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ABSTRACT
The escalating threat of hidden GPS tracking devices poses signifi-
cant risks to personal privacy and security. Featured by their minia-
turization and misleading appearances, GPS devices can be easily
disguised in their surroundings making their detection extremely
challenging. In this paper, we propose a novel side-channel-driven
detection system, GPSBuster, leveraging electromagnetic radiation
(EMR) emitted by GPS trackers. Our feasibility studies and hard-
ware analysis reveal that unique EMR patterns associated with the
tracker’s operation, stemming from the quartz oscillator, local oscil-
lator, and mixer in the Mixed-Signal on Chip (MSoC) system. Never-
theless, as a side-channel leakage, EMRs can be extremely weak and
suffer from the ambient noise inference, rendering the detections
impractical. To address these challenges, we develop the signal
processing techniques with noise removals and a dual-dimensional
folding mechanism to accumulate the spectrum energy and pro-
trude the EMR patterns with high Signal-to-Noise Ratios (SNR).
Our detection prototype, built with a portable HackRF One device,
allows users to perform a scan-to-detect manner and achieves an
overall success rate of 98.4% on top-10 selling GPS trackers under
various testing cases. The maximum detection range is 0.61m.
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1 INTRODUCTION
Hidden GPS tracking devices pose a significant threat to personal
privacy, exposing individuals to potential cyberstalking and various
criminal activities. The monitored geo-location patterns captured
by these trackers can lead to unauthorized surveillance, break-ins,
vehicle theft, and the theft of commercial secrets. The Department
of Defense (DoD) [28] has issued warnings highlighting the risks
associated with GPS trackers, emphasizing their potential to make
users easy targets. By leaking individuals’ daily routines, these de-
vices can provide insights into their residences and family situations,
posing a serious threat to personal security. Further compounding
these concerns, recent studies [3] reveal that GPS trackers, typi-
cally marketed for legitimate purposes such as vehicle security or
child safety, are easily used for intimate partner surveillance(IPS)
and even advertised for use in IPS and other covert surveillance.
These devices effectively enable IPS without the abuser having
any specialized technical skill. However, commercially available
device detection tools are unusable and often fail to detect anything
[3] Moreover, the information collected by GPS trackers could be
exploited by divorce lawyers and insurance companies, impact-
ing individuals both financially and legally. The pervasiveness of
GPS tracking technology underscores the importance of developing
effective countermeasures to protect personal privacy.
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Figure 1: Malicious GPS trackers have misleading appear-
ances and could be super miniaturized. An attacker may
secretly hide them in the victims’ vehicles or daily carry-
ons, and both online and offline tracking methods could
be adopted to acquire and analyze the travel trajectories.
GPSBuster exploits the EMR of GPS trackers to perform the
detection.

Detecting hidden GPS trackers has become a challenging task
due to advancements in mixed-signal on-chip (MSoC) technolo-
gies, allowing for the integration of various circuit modules into
compact chips. These miniature GPS trackers can be easily con-
cealed, for example, underneath vehicles or inside carry-on bags.
The passive nature of GPS positioning devices, which rely on re-
ceiving broadcasted signals from satellites to compute real-time
geo-coordinates, further complicates detection efforts as no active
measurement signals are transmitted. Nevertheless, in real-world
attacks, adversaries may use offline GPS trackers to continuously
record a victim’s geo-coordinates on a local storage card, retriev-
ing the information at a later, more convenient time. Additionally,
with wireless connectivity (such as cellular networks or Wi-Fi),
GPS trackers can stealthily transmit geo-coordinates to an adver-
sary’s server. However, attempting to detect hidden GPS trackers
by monitoring their wireless transmissions is impractical. Adver-
saries can request data transmissions at any time, while detection
systems cannot mandate that suspected victims (e.g., vehicles) re-
main stationary for extended periods (hours or days) to check for
GPS-data-related transmissions. Moreover, the prevalence of com-
mercial off-the-shelf (COTS) devices with multiple connectivity op-
tions (cellular, Wi-Fi, Bluetooth) contributes to a polluted wireless
spectrum, making meaningful detection challenging. These unique
challenges render existing designs for detecting secret-stealing de-
vices, such as cameras or microphones based on wireless traffic
analysis [6, 12, 18, 22, 35, 39, 44], light emissions [14, 20, 21, 36],
and RF transmissions [23, 34, 40, 50], inapplicable to hidden GPS
trackers.

In this paper, we propose a novel side-channel-driven design to
tackle the challenge of detecting hidden GPS trackers, as shown
in Figure 1. Specifically, we find that electromagnetic radiation
(EMR) emitted by electronic devices was considered as an effective
side-channel reflecting the devices’ system information. Recent
studies have demonstrated the potential of using EMR to recover
secret AES-128 keys [51, 52], capture screen contents [2, 11, 24],
and intercept users’ keystrokes [15, 31]. Motivated by this body
of evidence, we ask "Can GPS trackers exhibit distinguishable EMR
leakages linked to their inherent circuit modules, facilitating effective

detection?" To answer this question, we outline three research goals
(RG).

• RG1: Characterize GPS trackers’ EMRs at different working
statuses to investigate how well they are correlated.

• RG2: Locate the EMR sources of GPS trackers, identifying
unique radiation mechanisms and spectra distinguishable
from other devices.

• RG3: Develop a robust detection system to correctly identify
and confirm the presence of an arbitrary hidden GPS tracker,
especially considering GPS trackers’ EMRs typically have
low signal-to-noise ratios (SNR).

To achieve RG1 and RG2, we conducted a feasibility study to
analyze the correlations between GPS trackers’ working status
and their EMR spectrum leakages. The results revealed that when
GPS trackers were actively receiving positioning signals from satel-
lites and decoding geo-coordinates, they emitted measurable EMR
leakages scattered at two unique spectrum ranges: BandL: 25MHz-
105MHz and BandH: 1545MHz-1625MHz. In both ranges, there was
one most prominent frequency peak aligned with several smaller
peaks separated by an equal interval. By de-shelling the GPS tracker
and isolating each circuit module with metal copper covers, we
localized the origin of the EMR radiations to the MSoC unit. Further
analysis indicated that these radiation patterns could result from
EMR couplings between multiple circuit components inside the
MSoC. A deep investigation into the GPS tracker’s MSoC compo-
sitions and its signal processing pipelines led us to infer that the
EMR leakages are generated by the frequency mixing procedure in-
volving three primary components: a quartz oscillator (QO), a local
oscillator (LO), and a mixer. Specifically, the EMR coupling between
the quartz oscillator and mixer generates the BandL radiation spec-
trum, while the EMR coupling between the local oscillator and
mixer generates the BandH radiation spectrum. These assumptions
were made based on key observations that the distribution patterns
of frequency peaks within the EMR spectrums matched with inter-
correlations of output frequencies corresponding to the QO, LO,
and mixer. To further verify these assumptions, we conducted an
additional experiment by shielding the GPS tracker’s antenna with
copper metal to reduce the GPS signal strength processed by these
circuit components. If the EMRs originate from these assumed cir-
cuit modules, their signal should also be reduced. The results of our
signal-shielding experiment confirmed a decrease in EMRs, thus
validating our assumptions. Overall, our feasibility study yields
comprehensive evidence supporting the viability of detecting con-
cealed GPS trackers through analysis of their emitted EMRs. Within
this context, we have successfully identified the crucial sources and
distinctive patterns of EMRs, forming the foundational elements
for our proposed detection process.

Nevertheless, building an effective GPS tracker detection system
is a non-trivial task. The emitted EMRs are inherently weak and
rapidly diminish with increasing measurement distances, easily
susceptible to contamination by electromagnetic interference from
nearby electronic devices. This makes it challenging to accurately
characterize the EMR patterns of GPS trackers and identify them
with a high level of confidence (RG3). We propose a two-step pro-
cess to enhance the signal-to-noise ratio (SNR) of EMRs. Initially,
we employed a Minimum Mean Square Error (MMSE) method to
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model the spectrum distributions of environmental noises, attenu-
ating them to a low level. Subsequently, a dual-dimensional folding
algorithm was devised to accumulate the energy of EMR spectrum
peaks in both the time and frequency domains, effectively boost-
ing the SNR. These methodologies extended the detection distance
from a few centimeters to a maximum of 0.61 meters in real-world
tests. With the enhanced GPS trackers’ EMRs, we further built a
comprehensive detection algorithm based on the EMR distribution
patterns, while considering both scenarios where the victim has
established an MSoC database for GPS trackers or lacks such prior
information.

