance of SVM with respect to the kernel coefficients 𝛾 and 𝜈 in Figure 9. Here, 𝛾

is the standard deviation of the kernel function. It influences the decision boundary qualitatively. As 𝛾 grows,

FAR increases while FRR decreases, which means both legitimate users and impostors are more likely to get

authenticated. In fact, for a larger 𝛾 , the decision criteria tend to be relaxed to avoid the hazard of overfitting. For

a smaller 𝛾 , the decision boundary tends to be strict and sharp. In contrast to the former situation, it tends to

overfit. The parameter 𝜈 is an upper bound on the fraction of margin errors and a lower bound of the fraction

of support vectors relative to the total number of training samples. For example, 𝜈=0.01 means that at most 1%

of the training samples are misclassified (at the cost of a small margin, though) and at least 1% of the training

samples are support vectors. Hence, as shown in Figure 9, a larger 𝜈 leads to a lower FAR but at the cost of a

higher FRR. Combining the results above, EER reaches its lowest point at 14.6% when training sample size, 𝛾 ,

and 𝜈 are set to 6, 0.018, and 0.028, respectively. Hence, one-class SVM produces unsatisfactory authentication

accuracy in our system.

5.5.2 K-Nearest Neighbors. Another classification method under consideration is k-NN. It measures the similarity

between the testing sample and training samples. The similarity is represented by the Manhattan distance. If the
score is below the threshold, the testing sample is considered a legitimate input; otherwise, it is an outlier.

We first examine the classification accuracy with respect to the training sample size. As shown in Figure 8(b),

both FRR and FAR decreases with a larger training sample size. The detection accuracy improvement becomes

insignificant, with 6 or more training samples. To balance between accuracy and usability, we use 6 samples to

train the model. Comparing between Figure 8(a) and Figure 8(b), we find k-NN produces a much lower error rate.

Given 6 training samples, EER of SVM and k-NN is 14.6% and 4.0%, respectively. The latter is less than 1/3 of the

former.

We then investigate the impact of two critical parameters, 𝑘 , the number of neighbors to select, and 𝛼 , the

threshold from the Manhattan distance matrix. A larger 𝑘 indicates that more neighbors are taken into the

calculation of the classification score. A larger 𝛼 means a testing sample is more likely to be accepted legitimate.

The results demonstrated in Figure 10 meet our expectations. A larger 𝛼 , i.e., a loose detection rule, results in

lower FRR but a higher FAR. As we increase the value of 𝑘 , the classification becomes more stable due to majority

voting/averaging, and thus, is more likely to make more accurate detection. Nonetheless, as 𝑘 is beyond a certain

value, we will witness an increasing number of errors as the value of 𝑘 is pushed too far. As shown in Figure 10,

the lowest EER exists at 4.0% with 𝑘 = 3 and 𝛼 = 1.0.

5.5.3 Other Classifiers. We further examine the classification accuracy of convolutional neural networks (CNN)

and random forests (RF) in the latest version. Specifically, one-class CNN and one-class RF are considered. The

former is based on CNN for one-class classification problems. Its idea is to use a zero centered Gaussian noise in
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Figure 9. FRR and FAR with respect to 𝛾 and 𝜈 under one-class SVM.

Figure 10. FRR and FAR with respect to 𝛼 and 𝑘 under one-class k-NN.

the latent space as the pseudo-negative class and train the convolutional network using the cross-entropy loss

to learn a good representation and the decision boundary for a given class [57]. CNN has been widely applied

to computationally complex classification tasks, such as image defect detection [80] and face verification [56].
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One-class RF is a method based on a random forest algorithm and an original outlier generation procedure that

makes use of classifier ensemble randomization principles [19]. The basic idea is to to use some randomization

principles of ensemble learning methods to sub-sample the number of features and the number of training target

instances to make possible the generation of outliers from the computation perspective, and to make use of the

information given by the target samples to adapt accordingly the outlier distribution. Compared to CNN, it is

faster to perform and requires fewer data samples.