To evaluate the effectiveness of the detection system, we build a
prototype using Hack RF devices which are portable in size, facili-
tating the users to hold its antenna and move around to receive the
potential EMRs for the detection purpose. We conduct evaluations
on 10 top-selling tracker devices with different appearances and
sizes under the interference of other 5 types of electronics. Our re-
sults indicate that the proposed GPSBuster system is robust against
electronic inferences, transparent to physical blocking obstacles,
and remains effective even when the tracker device has a low bat-
tery level or experiences low SNR of received GPS signals. The
system can effectively detect all the hidden tracker devices with an
overall success rate of 98.4%. As the initial exploration into detect-
ing hidden GPS trackers, we believe the proof-of-concept detection
system, GPSBuster, can be a useful tool for safeguarding users’ pri-
vacy and the company’s business secrets. The contributions of this
paper are summarized as follows:

• We find that GPS trackers share unique EMR patterns origi-
nating from their MSoCs, and demonstrate such side-channel
signal can be exploited to perform the detection.

• We characterize theMSoC circuits under the GPS positioning
tasks, and perform feasibility studies to reveal its inherent ra-
diation sources and the corresponding EMR patterns. Based
on the analysis, we develop the detection methods to en-
hance the weak EMR signals.

• Webuild a prototype and demonstrate the effectiveness of the
detection system on 10 GPS trackers across various settings.

2 RELATEDWORK
2.1 Secret-stealing Device Detection
Due to their miniaturized sizes and misleading appearances, secret-
stealing devices are hard to detect with the naked eye. Recent re-
searches have proposed hardware and software-based approaches
to detect hidden voice recorders [27, 50], cameras [6, 12, 18, 23, 35,
53], IoT sensing devices [39, 44], superheterodyne receivers[45]
and wireless radio frequency eavesdroppers [3, 4, 30, 40]. Note that
Stagner et al.[45], Shen et al.[40] and Chaman et al.[4] leverage
the local oscillator (LO) emissions to detect superheterodyne re-
ceivers and Wi-Fi terminals, which are far less common in GPS
trackers. Furthermore, such detection designs focused on analyzing
the information related to the device’s wireless module, i.e., traffic
data and transmitted (or leaked) RF signals. For example, spy vs.
spy [50] detects hidden voice recorders by characterizing their RF
signals when transmitting recorded audio files via wireless connec-
tives. CSI:DeSpy [35] collects the traffic fluctuations and correlates
them with channel states information (CSI) variations to detect

the hidden Wi-Fi cameras. Earfisher [40] detects wireless channel
eavesdroppers by transmitting bait traffics and capturing the EMR
leakages originating from eavesdroppers’ DDR memory. However,
the above designs are only applicable when the device has wireless
connectivity modules. In the case of GPS trackers, the attacker may
adopt an offline tracking strategy that records the GPS traces locally
and picks up the tracker at a time window that is convenient for
him. For example, the attacker may show up and pick up a GPS
tracker attached to the victim’s vehicle, when he went for grocery
shopping and left the vehicle at the parking lot. We aim to develop
a comprehensive detection method that works for both online and
offline trackers.

To detect the devices with offline secret-stealing alternatives, re-
searchers start to investigate the inherent correlations between the
information processed by the device and its side-channel responses.
In particular, CamRadar [23] and DeHiREC [58] show that hidden
cameras and microphones leak measurable EMRs from their analog-
to-digital (ADC) module when converting the analog sensory data
to videos and voice files. Similar observations are also validated by
TickTock [34], which are leveraged to detect the working status
(on/off) of laptops’ microphones. In comparison, unlike cameras
and microphones, the geo-coordinates recorded by GPS trackers
are typically around a few Kbits, which is considerably smaller
than videos and voices. Therefore, it can barely induce strong EMR
leakages from the ADC-related modules. In addition, almost every
electronic has ADC modules, it could be hard to distinguish them
by analyzing the ADC’s EMR leakages.

2.2 EMR Side-channel
Electronic devices unavoidably leak EMR while they are function-
ing, which is considered as an effective side-channel for information
reconstruction, device fingerprinting, and anomaly detection. In the
early 1980s, Van Eck first published an experimental result showing
the screen contents of a cathode ray tube (CRT) display can be recon-
structed by analyzing its emitted EMRs. Inspired by these promising
results, researchers have made more innovative contributions in
investigating the potential of leveraging EMR side-channel for infor-
mation extractions. Previous studies have shown that EMR leakages
can be exploited to crack RSA keys [1] and AES keys [51, 52], recon-
struct screen data [2, 11, 24], infer input on touchscreen keystrokes
[15] and USB keyboard [31, 46], reconstruct neural network archi-
tectures [25, 56], and even eavesdropping audio data [5, 8, 19]. The
above studies focused on EMR-based side-channel attacks while
our goal is defense-oriented, i.e., detecting and identifying hidden
GPS trackers through their leaked EMRs. Sehatbakhshk et al. [37]
leverage the device’s EM side-channel to verify the integrity of
response computations in building the system’s trustworthy execu-
tion environment. Cheng et al. [7] propose DeMiCPU to distinguish
different CPUs based on their EMR patterns. Shen et al. [41] present
MemScope, a system that senses electromagnetic fingerprinting of
memory heartbeats, i.e., the clock that synchronizes memory and
memory controller. Our research is parallel to these studies and
utilizes the coupled EMRs originating from hidden GPS trackers’
inherent MSoC circuits, i.e., quartz oscillator, local oscillator, and
IF Filter to detect unauthorized geo-location tracking.
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3 THREAT MODEL
3.1 Attack Model
We consider an attacker with specific goals and capabilities. The
attacker’s primary objective is to clandestinely track the locations of
individuals, vehicles, or personal items using hidden GPS trackers.

Scope. In this work, we refer the GPS trackers as those devices
specially made for tracking purposes by leveraging the GPS posi-
tioning techniques. The GPS sensors embedded on smartphones
are out of our scope, since both Android and IOS pose strict per-
mission controls on accessing the positioning sensors. As a result,
the attacker could not obtain such tracking permissions without
the victim’s agreement.

The hidden GPS trackers are assumed to be small-sized, battery-
powered devices, strategically placed in concealed positions for
discreet location tracking. The trackers may possess wireless con-
nectivity options, such as Wi-Fi, cellular networks, or Bluetooth,
enabling the transmission of real-time location data to a remote
monitoring server. Alternatively, the trackers may feature sufficient
local storage to record target geo-coordinates over an extended
period, allowing the attacker to retrieve the data later. We pose no
assumptions about the trackers’ types.

It’s important to note that there are no restrictions on the ap-
pearance or manufacturing of the GPS trackers. For instance, the
attacker could employ a GPS tracker disguised as a common item,
like a phone charger (as shown in Figure 1).

Hidden Positions. Since GPS trackers rely on receiving radio-
frequency (RF) signals from satellites to compute geo-coordinates,
we assume the attacker places the trackers in hidden positions
that are not fully shielded by metal objects. This is due to the
significant energy loss experienced by RF signals when penetrating
metal. Consequently, a weak signal might not provide sufficient
information for the GPS tracker to decode meaningful data and
obtain accurate location coordinates. For example, the attacker
could place the GPS tracker in a bag, wallet, jacket, or shoes, but
not inside a metal water cup.

Limited manipulation of MSoC hardware.We assume the
attackers use consumer-grade GPS trackers. They can change the
GPS tracker configurations but are unable to modify the MSoC
system.

3.2 Detection Model
Primary Goal. As a detection system, GPSBuster is designed to
identify concealed GPS trackers in diverse and complex environ-
ments. We refrain from making assumptions about the operational
principles of GPS trackers, allowing for variations such as Wi-
Fi/cellular-enabled or standalone devices. The detection system
also has no prior knowledge about the GPS tracker’s type and
hardware specifics.

Usage Instructions. For the detection and location of unau-
thorized GPS trackers, the detection system is implemented in the
form of a portable device, providing users with the flexibility to
move around while scanning for EMR emanations and searching
for hidden GPS trackers (i.e., scan-to-detect manner).

In real-world environments, there are various types of EMR. To
achieve detection in general cases, no assumptions should be made
about the cleanliness of the electromagnetic (EM) environment

(e.g., an EM-shielded room) surrounding the detection system. For
instance, hidden GPS trackers could be placed in private vehicles
or personal carry-on bags, where various electronic devices are
present, potentially causing strong EMR interference. The detec-
tion system should maintain the capability to extract and analyze
the EMR characteristics of hidden GPS trackers under such noisy
environments.