As shown in Figure 11, given the same training sample size, k-NN achieves the lowest FRR and FAR among

the four classifiers, while CNN and RF exhibit the worst performance. This is because the latter two generally

require a large dataset to properly train their models. An empirical implication indicates that it typically takes

at least 5,000 samples to train CNN with 10 or more layers and hundreds of neurons for satisfying accuracy in

applications like image classification. Similarly, the training sample size is around 500 to train RF for relatively

good performance in a classification problem. On the other hand, only 6 samples are needed for k-NN to obtain

EER as low as 4.0%. It indicates that k-NN attains a promising authentication accuracy with much fewer training

samples, especially compared with CNN and RF. Besides, with simple structures, k-NN and SVM consume fewer

computation resources for training and testing than the other two. Thus, they are deployable to a wide spectrum

of VR devices with heterogeneous resource capacities.
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Figure 11. Authentication accuracy comparison among four classifiers.

To sum up, k-NN outperforms SVM, CNN, and RF in terms of classification accuracy, given the same training

sample size in our case. More importantly, our design acquires limited training samples, as few as 6. Hence,

the enrollment of a blinkey can be performed efficiently. Besides, our approach also outperforms [50, 81], two

recently proposed user authentication schemes for VR devices, in terms of authentication accuracy. For [50], its

EER is 7.4%. For [81], its EER is 6.9%. Both are higher than ours.

6 PERFORMANCE EVALUATION

6.1 Prototype Implementation & Experiment Setup
As a proof-of-concept implementation, we develop the prototype of BlinKey on an HTC Vive Pro head-mount

device, connected to a local server
3
running SteamVR to support the VR environment. We install a Pupil Labs

eye tracker in the VR device to record the real-time pupil size. The sampling rate is set to 200 Hz, i.e., pupil size

3
The local server is a typical arrangement for the tethered VR headset, which our prototype device HTC Vive Pro belongs to. The local server

is not a required element for BlinKey. Although our prototype makes use of the local server to do classification, the computation load is

pretty light. Instead of any resource-demanding classification models, such as neural networks, BlinKey employs the light-weight k-NN.

Thus, the computation can be practically supported on standalone VR devices with on-board computing units.
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Table 4. Distribution of volunteer information.

Gender No. Age range No. Eye color No. Eye wear type No. Experience No.

Female 16 18-23 15 Black 20 None 23 None 25

Male 27 24-29 26 Brown 18 Colorless glasses 17 Limited 14

30-35 2 Hazel 3 Colorless contact lenses 2 Proficient 4

Blue 2 Colored contact lenses 1

samples are collected every 5 milliseconds. The collected data are fed into the server through ZeroMQ application

program interface (API). All the functions, such as start/end detection, pre-processing, feature extraction, and

classification, are implemented in Unity, a cross-platform engine for VR games. As observed in Section 5.5, k-NN

yields better accuracy than SVM in our system. Hence, we implement the former as the classifier in our prototype.

The training sample size is set to 6, which means a user is asked to enter her blinkey 6 times in the enrollment

phase. We set the parameters 𝑘 as 3 and 𝛼 as 1.0, since the k-NN demonstrates the best authentication accuracy

with this setting. For comparison purposes, we also implement the basic PIN and pattern lock authentication

schemes on the same VR device. Their corresponding passcodes are entered using controllers paired with the

device.

To evaluate the security and usability of BlinKey, another 43 participants are recruited to conduct experiments.

Among them, 13 volunteers also participated in the prior data collection session. The distribution of the partici-

pants’ information is shown in Table 4. At the beginning of the experiment, the basic idea of BlinKey is explained

to the participants. They are then trained on how to correctly enter a blinkey. Thereafter, they are asked to create

their own blinkeys.