4 BACKGROUNDS
We first introduce the basic architecture and operational processes
inherent to GPS trackers. Then, we explain how and why EMRs are
produced by GPS tracker’s MSoC circuits.

4.1 GPS Tracker Basics
GPS trackers continually receive positioning signals broadcast by
global navigation satellite systems (GNSS). These signals operate
within frequency bands ranging from L1 to L5 [54], with L1 al-
located for civilian positioning usages at a central frequency of
1575.42MHz [55]. The L1 signal contains time and location data,
enabling GPS trackers to calculate real-time geolocations. The work-
flow of a typical GPS tracker involves several key stages, illustrated
in Figure 2. Note that, quartz oscillators are either integrated inside
the GPS chip [48, 49] or soldered on the Printed Circuit Board (PCB)
as external components. For both cases, quartz oscillators share the
same PCB with other circuits.
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Figure 2: SimplifiedArchitecture Used inCOTSGPS Trackers.

The GPS tracker primarily comprises a signal processing module
(RF front) for radio frequencies and a digital signal processing (DSP)
module, packed as one mixed-signal system-on-chip (MSoC) circuit
system. While the GPS tracker is receiving the positioning signals,
the RF processing module first uses a low-noise amplifier (LNA)
to enhance the signal strength received from the antenna. Second,
it passes a band-pass filter (BPF) with a central frequency 𝑓𝐿1 of
1575.42MHz to mitigate the RF noises while isolating L1 positioning
signals. Third, the system utilizes a local oscillator (LO) to generate
a reference frequency 𝑓𝑙𝑜 for preparing the signal mixing. The
L1 signal is mixed with the reference signal in order to be
shifted to an intermediary frequency (IF), i.e., 𝑓𝐼𝐹 = 𝑓𝐿1 − 𝑓𝑙𝑜 .
The processed signal is then passed through an IF filter to selectively
extract the useful signal frequencies while attenuating the others
(i.e., RF noises). Finally, a built-in ADC of the MSoC converts this
denoised analog signal into a digital signal, which is further sent to
the digital signal processing (DSP)module. Following a standardized
GPS protocol [54], the DSP module simply takes the digitized signal
and performs code tracking, doppler frequency estimation, and data
demodulation to derive real-time geographical coordinates.
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Among the various signal processing steps delineated in
the system architecture (refer to Figure 2), the frequency
mixing emerges as the most pivotal one within the RF front
section. It is accomplished by jointly incorporating the mixer,
local oscillator (LO), and quartz oscillator (QO) circuit modules.
The local oscillator plays a paramount role by multiplying the
quartz oscillator’s base frequency 𝑓𝑞𝑜 and producing the essential
parameter 𝑓𝑙𝑜 = 𝑁 × 𝑓𝑞𝑜 , 𝑁 ∈ N+, serving as a fundamental element
for the mixer’s conversion of the high-frequency positioning signal
(@𝑓𝐿1 = 1575.42MHz) into an intermediate frequency 𝑓𝐼𝐹 .

In practical applications, quartz oscillators typically operate
within the 10-52MHz frequency range. The local oscillator (LO)
is structured as a phase-locked loop (PLL) frequency synthesizer,
producing a reference signal ranging from 1570-1573MHz. The
intermediate signal resulting from the mixer, denoted as 𝑓𝐼𝐹 =

𝑓𝐿1 − 𝑓𝑙𝑜 < 10𝑀𝐻𝑧, has a frequency significantly lower than that of
the L1 raw GPS positioning signal received by the tracker’s antenna.
This transformation facilitates subsequent signal processing steps
with increased efficiency. Following Nyquist’s theorem [32], we
learn that the lower frequency of the intermediate signal (@𝑓𝐼𝐹 )
necessitates a considerably reduced sampling rate for the ADC
units during the conversion to digital signals. In addition, it also
helps to alleviate the processing load on the IF filters.

4.2 EMR Coupling of MSoCs
Following Maxwell’s equation and Lorentz force law [16], the in-
tense fluctuations in the current signals of electronic devices give
rise to time-variant electromagnetic fields, propagating into the
open space, commonly known as EMRs. The evolution of printed
circuit board (PCB) manufacturing techniques has led to the inte-
gration of RF fronts, DSPs, and power circuits into a singular signal
chipset referred to as the MSoC chipset. This highly miniaturized
architecture places different circuit modules closely and introduces
unforeseen EMR coupling issues. EMRs emanating from distinct
circuit components become coupled through their shared PCB sub-
strates, resulting in unintended side-channel leakages. Previous
studies in the RF research domain [8, 13] evidenced that if the ra-
diation frequencies of two EMR leakage sources are denoted
as 𝑓1 and 𝑓2, respectively, the spectrum of their coupled EMR
radiations can be expressed as 𝑓𝑟𝑎𝑑 = 𝑛 × 𝑓1 +𝑚 × 𝑓2, where
𝑛,𝑚 ∈ N.

5 PRELIMINARIES OF EMR LEAKAGES
This section undertakes preliminary investigations to identify the
specific circuit modules within the GPS tracker responsible for
generating EMRs. Additionally, it explores the rationale behind
leveraging emitted EMRs for detecting hidden GPS devices.

5.1 What are the EMR Characteristics of GPS
Trackers?

We first focus on discerning the distinctive characteristics of EMRs
emitted by GPS trackers. The primary objective is to validate the
feasibility of exploiting these side-channel leakages for detection
purposes.

Experiment Setups.We build the EMR sensory prototype by
leveraging the HackRF One software-defined radio (SDR) device
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Figure 4: The emanated EMR spectrum of three GPS trackers,
i.e., Tuqiang, Ouchuang and Fengwei.

[29], an antenna probe, an amplifier and a laptop, as depicted in
Figure 3. The HackRF One is designed with the capability to re-
ceive EMRs at the frequency range of 1MHz to 6000MHz, where the
antenna pin of the HackRF One SDR is connected with a NFP-3 an-
tenna and a low-noise amplifier (LNA) to enhanceweak EMR signals
by up to 35dB while mitigating ambient EM noises. HackRF adopts
a sweeping manner to achieve wide-band scanning. It switches the
scanning bands with a default bandwidth of 20MHz, which takes
approximately 0.05148 seconds by average to collect a 20MHz-wide
signal and compute its FFT results with a window size of 32768
samples. The prototype has a portable size, allowing users to hold
the antenna and scan for potential hidden GPS trackers. Addition-
ally, we believe it could be further miniaturized by replacing the
signal analysis laptop with other small-sized and low-cost devices,
e.g., Raspberry Pis.
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To simulate real-world scenarios, experiments were conducted
in a parking lot, employing the top-10 GPS trackers selected from
a leading online retail platform1. To ensure the sample diversity,
products from various manufacturers were selected, encompassing
different MSoCs. Detailed information about the selected GPS track-
ers, including their models, sizes, and MSoC specifics, is presented
in Table 2. In the experiments, we positioned the HackRF’s antenna
in close proximity (5cm) to the GPS trackers to obtain a clear spec-
trum and gain a thorough understanding of their characteristics.

Frequency Distributions. Three GPS trackers, namely Feng-
wei, Tuqiang, and Ouchuang, are chosen as representatives for the
subsequent analysis. During the experiment, we investigated EMR
emissions across a broad spectrum, ranging from 1MHz to 3200MHz,
to characterize the distinctive frequency patterns exhibited by GPS
trackers’ EMRs. Figure 4 compares the EMR spectra of the selected
GPS trackers, yielding the following key observations (KO).

KO1: A robust correlation is evident between the status of the
GPS trackers and the observed EMR signals. It can be observed
that the Tuqiang tracker exhibits negligible EMR signals when
switched off. Upon activation, distinctive power spikes appear in
the spectrum, primarily distributed across two frequency bands:
BandL: 26MHz-104MHz and BandH: 1545MHz-1625MHz. A
similar pattern is observed with both the Ouchuang and Fengwei
trackers. This leads us to infer that the process of the GPS tracker’s
circuit modules introduces EMR leakages.

KO2: In both BandL and BandH EMR spectrums, a notable ob-
servation is that there is one most prominent frequency peak and
the other peaks are spaced with an approximately uniform inter-
val. For instance, in BandL, the Tuqiang tracker has the strongest
EMR peak at 26Mhz while the remaining peaks are at 30.09MHz,
34.18MHz, ..., and 103.71MHz. Its average periodic peak interval
is approximately 4.09MHz. Similar observations are found in the
BandH EMR spectrum, where the primary frequency peak is at
1571.33MHz, and the other peaks are spaced with an interval of
approximately 4.09MHz. These fundamental characteristics in EMR
spectra can be further leveraged for detecting those GPS trackers.
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Figure 5: EMR spectrum of each module inside the GPS
Tracker: MSoC, Wi-Fi Chipset and power management unit
(PMU).