Screenshots of the user interface (UI) of our prototype are shown in Figure 12. UI is implemented in a virtual

scene in Unity and displayed in the VR headset to guide users for enrollment and authentication. For the blinkey

enrollment, we follow the basic steps of how an iPhone enrolls a user’s fingerprints. Specifically, when legitimate

users boot their new VR devices for the first time, they are guided to the process of account setting. As one of

the steps, users are prompted to enroll their blinkeys (see Figure 12(a)). Users are asked to enter their blinkeys

repeatedly until 6 valid samples have been collected (see Figure 12(b)). If a user tends to enroll another blinkey,

the user is first required to provide the existing blinkey correctly. Then the rest steps similarly follow the ones

for the initial account setup. The authentication is automatically triggered as a user puts on the VR headset,

initiates an online purchase, or tries to log into her Internet account. A dialog box pops up, asking the user to

enter her valid blinkey (as shown in Figure 12(c)). Based on the input, the classifier decides whether this entry is

from the legitimate user: if yes, the access is granted (see Figure 12(d)); otherwise, the access is denied with an

error message shown on the screen (see Figure 12(e)). If denied, a user can re-enter her blinkey until reaching the

maximum number of attempts allowed, say 5. Then, the account is temporarily locked, and the recovery process

is invoked (see Figure 12(f)).

6.2 Robustness Against Attacks
The adversary’s goal is to impersonate a legitimate user and successfully get authenticated to the VR device. We

assume that the adversary has physical access to the device. In practice, such physical access can be gained in

ways such as a thief stealing a device, finders finding a lost device, and a roommate temporarily accessing a device

when the owner is taking a shower. In the experiment, we consider the following types of attacks: zero-effort
attacks, statistical attacks, shoulder-surfing attacks, and credential-aware attacks.
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(a) Account settings (b) Enrollment (c) Authentication

(d) Success (e) Failed (f) Locked out

Figure 12. Screenshots of UI for BlinKey.

Table 5. Success rate of zero-effort attacks under different blinkey lengths.

Blinkey length 3 4 5 6 7 8 9 10

FAR (%) 8.1 4.4 3.4 1.9 0 0 0 0

6.2.1 Zero-effort Attacks. Zero-effort attacks may be the most common type of attacks against an authentication

system, where the attacker guesses the secret or tries the authentication procedure without much knowledge of

the legitimate password. In our case, each volunteer (attacker) is asked to randomly pick blinkeys without any

prior knowledge of the legitimate one and tries to pass the authentication by chance. Up to five authentication

attempts can be made. An attack is considered to succeed if any one of them passes the authentication.

Table 5 shows the success rate of zero-effort attacks, which is directly the FAR of our mechanism. Among 1306

collected blinkeys, all of them have the length between 3 and 10. Hence, we conduct tests over blinkey with their

lengths falling within this range. Clearly, the blinkey length plays a critical role in the success rate of zero-effort

attacks. The longer a blinkey is, the less possible it can be compromised by an adversary. Particularly, if the

length is 7 or longer, the success rate drops to zero. Therefore, in the practical implementation of BlinKey, the
system can impose a hard constraint over a valid blinkey’s minimum length, say 7, to defeat zero-effort attacks.

6.2.2 Statistical Attacks. This type of attack assumes that the adversary has access to a abroad set of user’s

blinkeys. This type of attackers employ knowledge obtained from the statistics of a group of blinkeys as hints to

generate authentication attempts. The basic approach is to estimate the feature distribution and then use the most

probable feature values to generate the forgery. In the experiment, we use the 1306 collected blinkey samples

and produce a set of forgery blinkeys as follows. We first randomly select a length following the probability

distribution of all blinkey lengths, as illustrated in Figure 13(a). Then we randomly choose values for each eye
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Figure 13. Probability distributions of knowledge-based features.

blink and open following their probability distributions derived from our dataset. Figure 13(b) and Figure 13(c)

depict these two distributions. Finally, a set of 150 forgery blinkeys is generated in this process.

Table 6. Success rate of statistical attacks under different blinkey lengths.

Blinkey length 3 4 5 6 7 8 9 10

FAR (%) of statistical attacks 5.2 6.4 2.8 2.4 1.8 0 0 0

An attacker is randomly assigned multiple forgery blinkeys and tries to get authenticated by repeating them.

Hence, attackers use their own pupils and thus biometric features to launch the attack. Table 6 shows the success

rate, i.e., FAR, of statistical attacks of BlinKey. The attacker’s success rate drops to 0 for blinkeys when their

lengths reach 8. Notably, statistic analysis does not grant the attacker much privilege over zero-effort attacks.

We further the variation pattern of BlinKey, specifically, the rhythm pattern distribution of blinkeys (without

considering the biometric features) based on our dataset. Its purpose is to examine if users tend to choose similar

blinking rhythms which would render the scheme vulnerable to statistical attacks. As shown in Table 7, we list

the top-13 most frequently used blinkeys by analyzing 1306 valid enrollments in the dataset. 11 of them are the

same, indexed as #1 blinkey, with their frequency calculated as 2.1%. Besides, there are also duplicates for #2–#10

blinkeys, with their occurrence frequencies as 1.5%, 0.9%, 0.8%, 0.6%, 0.6%, 0.4%, 0.4%, 0.4%, and 0.4%, respectively.

Table 7. Frequency of blinkeys from collected dataset.

Index #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13

Frequency 2.1% 1.5% 0.9% 0.8% 0.6% 0.6% 0.4% 0.4% 0.4% 0.4% 0.2% 0.2% 0.2%

It implies that users are less likely to choose the same blinking pattern. Therefore, attackers can barely obtain

useful information from the statistic analysis over a set of blinkeys. We acknowledge that our dataset is limited in

its size, with only 1306 blinkeys. Still, our analysis partially reflects the blinking pattern distribution in practice.

Compared with regular digit-PIN and password, a blinkey can be characterized by a more rich set of features,

including tapping time instances, tapping intervals, relative intervals, and even pupil size variations. All these

factors make BlinKey robust against statistical attacks.

We further visualize in Figure 14 the top 13 commonly adopted blinkey patterns that are presented in Table

7. As shown, the patterns that exhibit uniform rhythms (#1, #2, #4, #7, and #8) or symmetric rhythms (#5, #6,

#9, and #10) are more likely to be adopted. Such a phenomenon is also observed in PINs; the commonly picked
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Table 8. Success rate of credential-aware attacks on BlinKey, PIN, and pattern lock.

Length 3 4 5 6 7 8 9 10

BlinKey 16.6% 25.4% 19.7% 15.5% 14.2% 10.6% 7.9% 4.4%

PIN 100% 100% 97.1% 100% 100% 100% 100% 100%

Pattern lock 100% 100% 100% 100% 100% 99.3% 97.1% 96.8

PINs include 000000, 010101, etc., which share similar properties above. Note that Blinkey is a two-factor user

authentication that also involves biometric features. Hence, it effectively avoids PIN and password pitfalls caused

by popular credential selections.

(a) #1 (b) #2 (c) #3 (d) #4 (e) #5 (f) #6 (g) #7

(h) #8 (i) #9 (j) #10 (k) #11 (l) #12 (m) #13

Figure 14. Visualization of the top-13 frequently selected blinkey patterns.