1We purchased via an online shopping website, i.e., “Tmall.com", which has comparable
market-size to “Amazon.com".

KO3: As shown in Figure 5, we further removed the Tuqiang
GPS tracker’s packaging shell and conducted separate EMR mea-
surements for the MSoC unit, power management unit (PMU), and
Wi-Fi chipset modules, as they are potential sources of EMR. Dur-
ing the measurement, copper tapes are utilized to cover the other
circuits, isolating the specific module of interest and facilitating the
measurement of its corresponding EMRs. Notably, the copper tape
serves as a shield, preventing the EMRs emitted from the covered
circuit modules from interfering with the measurements. We find
that the MSoC unit generates strong EMRs with notable spectrum
peaks, while no observable EMRs are detected when measuring the
EMRs of the other circuit modules.

In summary, we have analyzed the unique spectral features of
the EMR emitted by GPS trackers. The EMR is distributed across
two distinct frequency ranges: BandL and BandH. Within BandL
and BandH, it has one strongest EMR frequency peak and a series
of coupled EMRs with fixed intervals. By conducting separate mea-
surements on each electronic component within the GPS Tracker,
we have confirmed that the EMRs originate from trackers’ MSoCs.

5.2 What are EMR Sources inside the Trackers?
Having experimentally confirmed and characterized the EMR spec-
tra of GPS trackers, the focus of this part is to pinpoint the source
of EMR within the device’s MSoC and investigate its root causes.
This exploration is crucial for developing effective detection meth-
ods to accurately identify and confirm the presence of hidden GPS
trackers through their EMR leakages.

As discussed in Section 4.2, the integration of multiple circuit
units in GPS trackers as one MSoC system induces radiation cou-
plings between EMR signals emitted from different units. In the
following discussions, we reveal that there are three major EMR
sources inside the GPS tracker’s MSoC: the quartz oscillator, local
oscillator, and mixer. And, the EMR coupling among these com-
ponents generates radiations observed at two distinct frequency
bands, denoted as BandL and BandH.

BandH EMRs. Taking the Tuqiang GPS tracker as an example,
Figure 4 evidenced that during the processing of satellite signals
for acquiring GPS coordinates, it emitted a prominent peak and a
series of sequential frequency peaks spaced with similar intervals
(KO2). By formalizing it, we have these spectrum peaks adhere
to a mathematical equation of 𝑛 × 1571.33𝑀𝐻𝑧 +𝑚 × 4.09𝑀𝐻𝑧

(𝑛,𝑚 ∈ N) with small deviation errors. We note these deviations are
caused by the electronics’ spread-spectrum techniques [58], which
are commonly used by the device’s oscillators varying its output
frequency with small deviations to the calibration frequency. It
avoids the device generating high EMR emanations and helps to
meet the EMC regulations.

Intriguingly, the sum of 1571.33MHz and 4.09MHz equals to the
frequency of the GPS satellite’s L1 positioning signal (raw signal re-
ceived at the GPS tracker’s antenna), denoted as 𝑓𝐿1 = 1575.42MHz.
Drawing from the GPS basics discussed in Section 4.1, tracker de-
vices’ mixer down-convert the raw positioning signal (@𝑓𝐿1) to
the intermediate frequency (@𝑓𝐼𝐹 ) by mixing it with the local os-
cillator with a frequency of 𝑓𝑙𝑜 , i.e., 𝑓𝐼𝐹 = 𝑓𝐿1 − 𝑓𝑙𝑜 . Therefore, we
infer that the 1571.33MHz radiation component is likely composed
of the local oscillator, while 4.09MHz EMRs correspond with the
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Figure 6: Framework of GPSBuster.

mixer’s output frequency. The radiation coupling between the
GPS tracker’s local oscillator module and mixer generates
EMRs at the frequency of BandH range following the pattern
of 𝑛 × 1571.33𝑀𝐻𝑧 +𝑚 × 4.09𝑀𝐻𝑧.

BandL EMRs. In addition to the BandH EMR spectrum, we find
the Tuqiang tracker’s BandL radiation leakages following a mathe-
matical formula of𝑛×26𝑀𝐻𝑧+𝑚×4.09𝑀𝐻𝑧, as shown in Figure 4. In
particular, the Tuqiang GPS tracker is embedded with an MTK3333
MSoC, wherein its clock frequency of the quartz oscillator is 26MHz,
and the mixer outputs a processed intermediate frequency signal
𝑓𝐼𝐹=4.09MHz, as detailed in its datasheet[26]. Thus, we infer that
the BandL EMRs originate from the coupling between GPS
trackers’ quartz oscillators and mixers.
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Figure 7: EMR spectrum changes with and without shielding
the antenna.

To further validate the above hypothesis regarding the EMR
sources, we conducted a comparative experiment. Note that both
BandL and BandH EMRs were assumed coupling with the mixer’s
radiation signal (@𝑓𝐼𝐹 ). Meanwhile, as a down-covert version of
the raw GPS positioning signal, the strength of 𝑓𝐼𝐹 is mainly de-
termined by tracker’s received GPS signal (@𝑓𝐿1) strength. Thus,
in the experiment, we enveloped the receiving antennas of the
GPS trackers with a Faraday shielding bag, thereby attenuating
its received satellite positioning signal (@𝑓𝐿1) and subsequently
reducing the signal power (@𝑓𝐼𝐹 ) converted by the GPS tracker’s
mixer unit. Such that, if the EMR is originated from the coupling
among the quartz oscillator, local oscillator, and mixer(@𝑓𝐼𝐹 ), we
should observe significant decreases of EMR’s amplitudes.

We compared the strengths of the GPS tracker’s EMR spectrum
before and after shielding. Figure 7 illustrates a significant decrease
in the strength of EMRs after shielding, compared to that of EMRs

before shielding. This is because shielding the antenna decreases
the received signal strength of GPS trackers, leading to a weaker
mixed signal (@𝑓𝐼𝐹 ). Consequently, the coupled EMRs among 𝑓𝐼𝐹 ,
𝑓𝑞𝑜 , and 𝑓𝑙𝑜 are also experiencing the signal attenuation with lower
strengthens. These observations validate our assumptions regard-
ing the EMR sources.

6 GPSBUSTER
Despite promising results demonstrating that hidden GPS trackers
emit measurable EMRs during operation, several challenges per-
sist in designing the corresponding detection system: Challenge
1: Environmental RF noises may pollute the GPS tracker’s EMR
spectrum. Challenge 2: EMR signals have weak amplitudes, lead-
ing to a short detection range. Challenge 3: The victim may have
an MSoC database of target GPS trackers or may not have such
prior information and the detection algorithm should be designed
to handle both cases.

This section presents the detailed techniques employed to over-
come these challenges and identify the presence of hidden GPS
trackers from their EMR leakages. As illustrated in Figure 6, GPS-
Buster mainly consists of three procedures: denoise, enhancement,
and detection. The denoise procedure utilizes the collected EMR sig-
nals measured at BandL and BandH spectra and applies a Minimum
Mean Square Error (MMSE) method to eliminate environmental
noises from the EMR measurements. The enhancement procedure
then adaptively folds the signal in both time and frequency domains
to acquire a clear EMR spectrum with high Signal-to-Noise Ratios
(SNRs). Finally, the detection step takes the processed EMR signal
to tentatively identify the suspected spectrum characteristics of a
hidden GPS tracker. In our proposed method, we assume that the
target GPS tracker to be detected is pre-recorded in the MSoC data-
base. If the algorithm 1 successfully matches the target GPS tracker,
it is considered detected. In the case of no match, the algorithm
undergoes further validation in the "Without Database" scenario
under algorithm 2 to obtain the final detection result.

As theGPSBuster requires the knowledge of anMSoC database to
perform the algorithm 1 during detection, we envision two practical
approaches to collect and enlarge the database detailed in Table
2. The user can collect data through public sources, e.g., technical
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documents[38] [26] [33] and manufacturer’s websites[43] [17]. Al-
ternatively, crowd sourcing techniques can be used to encourage
the cyberspace security communities to measure the GPS tracker’s
EMRs on-the-market and record them into the database.

6.1 Denoise
Detecting hidden GPS trackers by exploiting their EMRs can be
impeded by the presence of Radio Frequency (RF) noises radiated
from nearby electronic devices. These noises are typically random
and intermingled with the desired EMR spectrum. Conventional
noise removal techniques utilizing frequency filtering designs fall
short in addressing such interference. To address this challenge,
we employ a Minimum Mean Square Error (MMSE) technique [10]
to attenuate the noise components to a low amplitude level while
strengthening the clean EMR frequencies of GPS trackers.

Specifically, before determining whether a target (e.g., a car) has
been equipped with a hidden GPS tracker, we conduct a short-time
scan of the environmental noise spectrum, denoted as 𝑛𝑒𝑠𝑡 (𝑓 , 𝑡), by
positioning the HackRF prototype’s antenna away from the victim.
This scan helps us to roughly estimate the power spectrum of noises.
Subsequently, we proceed to scan the victim and obtain a noisy
EMR spectrum for detecting the hidden trackers, represented as

𝐸 (𝑓 , 𝑡) = 𝑌 (𝑓𝑦, 𝑡) + 𝑛(𝑓𝑛, 𝑡), 𝑓𝑦, 𝑓𝑛 ∈ ∪𝑓 , (1)

where 𝑌 (𝑓𝑦, 𝑡) represents the GPS tracker’s EMR signal amplitude
of frequency 𝑓𝑦 at time 𝑡 , and 𝑛(𝑓𝑛, 𝑡) stands for the correspond-
ing noise component. The MMSE noise removal algorithm utilizes
𝑛𝑒𝑠𝑡 (𝑓 , 𝑡) as the referenced noise spectrum and computes the atten-
uation coefficient 𝐺 (𝑓 , 𝑡) for each frequency component of 𝐸 (𝑓 , 𝑡).
The noises are then eliminated by applying the attenuation, i.e.,
𝐸 (𝑓 , 𝑡) × 𝐺 (𝑓 , 𝑡). Ideally, 𝐺 (𝑓 , 𝑡) ≈ 1 if 𝑓 = 𝑓𝑦 , while 𝐺 (𝑓 , 𝑡) ≈ 0
if 𝑓 = 𝑓𝑛 . In practice, we adopted a classic algorithm proposed in
[10] to compute the 𝐺 (𝑓 , 𝑡). Figure 8 shows the measured EMR
spectrum of a Tuqiang tracker device in both BandL and BandH
frequency ranges. It is observed that most of the environmental
noises are removed from the raw measurements, and the denoised
spectrums present clearer patterns.
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Figure 8: Environmental noise removal.
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Figure 9: Frequency folding.

6.2 Enhancement
Radiated EMRs from hidden GPS trackers are typically weak, and
their strength diminishes rapidly with increasing measurement
distances. Therefore, an essential task for the detection system is
to enhance the signal quality and extend the detection range. Some
prior work [42, 57] applied frequency-folding techniques. However,
GPS trackers’ EMRs are extremely weak. In this context, we propose
a dual-dimensional adaptive folding algorithm designed to improve
the SNR in both the frequency and temporal domains.

Frequency Folding. The challenge of enhancing the spectrum
strength of a radiating target is also a common consideration in the
field of astronomical planet identification. In this context, the target
is often distant from Earth, and its radiated signals are exceedingly
weak. The fundamental strategy for enhancement involves group-
ing and summing the energy of all small signal segments of the
target, i.e., radiated harmonic frequencies that periodically appear
across a wide spectrum.

This insight motivates our approach. Specifically, as shown in
Figure 9, we first select two short representative EMR frequency
bands from the GPS tracker’s original BandL and BandH EMR
spectrum, separately. This representative spectrum is then utilized
by the detection system to verify the suspected target is a hidden
GPS tracker. To enhance the SNR of the representative spectrum and
extend the detection range, we search all the frequency segments in
the originalBandL andBandH EMR spectrum, which are harmonics
of those prominent frequency peaks in the representative band.
Subsequently, we aggregate the energy of the identified harmonics
with their corresponding frequency peaks in the representative
band.

In practice, we empirically selected the frequency range of 26MHz-
52MHz and 1565MHz-1591MHz as the representative bands for
BandL and BandH EMRs, respectively. The core of the frequency
folding algorithm is to search and align the harmonic frequency
peaks and sum them correspondingly to the representative fre-
quency bands.

Specifically, suppose the frequency components of BandL’s rep-
resentative frequency band are denoted as [𝑓 𝐿1 , 𝑓

𝐿
2∗ , ..., 𝑓

𝐿
𝑙
, ...𝑓 𝐿

𝑙∗
, ...],

where 𝑙∗ denotes the index of a spectrum peak, and 𝑙 denotes the
index of the other frequency components. We then search for the
harmonics 𝑓 ℎ𝑎𝑟

𝑙∗
of 𝑓 𝐿

𝑙∗
in the candidate spectrum peaks within the

frequency range of 52MHz-104MHz. However, 𝑓 ℎ𝑎𝑟
𝑙∗

may not pre-
cisely equal𝑁× 𝑓 𝐿

𝑙∗
, where𝑁 ∈ N+, due to devices’ spread-spectrum

techniques [9]. Therefore, we adopted an adaptive frequency fold-
ing algorithm to sum the energy of harmonics to the representative
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frequency band, i.e.,

𝐴(𝑓 𝐿
𝑙∗ ) = 𝐴(𝑓 ℎ𝑎𝑟

𝑙∗ ) +max{𝐴(𝑁 × 𝑓 𝐿
𝑙∗ ± Δ𝑓 )}, (2)

where𝐴(•) represents the amplitude of the frequency component •,
and Δ𝑓 represents the measurement error in locating the harmonic
frequencies. In practice, we empirically set Δ𝑓 = 0.3MHz. The same
frequency folding algorithm is applied toBandH to enhance its spec-
trum quality by considering the 1565MHz-1591MHz EMRs as the
representative frequency band and summing the frequency energy
of searched harmonics within the range of 1591MHz-3146MHz.

Temporal Folding. To further refine the representative Elec-
tromagnetic Radiation (EMR) spectra, we employ a temporal fold-
ing algorithm by collecting the GPS tracker’s EMR spectrum over
120 measurements. For each measurement, the frequency folding
algorithm is initially applied to yield a preliminary spectrum en-
hancement. The set of enhanced frequency peaks for each EMR
measurement is denoted as 𝐹𝑖 = {𝑓𝑖,1∗ , 𝑓𝑖,2∗ , ...}, 𝑖 ∈ [1, 120].

To distinguish genuine prominent frequencies from potential
noise peaks, we compute the union of all candidate frequency peaks
for enhanced spectrums as 𝐹 = ∪{𝐹1, ...𝐹 𝑗 , ..., 𝐹120}. Subsequently,
we count the number of occurrences𝑂 𝑗 for each candidate peak 𝑓𝑗 ∈
𝐹 in the 120 EMR measurements. A higher 𝑂 𝑗 indicates a greater
likelihood that the frequency peak is genuinely radiated from the
GPS tracker, as it consistently appears over time. In practice, we
select frequency peaks with𝑂 𝑗 ≥ 100 for enhancement. Specifically,
we update the signal amplitude of each selected frequency peak 𝑓𝑗
as the summation of its amplitudes measured over 120 times, while
removing the amplitudes of other peaks. This approach ensures
that genuine prominent frequencies are reinforced, while noise
peaks are effectively minimized in the enhanced representative
EMR spectra.

Table 1
Comparisons of the EMR’s SNR before and after applying

the dual-dimensional folding enhancement.

Distance 5cm 10cm 15cm 20cm 25cm 30cm
Original (dB) 3.16 2.08 1.78 1.12 0.88 0.52
Folded (dB) 41.40 30.82 22.37 20.02 11.12 8.15

Figure 10 illustrates an instance of normalized spectrums for
the Tuqiang GPS tracker’s representative EMR spectrums after
employing the dual-dimensional folding algorithm. It is evident
that the strength of prominent frequency peaks is concurrently
enhanced compared to the results presented in Figure 8. Table 1
also evaluates such enhancement qualitatively by comparing the
EMRs’ SNRs measured at different distances. Even in the worst-
case scenario, where EMRs are collected at a distance of 30cm from
the tracker device, the signal is significantly boosted from SNR =
0.52dB (an extremely weak signal) to SNR = 8.15dB, representing
an enhancement of over 15 times.