6.2.3 Credential-Aware Attacks. A credential-aware attack is when the adversary has the full knowledge of the

blinking rhythm of a blinkey. Therefore, it can extract all the knowledge-based features, including blink time

instances, blink intervals, and relative intervals. To launch this type of attack, we provide the attacker all the

above-mentioned information regarding victim blinkeys. As discussed in statistical attacks, it is unlikely for the

adversary to reproduce the legitimate user’s biometrics. Likewise, to launch credential-aware attacks against

PIN and pattern lock, adversaries are informed with details of victim PINs and drawing patterns. Based on this

information, the attacker tries to gain access to the system. Table 8 compares the success rate against three types

of authentication schemes. While PIN and pattern are compromised, BlinKey effectively resists the attack. This is

because BlinKey also involves biometric features, which are hard to mimic, in addition to credentials. Meanwhile,

we also notice that the leakage of credentials does provide attackers advantage in compromising the system. For

instance, given the length of 7, the attacker’s success rate is 0 under zero-effort attacks, while it increases to

14.2% under credential-aware attacks. This result indicates that biometric features alone, i.e., pupil size variations,

cannot deliver satisfactory security performance. Luckily, the success rate against BlinKey is merely 4.4% when

the length is 10. Therefore, one viable solution to defend credential-aware attacks is to adopt a longer blinkey. As

a note, the length of a pattern lock is defined by the number of points a user draws through. For instance, the

length of a “Z” pattern (1-2-3-5-7-8-9) is 7.

6.2.4 Shoulder-Surfing Attacks. Shoulder-surfing attacks are another general type of attacks against an authenti-

cation system, in which the adversary obtains authentication information via visual observation. It is more severe

towards PIN/password/pattern authentication on VR devices than regular personal devices. Because the victim’s

vision is blocked by the headset, they are unaware of the surrounding environment, including the presence of

shoulder-surfing attackers. We randomly pick 22 out of 43 participants involved in the phase-II user study and

group them into 11 pairs. Each of them was told to replay his/her partner’s passcode. Firstly, one user of the pair

acts as an attacker, the other as a legitimate user, and then the roles are exchanged. During the experiment, the

legitimate user repeats the same passcode for three times with a pause in between. Then, the attacker watches the
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entire process and tries to reproduce it. Every attacker makes three access attempts. The attacker is considered a

success in a shoulder surfing if any one of the five trials passes the authentication.

Figure 15(a) plots the FAR, i.e., attacker’s success rate, of BlinKey, PIN, and pattern lock with respect to its

distance to the legitimate user. When the distance is 0.5 m, the success rate toward PIN and pattern lock is 23.9%

and 29.8%, respectively, while that toward BlinKey is merely 4.9%. This is intuitive, as a shorter distance enables

the attacker to have a closer observation over the legitimate user’s login. Thus, it has a better chance to correctly

replay the knowledge-based secret. On the other hand, it is hard, if not impossible, for the attacker to observe the

user’s eyes in a VR headset. Besides, as BlinKey involves biometric features, it is extremely challenging for an

attacker to repeat such information. It also explains why FAR keeps almost unchanged as the distance gets longer.

Figure 15(b) shows the success rate of should-surfing attacks with respect to the length of blinkey, PIN, and

drawing pattern. Again, BlinKey has the best performance among the three. When the length is 8, FAR of BlinKey
is 0, i.e., no adversary successfully launches shoulder-surfing attacks, while the value for PIN and pattern lock is

14.1% and 17.0%, respectively. Interestingly, unlike BlinKey, PIN and pattern lock become more vulnerable to

shoulder-surfing attacks with a larger length. One possible explanation is that a longer key provides the attacker

more information about the relative button positions to better infer the keypad structure.
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Figure 15. Success rate of shoulder-surfing attackers against BlinKey, PIN, and pattern lock.

The phenomenon that the success rate of shoulder-surfing attacks is non-zero is attributed to two reasons.

First, while it is hard to launch the shoulder-surfing attack, the attacker can still guess the secret, i.e., zero-effort

attack, even without much insight. As shown in Table 5 in the paper, its success rate is 8.1% when a blinkey has a

length of only 3. Second, while k-NN exhibits promising authentication accuracy, it is imperfect. As shown in

Figure 10, the lowest EER (where FAR=FRR) exists at 4.0%. It indicates that there is still certain possibility that

an illegitimate blinkey is wrongly classified as a legitimate one. On the other hand, a close observation over an

user’s login process does provide the attacker some marginal advantage. For example, a couple of volunteers

tend to nod their heads subconsciously following the same rhythm as they blink. This advantage diminishes

quickly as the attack-victim distance increases.

6.3 Usability
Apart from security, usability is another critical criterion to evaluate a user authentication scheme. We measure

the usability of BlinKey from aspects of time consumption, legitimate recognition, memorability, and impact of

user motions.

6.3.1 Time Consumption. We examine the enrollment time and login time needed for BlinKey. Specifically, the
former refers to the total duration required to enroll all samples to train the classifier, while the latter is the total

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 4, Article 164. Publication date: December 2020.



164:22 • Zhu et al.

duration for a user to enter a test blinkey and for the system to make an authentication decision. The distributions

of enrollment time and login time are depicted in Figure 16(a) and Figure 16(b), separately. We observe that the

enrollment time of BlinKey ranges from 40.8 to 63.5 seconds. Its average, median, and 90-th percentile are 49.5

seconds, 42.9 seconds, and 61.1 seconds, respectively. The login time spans from 7.3 to 11.7 seconds, with its

average, median, and 90-th percentile as 9.6 seconds, 8.9 seconds, and 11.2 seconds, respectively. Therefore, the

most time-consuming part is the enrollment phase. Luckily, the enrollment only needs to be performed once

for a user. Hence, its time consumption is still reasonably practical. The authentication time of our scheme is

shorter than many existing solutions, such as [13, 62]. It takes 17 and 60 seconds to authenticate a user in [13]

and [62], respectively. Besides, as shown in Table 4, only 4 out of 43 volunteers had the experience of performing

authentication in a VR device before. This factor partially accounts for the time overhead in our result. We thus

optimistically project that as users get more familiar with BlinKey, the enrollment and login time should be

further reduced.

The blinks indicating the start and end of a blinkey have been taken into account for the measurement of both

the enrollment time and login time in the evaluation. Specifically, 5 seconds out of the login duration (with the

90-th percentile as 11.2 seconds) are attributed to this overhead. As our future work, we plan to propose efficient

approach to indicate the start/end of a blinkey with reduced overhead.

6.3.2 Login Attempts. This metric measures how many login attempts a legitimate user needs to unlock the

device. A fewer number of attempts are desirable for an authentication scheme with high usability.

93.3% of blinkeys can be successfully authenticated in the first attempt, while this value for PIN and pattern

lock is 83.2% and 72.5%, respectively. This is because users make mistakes more often in selecting the correct key

or drawing the correct line on a virtual keyboard with the controllers. In contrast, the entering of blinkeys is

performed by blinking eyes without interacting with the controller. It only takes 1.09 attempts on average for a

legitimate user to get authenticated in BlinKey.
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Figure 16. Evaluation of usability of BlinKey.

6.3.3 Memorability. Memorability demonstrates howwell a secret key can be remembered by its owner, especially

after a long period. To evaluate the memorability of BlinKey, we designed two follow-up experiments. The

participants are invited to perform their blinkey after 7 days, and 14 days and test if they can successfully get

authenticated. Out of the 45 volunteers who joined in the first-stage experiment, 29 and 15 of them participated

in the two second-stage experiments, respectively. As shown in Table 9, 26 out of 29 volunteers are able to

recall their blinkeys successfully after 7 days and 12 out of 15 volunteers are able to recall their blinkeys after 14

days. While the memorability performance of BlinKey is far from perfect, we would like to note that most of

the volunteers may not have the chance to practice their blinkeys during 7 days, unlike regular passwords or
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Table 9. The recall rate after a period of time.

Duration between stage-I and -II experiments No. of participants No. of successes Success rate

After 7 days 29 26 89.6%

After 14 days 15 12 80.0%

digit-PINs that are entered to personal devices multiple times a day. We believe the performance will be enhanced

with more frequent practices.