6.3 Detection
We denote the frequency compositions of the enhanced representa-
tive EMR spectra as [𝑓 𝐿1∗ , ..., 𝑓

𝐿
𝑙∗
...] and [𝑓 𝐻1∗ , ..., 𝑓

𝐻
ℎ∗ ...] for the BandL

and BandH EMRs, respectively, where 𝑓 𝐿
𝑙∗

and 𝑓 𝐻
ℎ∗ represent the

frequency peaks. To determine whether these measured spectra
potentially originated from a GPS tracker’s EMR, we developed
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Figure 10: By applying the dual-dimensional folding, themea-
sured EMRs of the Tuqiang GPS tracker present identifiable
frequency peaks (marked as red dots) in the representative
bands of BandL and BandH.
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Figure 11: Comparison of detection performance
with/without MSoC database.

two matching algorithms tailored for situations with/without an
MSoC database. As suggested by prior work [34], detectors could
collect the hidden devices’ hardware specifics, i.e., 𝑓𝑙𝑜 , 𝑓𝑞𝑜 , and
𝑓𝐼𝐹 , via chips’ handbooks, crowd-sourced measurements, or users’
pre-measurements, and build a dataset to facilitate the detection.
Nevertheless, to develop a practical GPS tracker detection system,
we also consider the scenario where a tracker chip dataset is un-
available.

With Database. We match the frequency peaks with the MSoC
database and check if they follow the distribution patterns:

𝑓 𝐿
𝑙∗ = 𝑁 𝑓𝑞𝑜 ±𝑀𝑓𝐼𝐹 , 𝑓 𝐻

ℎ∗ = 𝑁 𝑓𝑙𝑜 ±𝑀𝑓𝐼𝐹 , (3)

where 𝑁 ∈ N+, 𝑀 ∈ N. The MSoC database stores the values of
𝑓𝑞𝑜 , 𝑓𝑙𝑜 , and 𝑓𝐼𝐹 for each MSoC, as shown in Table 2. A confirmed
match implies the presence of a GPS tracker around.

Without Database. In the case of lacking of a MSoCs’ specifics
database, we cannot use the Eq. (3) to perform the detection. How-
ever, as discussed in Section 4.1, we found that in the high-frequency
band BandH, the EMR patterns show 𝑓𝑙𝑜 + 𝑓𝐼𝐹=1575.42MHz (@𝑓𝐿1)
and can be used as the new detection rule. In particular, Figure 7
and 10 show that in BandH, the peak intervals 𝑓𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 equals to
the 𝑓𝐼𝐹 and the the maximum peak 𝑓𝑚𝑎𝑥 among 𝑓 𝐻

ℎ∗ equals to 𝑓𝑙𝑜 .
Thus, in the absence of MSoC information, we could employ this
simplified rule for detection. If Eq. (4) is satisfied, we determine
that a hidden GPS tracker is located nearby.

𝑓𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 + 𝑓𝑚𝑎𝑥 = 1575.42(𝑀𝐻𝑧) (4)
where 𝑓𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 represents the interval, and 𝑓𝑚𝑎𝑥 denotes the fre-
quency of the maximum value within BandH.

Figure 11 presents the detection performancewith/withoutMSoC
database. For both cases, the distance between the tracker and the
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antenna is 10 cm, and each tracker is tested 100 times in a park-
ing lot. Results reveal that, with support of an MSoC database, the
system performs well, achieving an average True Positive Rate
(TPR) and True Negative Rate (TNR) of 98.1% and 98.7%, respec-
tively. Additionally, in the absence of prior MSoC information, the
system’s performance marginally declines, with an average TPR
and TNR of 94.2% and 95.3%. This is because, for targets not in-
cluded in the database, GPSBuster perform the detection with only
the BandH spectrum. Overall, GPSBuster demonstrates acceptable
performance under both conditions.

7 EVALUATIONS
Experiment Setup.We constructed the EMRmeasurement system
for GPSBuster as depicted in Figure 3. The system incorporates a
HackRF One, a Low-Noise Amplifier (LNA), and an NFP-3 antenna.
In the experiments, we evaluate the performance of GPSBuster in
terms of its ability to detect hidden GPS trackers (as shown in Fig-
ure 12) installed on victims’ possessions under different settings.
Various impact factors are examined, including tracker heterogene-
ity, EMR sensory distances, tracker placements, and environmental
dynamics. A total of 25 volunteers (including 16 males and 9 females
aged between 19 and 45) participated in the experiments, playing
the roles of victims or human inspectors. Prior to each experiment,
detailed instructions regarding the experimental procedures were
provided. The collected data are anonymized and stored locally
to prevent potential leakage. The Institutional Review Board (IRB)
office of our institute has approved the entire research.

Default Scenarios. We use the following attack scenarios by
default unless specific changes are mentioned. Without loss of
generality, we use Ouchuang, Tuqiang, and Fengwei GPS trackers
as the detection targets to represent the devices with different
MSoCs (detailed in Table 2). During the experiments, the attacker
was allowed to hide the GPS tracker at any random places on a Jeep
SUV car, where he considered it was a safe place and hard to find
for the victim. The goal of GPSBuster is to perform the EMR scans
and bust out the hidden GPS trackers.

Evaluation Metrics. The detection performances are evaluated
via the following metrics: TPR, TNR, Max. Distance, Accuracy,
and SNR. In particular, TPR (True Positive Rate) and TNR (True
Negative Rate) indicate the probabilities that the system correctly
detects and ignores the hidden GPS trackers, respectively. Max.
Distance is defined as the maximum distance that the system can
identify a GPS tracker with a probability at least higher than 50%
(random guess). Accuracy characterizes the system’s correctness
by computing 𝑇𝑃+𝑇𝑁∑

samples . SNR is also selected as the basic metric
to quantify EMR signal quality. A larger value represents the signal
is clear with limited noise interference and vice versa.

7.1 Real-World Case Study
Before proceeding to the detailed evaluations presented in the sub-
sequent sections, we initially conduct two case studies to provide a
brief demonstration of the effectiveness of GPSBuster in detecting
hidden GPS trackers. In these case studies, the attacker is tasked
with concealing the tracker device at random locations on the tar-
get, while GPSBuster scans the EMR spectrum to identify them. For
comparison, we involve 10 volunteers to serve as human inspectors,
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Figure 12: The appearance of the selected 10 GPS trackers. To
highlight the small size of the GPS trackers, a coin is utilized
as a reference.
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Figure 13: Comparison of GPS Buster and Human Inspectors
Performance in Real-World Scenarios

visually searching for suspected GPS trackers. To avoid data basis,
volunteers are only required to perform the best-effort searches
and get no feedbacks about the detection results. Two real-world
cases were considered. The experiment was repeated 100 times for
each GPS tracker, with 80 trials being positive (GPS trackers were
present) and 20 trials being negative (GPS trackers were absent).

Case 1: Vehicle.We asked one volunteer to act as the victim. He
parked his car at the university’s parking lot. The attacker chose to
hide GPS trackers on the car at five different places, i.e., passenger
seat, back seat, tire, bumper, and chassis. As shown in Figure 13
(frist row), the GPS tracker was well concealed intentionally avoid-
ing being spotted by the victim. Both the human inspector and
GPSBuster user are authorized to fully search or scan the vehicle to
find suspected GPS trackers, i.e., Fengwei, Tuqiang, and Ouchuang.

Case 2: Carry-ons. In this experiment, we asked the attacker
to place hidden GPS trackers on the victim’s daily carry-ons, i.e.,
wallet, backpack, travel suitcase, sling bag, and clothing pocket.
We use miniaturized GPS trackers, i.e., Baoji (2.3×4.0 cm), Fengwei
(2.8×4.8 cm), and Ouchuang (3.0×5.0 cm), that are hard to be spotted
by the victim. The other settings remain unchanged and follow the
above experiment with the victim’s vehicle.
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Detection Results. Figure 13 shows the detection results. It is
observed that GPSBuster successfully detects hidden GPS trackers
with the average TPRs as high as 97.3% and 97.5%, respectively for
the case 1 and 2. However, human inspectors have the detection TPR
around 33%-52%, whereas the TNR is around 30%-52%, across all test
cases. It indicates that human inspectors fail to correctly identify
the hidden GPS trackers and its detection results are no better
than random guesses. In addition, GPSBuster takes 8.9 seconds by
average to generate one detection result of the target area, which
is more efficient than the human searches.