6.3.4 Impact of User Motions. In practical scenarios, users are not always sitting statically while entering a

blinkey. Rather, they may be rotating their eyes, moving their heads, or even walking. An ideal system should

be capable of handling these situations. In the experiment, we investigate whether user motions impact the

performance of BlinKey. Four different types of motions are considered, sitting, rotating eyes, moving head, and

strolling. We observe in Figure 16(d) that the best accuracy is achieved when the user is sitting, with its FRR at 8.1%

and the FAR at 8.0%. The lowest accuracy is observed when the user is rotating eyes, with the corresponding FRR

at 16.9% and FAR at 10.2%. This is because eye movement prevents the eye tracker to accurately estimate real-time

pupil size. Nonetheless, neither head movement nor strolling causes significant performance degradation. Besides,

we also observe that FAR is relatively stable across all motion status. It means the authentication security is not

deteriorated much by motions. Based on the above observation, users will be recommended to enter blinkeys by

looking into the virtual screen to prevent significant eyeball movement. There will be no restriction on their

body movement, though.

6.4 Survey Results
In addition to the experiments, we further evaluate BlinKey via survey. The pre-survey was conducted after the

introduction of the basic idea of BlinKey and before the experiment, while the post-survey is conducted after all

experiments. Volunteers are asked to rate BlinKey from the perspectives of security and usability and compare

them with commonly used methods on mobile devices, including PIN, password, and pattern lock. Questions

include 1) Is it safe against attacks being tested? 2) Is it easy to perform and remember? On a 10-point Likert

scale (1 = strongly disagree; 10 = strongly agree), participants pick a point that they deem proper. Survey results

are shown in Figure 17. Most volunteers agree that BlinKey is better than the other three listed authentication

methods in both aspects. It is worth mentioning that many participants rate BlinKey a higher score in the

post-study than in the pre-study, which suggests that our scheme outperforms user’s expectations.

7 DISCUSSIONS
Raw size of BlinKey space. BlinKey is a two-factor authentication, a combination of the rhythm passcode and

human biometrics, i.e., variations of pupil size. Since the variability brought by biometric features is hard to

quantify, we would like to discuss the key space of BlinKey merely taking into account the variability introduced

by blinking rhythms. Thus, the real key space of BlinKey should be no less than this value.

BlinKey adopts a similar design of the rhythm passcode as a prior work [36]. We thus revise the theoretical

result of [36] and derive the key space of BlinKey.

Theorem 7.1. (Revised from Theorem 5.1 of [36].) The size of BlinKey’s key space is

|Π | =
𝐿max∑
𝑙=1

(𝑇max

𝜎
− ( 𝜏𝑏

𝜎
− 1) × 𝑙 − ( 𝜏𝑠

𝜎
− 1) × (𝑙 − 1)

2𝑙 − 1

)
,
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(a) Security

(b) Usability

Figure 17. Pre-/Post-study survey results regarding security and usability.

where 𝐿max, 𝑇max, 𝜎 , 𝜏𝑏 and 𝜏𝑠 stand for the maximum blinkey length, corresponding maximum time duration,
the system clock unit, minimum value of an onset-offset duration and minimum value of a offset-onset duration,
respectively.

For an illustration purpose, we let 𝜎 = 5 ms, which is the time unit for Pupil Labs eye tracker’s system clock.

According to the statistic analysis over our collected dataset, we set the rest parameters as 𝑇max = 12 s, 𝜏𝑠 = 0.15 s

and 𝜏𝑏 = 0.10 s. Thus, when the blinkey length is 6, the corresponding space size is about 10
23
. As a reference,

the key space for a regular PIN with 6 digits is 10
6
. The above theorem is derived without considering pupil

size variation. With the introduction of an additional dimension of entropy, the key space of BlinKey should be

further enlarged.

Practical design. Our design grants the user some error tolerance–when a legitimate user fails to authenticate,

she can re-enter her blinkey until the maximum number of attempts is reached. In this case, the user is temporarily

locked out, and the recovery process is invoked (see Figure 12(f)). Here are two classic recovery methods widely

adopted by other user authentication schemes. 1) Provide an alternative way to authenticate users; when a

legitimate user fails to authenticate herself with her blinkey, she can still unlock the device by entering a valid

passcode or digit-PIN. 2) Have a remote server to send a recovery code to the user’s previously authorized email
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address; the user retrieves the code by accessing the email and unlocks the device by entering the code. These

two approaches are deemed robust against attacks.

When an adversary tends to enroll himself in the device, he needs to first enter a valid blinkey, which has

been created by the legitimate user earlier, to unlock the device. Otherwise, there is no way for the adversary to

enroll himself. This idea has been adopted in many personal devices, such as smartphones and PCs. There is also

an exception that the victim VR device has not been secured with any user authentication scheme. In this case,

the adversary can directly set up his account associated with his blinkey in the device. To address this issue, a

conventional solution is to enforce the user to enroll her authentication credentials, i.e., blinkey here, during

initial account setup.

Impact of environment. User’s pupil size is affected by their biophysical status, such as mood, energy level,

whether drinking alcohol, illness, etc. Consequently, these factors would impair the authentication accuracy of

BlinKey. One viable solution is to further deploy a second-option user authentication method, such as digit-PIN

or password. Once a legitimate user’s input cannot be recognized by the system by any chance, including the

above-mentioned situations, she can always unlock the device by a valid digit-PIN. Such an idea has been adopted

by current fingerprint-/facial recognition-based user authentication on smartphones. While the brightness of the

display does affect pupil size when blinking, it does not necessarily impact the performance of our scheme. As

shown in Figure 12(c), the screen displays the same image with the same brightness/color/content during the

login process. Thus, it eliminates the impact from the display.

Reduce login overhead. Under the current design, the login duration of BlinKey spans from 7.3 to 11.7

seconds, with its average, median, and 90-th percentile as 9.6 seconds, 8.9 seconds, and 11.2 seconds, respectively.

While this overhead is reasonably practical, it is still longer than conventional PIN and password. The most

significant portion of the overhead is attributed to the blinks indicating the start and end of a blinkey, i.e., 5

seconds according to the setting. As our future work, we plan to propose efficient approach to indicate the

start/end of a blinkey with reduced overhead. Besides, as shown in Table 4, only 4 out of 43 volunteers had the

experience of performing authentication in a VR device before. This factor partially accounts for the long time

overhead in our result. The login time would be further reduced as users get more familiar with authenticating

themselves via BlinKey in VR.

8 CONCLUSIONS
As VR devices are increasingly weaved into our everyday life, providing security to the data acquired by or accessed

through these devices becomes critically important. In this study, we develop a two-factor user authentication

mechanism, named BlinKey, which employs the user-designed blinking rhythm and unique biometrics exhibited

in pupil size variation to fingerprint legitimate users. Compared to prior work, our solution delivers secure

authentication, incurs low cognitive overhead, and offers great convenience. Through an extensive evaluation

that involves 52 volunteers, we observe that the average EER is as low as 4.0% with only 6 training samples. The

proposed BlinKey is also implemented on an HTC Vive Pro with a Pupil Labs eye tracker. We further measure its

security by testing robustness against various types of attackers, and its utility, from aspects of time consumption,

login attempts, the impact of user motions, and memorability. We observe that BlinKey requires relatively

long enrollment time (median: 42.9 seconds). One reason is that many participants have limited experience in

authenticating themselves on VR devices. This is likely to be alleviated as users practice it multiple times daily

after scheme implementation. Besides, as enrollment is only executed once for each blinkey, the long enrollment

time will not incur noticeable overhead from a long-term view. In conclusion, we believe BlinKey is a practical

authentication method applicable to current VR devices.
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