7.2 Comprehensive Evaluation of GPSBuster
In this section, we evaluate the performance of GPSBuster com-
prehensively by investigating the impact of different experiment
settings.
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Figure 14: Impact of system parameters.
Impact of System Parameters. The main parameters affecting

the performance of GPSBuster are the range of frequency folding
and the times of temporal folding, denoted as 𝜀 and 𝛾 respectively.
To choose them, we evaluate the system’s Max. Distance of detec-
tion under different 𝜀 ranging from 0 MHz to 260 MHz with a step
of 26 and 𝛾 ranging from 0 times to 200 times with a step of 10. A
broader frequency range within BandL and BandH provides more
harmonics distributed at fixed intervals for the frequency folding,
and more folding times in the temporal domain further concen-
trates the energy of harmonic components. However, increasing
the parameters 𝜀 and 𝛾 also leads to the growth of the system’s com-
putation overheads. It is necessary to find the most cost-effective
parameter selections. As show in Figure 14(a), the system’s Max.
Distances have negligible increases when 𝜀 ≥ 104MHz. Thus, we
set the 𝜀 = 104MHz. Then, by applying the similar technique, we
empirically find that the optimal value of 𝛾 could be 120 (as shown
in Figure 14(b)).

Impact of Devices’ MSoC Diversity. In this experiment, we
evaluated the proposed detection system over a wide range of GPS
trackers embedded with different MSoCs. Table 2 summarizes the
device’s radiated EMR patterns and benchmarks of GPSBuster in
detecting these GPS tracker devices. Among them, the maximum
detection distance is derived by increasing the distance between
the EMR sensor (HackRF One) and its target device from 10cm to
70cm. For each experiment, the distance is increased gradually by
1cm. We set the system’s maximum detection system as the one
when its accuracy drops lower than 50%. It is observed that GPS
trackers with the same types of MSoC share similar performances
in terms of Max. Distance. The longest detection distance is up to
61cm measured on an MTK2503D MSoC device, i.e., Fengwei. And,
the Zhenjiang GPS tracker has the shortest detection range, i.e.,
20cm. We believe such disparities are caused by the differences of

their MSoC designs. For example, the Fengwei device could have
a stronger LNA embedded within the MSoC, which amplifies the
processed raw GPS positioning signals and leads to an intensified
intermediate signal(@𝑓𝐼𝐹 ). As a result, its coupled EMRswith quartz
oscillator (@𝑓𝑞𝑜 ) and local oscillator (@𝑓𝑙𝑜 ), i.e., BandL and BandH,
are both enhanced. It causes high SNRs in themeasured EMR signals
(as shown in Table 2) and helps the GPSBuster to achieve longer
detection distances.

GPSBuster allows the user to hold the EMR sensory antenna and
perform a scan-to-detect manner to search for suspicious GPS track-
ers. Table 2 also demonstrates the benchmark results of detecting
the trackers at a distance of 10cm. The results are promising with an
average TPR and SNR equal to 98.4% and 23.6dB respectively, which
verifies the robustness of GPSBuster in detecting heterogeneous
tracker devices with different shapes, sizes, and MSoC models.

L1+L5 Dual-band GPS Trackers. As suggested by [47], L1 GPS
trackers are cost-effective solutions for most civilian applications
since 1983. Some advanced GPS trackers may support both L1 and
L5 band signal samplings, in which L5 GPS signals provide more
accurate location coordinates. Nevertheless, L1+L5 GPS trackers
also contain the critical components, i.e., the quartz oscillator, mixer,
and local oscillator, which generate EMRs when processing GPS
signals. To evaluate the effectiveness of GPSBuster in detecting
L1+L5 dual-band trackers, we selected four popular GPS modules
with different MSoCs, i.e., LC29HBA, LC29HEA, LC29HDA, and
LC29HBS. As shown in Figure 15, we use the LC29HDA tracker as
an example to demonstrate its EMR spectrum. It is observed that
its signal patterns are similar to those of L1 GPS trackers as shown
in Figure 4, but with different basic frequency compositions, i.e.,
𝑓𝑞𝑜 = 26MHz, 𝑓𝑙𝑜 = 1172.8MHz, and 𝑓𝐼𝐹 = 3.65MHz. We found that
the summation of 𝑓𝑙𝑜 and 𝑓𝐼𝐹 equals the frequency of GPS signal’s L5
band 𝑓𝐿5 = 1176.45MHz. This follows the same principles discussed
in Section 4.1. Thus, GPSBuster is also effective in detecting L1+L5
dual-band GPS trackers. Figure 16 shows that the system achieves
a TPR of 95.94%.
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Figure 15: The EMR spectrum of LC29HDA.
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Table 2
Detection Performances of GPSBuster on 10 Top-selling GPS Tracker Devices.

GPS Tracker Size MSoC EMR Coupling Sources Max. Distance d = 10 cm

(cm) 𝑓𝑞𝑜 (MHz) 𝑓𝑙𝑜 (MHz) 𝑓𝐼𝐹 (MHz) (cm) SNR(dB) TPR

Ouchuang 5.0 × 3.0 AT 6558R 26 1570.58 4.26 52 33.16 100%
Liantu 5.0 × 3.0 AT 6558R 26 1570.58 4.26 50 29.58 100%
Miche 7.0 × 2.8 AT 6558R 26 1570.58 4.26 48 30.16 99%
Jipu 5.0 × 3.0 AT 6558R 26 1570.58 4.26 45 29.25 98%

Tuqiang 5.0 × 3.0 MTK 3333 26 1571.33 4.09 21 18.92 95%
Zhenjiang 7.0 × 2.8 MTK 3333 26 1571.33 4.09 20 16.25 94%
Fengwei 4.8 × 2.8 MTK 2503D 26 1572.25 3.07 61 30.82 100%

Zhanghang 7.0 × 4.0 MTK 2503D 26 1572.25 3.07 55 22.67 100%
Baoji 4.0 × 2.3 MTK 2503D 26 1572.25 3.07 45 25.21 100%

Xiaoshiyeyu 4.8 × 2.8 MTK 2503D 26 1572.25 3.07 32 20.12 98%
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Figure 17: Impact of different GPS modules.
Impact of Different GPS Modules. In this experiment, we

placed different types of GPS modules in a victim’s carry-on back-
pack as shown in Figure 17(a). The backpack contains a smart
bracelet (Xiaomi 8 Pro), an iPad (Apple Air 6), an Ouchuang GPS
tracker, and a laptop (Huawei Matebook 14). Among these, the
first three devices have GPS modules while the laptop does not.
GPSBuster detects all types of GPS devices, generating alerts when
scanning the backpack area. To isolate Ouchuang tracker from the
others, we removed the suspected devices one-by-one as shown in
Figure 17(a). Figure 17(b) shows that when the laptop is removed,
the received EMR SNR barely changes, implying it has no GPS
module. However, when the bracelet and iPad are removed, the
system receives weaker EMRs. Eventually, by further removing the
suspected tracker device, we observe that EMRs are barely mea-
surable with the SNR of 0.6dB, indicating that all tracking devices
have been removed. By applying this detection strategy, the system
acheives a TPR of 97.08% in detecting the Ouchuang tracker.

Impact of Measurement Distance. In the experiment, we
vary the measurement distance from 0cm to 70cm and evaluate the
detection performance under each setting. As shown in Figure 18,
the EMR signal’s SNR is negatively correlated with the growth of
the distance. A longer distance leads to weaker EMR received by
the detection system, such that its TPR also decreases accordingly.
In addition, we find that the maximum detection distance of GPS
trackers is more than 20cm, while the longest one can reach 61cm. It
validates that our detection system can effectively handle the most
usage cases of GPS trackers, e.g., the real-world cases presented in
Section 7.1. Especially, considering the user can move around the
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Figure 18: SNR and TPR of detection at different distances.

system’s EMR receiving antenna, it is easy for him to find a close
spot within 20cm to the suspected target. Extending the system’s
detection range to a super long range, e.g., ≥ 10m, may not be
helpful. For example, there could be multiple GPS trackers hiding
on the victim’s vehicle. A long-range detection system could trigger
the warning alert at very far distances, and the user may not be
able to locate where the tracker is and remove it correctly.

Impact of Electronic Interference. Following the Lorentze
force law, electronic devices unavoidably generate EMR emanations
while they are functioning. Thus, it is necessary to evaluate the
impact of different electronic interference on the system detection
performances. In the experiment, we selected 5 electronic devices
with 5 different types, including smartphones, earphones, laptops,
e-mouses, and speakers. And, the smartphone’s GPS functionality
was not turned off. Table 3 summarizes their hardware specifics
and EMR patterns, and we denote these devices as ‘A’ to ‘E’. It is
observed that electronic devices have unique EMR patterns and
frequencies. However, none of them share similar EMR coupling

Table 3
Impact of Electronic Interference.

Type Case Prominent EMR Frequency TPR TNR

A Huawei Mate50 0.27–26.16MHz 96% 98%
B Airpods pro 2.11MHz 100% 100%
C HP OMEN 9 0.34–28.10MHz 97% 97%
D Logitech M720 1.25MHz 100% 100%
E Xiaomi Play 24.12 MHz 100% 100%
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Figure 19: Impact of physical obstacles.

results to the GPS trackers. Among them, smartphones and laptops
present a wide spectrum of EMR emanations ranging from 0.27MHz-
26.16MHz and 0.34MHz-28.10MHz, respectively. It may inference
with the GPS trackers’ EMR spectrum. Results reveal that when
these two types of devices are within the system’s detection range,
they indeed cause a decrease in detection performance. However, as
discussed in Section 6.3,GPSBuster makes its final determinations by
integrating the characteristics of bothBandL andBandH. Therefore,
even under the electronic interference, the average TPR and average
TNR remain above 96% and 97%, respectively.

Impact of Physical Obstacles. Usually, attackers believe that
hiding GPS trackers behind physical obstacles creates non-line-of-
sight conditions for the victims, such that the trackers cannot be
found easily via visual inspections. In this experiment, we demon-
strate the effectiveness of the detection system by covering the
tracker devices with 4 different physical obstacles made of differ-
ent materials, i.e., plastic, cotton, canvas, and leather. Note that,
we do not consider the obstacles made by metal. This is because
tracker devices need to receive the GPS positioning signal from
the satellite to retrieve location coordinates. If the attacker covers
the GPS tracker with a metal object, it will cause an RF-shielding
effect blocking the positioning signals. And, the GPS tracker can-
not compute meaningful geo-coordinates. Figure 19 compares the
GPSBuster’s detection accuracy and Max. distance with and with-
out covering the obstacles. We find that there are no significant
decreases in terms of both evaluation metrics. For example, the sys-
tem achieves 99.6% detection accuracy on average when the GPS
trackers are not covered. It turns to 99.1% when the GPS trackers
were covered by plastic obstacles. In the case of the Fengwei tracker
device, its maximum detection distance is around 61cm with less
than 3.0cm variations with and without the coverage of obstacles.
Thus, these obstacles have a negligible effect on the detection per-
formances. The reason is that they have low conductivity, such that
EMR signals can penetrate them without significant energy loss.

Impact of Environmental Dynamics. The victim may carry
a hidden tracker device at various places experiencing variant GPS
signal quality. To evaluate the impact of environmental dynam-
ics, we perform the detection tests by asking the victim to carry
the tracker device and move around in 5 test sites, including Sta-
dium, Dense Buildings, Building Shading, Parking Entrance, and
Underground Parking. The received GPS signal SNR at the sites on
average is 45dB, 36dB, 27dB, 18dB, and 9dB, respectively. As shown
in Figure 20, the system has lower detection TPR under the testing
sites with weak GPS signals. For example, the Ouchuang tracker
device can be detected with an average TPR equal to 100% when the
victim is at the stadium, while it drops to 95% for the underground
parking testing site. It meets our analysis presented in Section 5.1,
i.e., weaker GPS signals diminish the amplitude of its intermediate
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Figure 20: Impact of environmental dynamics.

frequency signals (@𝑓𝐼𝐹 ), thus its coupled EMRs are diminished in
both BandH and BandL ranges. Accordingly, the system has lower
detection accuracy. Still, we find that it achieves at least 90% TPR
and 100% TNR for all tested GPS trackers.
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Figure 21: Impact of Legitimate Trackers.

Impact of Legitimate Trackers. In real-world cases, hidden
GPS trackers placed by the malicious attackers may coexist with le-
gitimate GPS modules. To evaluate the impact of these GPS trackers,
we set up the testing scenario as shown in Figure 21(a), in which it
contains three malicious hidden GPS trackers, one iPhone 15 mo-
bile device, and one built-in vehicle navigation system. GPSBuster
adopts a scan-to-detect manner to search for all GPS trackers and
remove the malicious ones. For example, if the system detected the
phone’s GPS, we would turn off the phone’s GPS and proceed to de-
tect the next target. We believe that it could not be a tough decision
for the user to determine if a detected GPS tracker is a legitimate
one. Users may search online or contact the manufacturer to verify
if an electronic device contains legitimate GPS modules. Figure
21(b) shows that the system achieves an average TPR of 95.6% and
a TNR of 100% by applying the proposed detection design.

Impact of Metal Shielding. Some manufacturers cover GPS
chips with metal cases to mitigate electromagnetic interference. As
shown in Figure 22, we evaluate the impact of metal shielding on
three GPS trackers: Tuqiang, ICOE, and Ublox. In these experiments,
we vary the EMR measurement distances to assess the detection
performance under each setting. Figure 22(a) illustrates that the
system still receives measurable EMRs. However, these signals have
relatively lower SNRs compared to GPS trackers without metal
shielding, such as Ouchuang. For example, at a distance of 10 cm, the
Ouchuang tracker emits an EMR with an SNR of 33.16 dB (Table 3),
while the EMR strengths of the Tuqiang and Ublox trackers are 18.92
dB and 2.51 dB, respectively. This reduction is because metal cases
impede a portion of the EMR signals. Nevertheless, since GPS chips
are soldered onto the PCB substrate, some EMR signals might leak
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Figure 22: Impact of Metal Shielding.

from the PCB’s connected wires. Figure 22(b) shows that the system
remains effective but with shorter detection ranges, such as a Max.
distance of 21 cm for the Tuqiang tracker. It is also noteworthy that if
a GPS tracker’s entire PCB is perfectly shieldedwithmetal cases, the
detection system may fail to obtain meaningful EMR measures and
thus fail to detect the hidden trackers. However, perfect shielding
could disrupt the heat exchange of the PCB substrate, potentially
causing the circuits to overheat and malfunction.

8 DISCUSSIONS
In this section, we discuss several considerations for practical de-
ployment of GPSBuster.

Detection Range. In general, a longer detection distance is
favored by most systems. However, for our case, a super long de-
tection range may not be helpful for the user. For example, if the
detection range reaches 10m, even though the system might suc-
cessfully identify the presence of a GPS tracker from a far distance,
users need to search for a larger area to find its accurate position
and remove it correctly. Especially in the scenarios such as a large
parking lot or a crowded street, a wide search will be an extremely
difficult task for users. As a future work, we plan to use amplifiers
with higher signal gains to extend the detection range. Additionally,
users are allowed to adjust the system’s signal enhancement abili-
ties, enabling long-range detection for initial warning of the hidden
trackers, and short-range detection for accurate localization.

Extensions. GPSBuster exploits the device EMRs to detect hid-
den GPS trackers. In practice, attackers may also track victims’
routines under indoor scenarios, where the GPS trackers cannot
function. The indoor trackers, such as RFID tags, Air tags (Bluetooth
based), and Wi-Fi based trackers, are also passive location sensors.
However, we believe that their embedded positioning circuits may
also induce EMR side-channel leakages, which can be leveraged to
perform the detection.

Periodically Inactive Trackers. Some GPS trackers may adopt
a periodically-active sampling design to acquire the victim’s coarse
location information. However, when the GPS tracker is remotely
powered off or set as an inactive one, it will acquire no location
information, thus posing no threat to the victim in such status. Due
to their limited circuitry activities, it could be challenging to detect
these devices. Nevertheless, users could deploy multiple detectors
to continuously monitor the target area and detect the trackers
instantly once they start actively collecting GPS data.

9 CONCLUSION
This paper presents the first attempt of leveraging EMRs for the pur-
pose of tracker detection. In particular, we find that GPS tracker’s
MSoC circuit induces coupled radiation spectrums demonstrating
unique frequency peaks in two fixed ranges, i.e., BandL and BandH.
Further studies identify the EMR sources inside tracker’s MSoC are
the quartz oscillator, local oscillator, and mixer. Their EMRs are cou-
pled with each other. Accordingly, we formalize the distributions
of these EMRs and develop a dual-dimensional folding algorithm
for enhancing the EMR SNRs. To accommodate scenarios where
the victim may or may not have an MSoC database for the targets,
we develop and integrate two matching algorithms to enhance the
reliability of our detection results. We build the detection system,
GPSBuster, with HackRF SDRs. Our evaluations show the system
has the detection accuracy of 98.4% on average, under various test-
ing scenarios. The maximum detection range is 0.61m. We hope our
design can inspire advancements in cybersecurity tools to thwart
malicious secret-stealing attacks.
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