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ABSTRACT
Quality of Experience (QoE) assessment is a long-lasting but yet-to-
be-resolved task. Existing approaches, especially for conversational
voice services, are restricted to leveraging network-centric parame-
ters. However, their performances are hardly satisfactory due to the
failure to consider comprehensive QoE-related factors. Moreover,
they develop a one-for-all model that is uniform for all individuals
and thus incapable of handling user diversity in QoE perception.
This paper proposes a personalized QoE assessment model, namely
SpeechQoE. It exploits speaker’s speech signals to infer individ-
ual’s perceived quality in voice services. SpeechQoE fundamentally
addresses the drawback of conventional models. Instead of enumer-
ating and incorporating unlimited QoE-related factors, SpeechQoE
takes as input speech signals that inherently bear rich information
needed for QoE assessment of the speaker. SpeechQoE employs
an e�cient few-shot learning framework to adapt the model to a
new user quickly. We additionally design a lightweight data syn-
thetic scheme to minimize the overhead of data collection needed
for model adaption. A modular integration with a conventional
parametric model is further implemented to avoid issues caused
by the clean-slate data-driven approach. Our experiments show
that SpeechQoE achieves an accuracy of 91.4% in QoE assessment
which outperforms the state-of-the-art solutions by a clear margin.
As another contribution of this work, we build a dataset that would
be the �rst source of annotated audio tracks for QoE assessment of
conversational calls.
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1� INTRODUCTION
Motivation.�During�the�pandemic,�shelter-in-place,�work-from-
home,�school-from-home,�and�other�new�hybrid�lifestyles�have�been
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adopted globally, either mandated by local ordinances or voluntar-
ily recommended by companies. Under the “new normal”, various
audio/video telecommunication apps, such as Skype, FaceTime,
Zoom, and Microsoft Teams, play an irreplaceable role that enables
people to communicate in real time with geographically dispersed
peers via terminal devices. Many of them have been reported with
recorded surges from every aspect, ranging from the usage time
to the number of registered customers. In the meantime, it is al-
ways the center of interest for service providers to get an in-depth
understanding of user’s satisfactory levels of service quality.

Extensive prior e�orts have been devoted to QoE modeling. They
aim tomap a diverse spectrum of impact factors to a QoE score given
a speci�c multimedia service type. The mainstream approaches de-
velop the so-called parametric models [8, 12, 14–16, 19, 30, 70]. They
estimate user’s QoE through the characterisation of underlying net-
works, e.g., source rate, packet loss, coding scheme, delay, and jitter.
In fact, QoE is a�ected by many other factors, which are usually
grouped by human factors (e.g., mood, expectation) and contextual
factors (e.g., background noise level). In other words, conventional
wisdom fails to capture a full spectrum of QoE-related factors. Be-
sides, parametric models are uniform for all individuals. Instead,
people’s quality perception is highly subjective and heterogeneous.
For example, some users are more sensitive to echoing sound in a
conversational call, while others care more about latency. A one for
all model inevitably performs poorly. In summary, a new perspec-
tive on QoE assessment is needed to attain a fundamentally better
performance. Our discussion pertains to voice services, i.e., the
audio conversational calls carried over either telephony networks
or various telecommunication apps. We will leave QoE modeling
for the video calls in our future work.

Our approach. Our idea is inspired by a well-recognized phe-
nomenon in neurophysiology that characteristics of a speaker’s
speech can re�ect her subjective feelings [21, 25, 47, 72]. For exam-
ple, speech produced in a state of fear, anger, or joy becomes loud
and fast, with a higher and broader range in pitch, whereas emo-
tions such as sadness or tiredness generate slow and low-pitched
speech [51, 64]. Motivated by the observation, we seek to answer a
key question: Can we design a system to leverage the novel speech
indicator to assess QoE? To this end, we propose SpeechQoE, a
personalized QoE assessment model for voice services via speech
sensing.

The model takes the mic recorded speech as inputs and pro-
duces a corresponding QoE score. The ITU-recommended �ve-level
MOS score is adopted, where 5 represents the best quality and
1 represents the worst. QoE assessment is then cast into a clas-
si�cation problem. To extract explicit and implicit features from
speech signals, we employ a convolutional neural network (CNN).
Note that deriving a uniform model via the data-driven approach
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is trivial. Rather, we are interested in constructing a personalized
model; that is, parameters in the CNN classi�er are user-speci�c.
The model personalization is achieved by �ne-tuning the CNN clas-
si�er, pre-trained o�ine via a general training dataset, to adapt to
each individual. Speci�cally, few-shot learning technique [27, 28]
is applied for quick model adaption in few shots, e.g., 3-5 anno-
tated samples of each class from the new user. In a holistic view,
SpeechQoE is superior to the state-of-the-art approaches in three
aspects. First, it exploits subjective factors, i.e., speech-based cues,
for QoE assessment; they have been largely overlooked by prior
works. Second, existingmodels endeavor to exhaustively enumerate
and incorporate various impact factors in QoE modeling, which are
impractical to implement in real-world scenarios. Alternatively, our
approach merely utilizes speech to re�ect the speaker’s perceived
QoE as a whole. Most importantly, SpeechQoE is a personalized
model that is �ne-tuned to each individual to deliver the optimized
assessment accuracy.

Despite the nice properties of SpeechQoE, its implementation is
faced with a critical challenge. Under the framework of few-shot
learning, the model �ne-tuning requires the existence of several
labeled samples of each class (i.e., QoE levels) from the new user.
However, network conditions nowadays do not deteriorate often
that produce very low QoE scores, especially for voice services that
consume relatively narrow bandwidth. Therefore, it may take a con-
siderable amount of time, say, several weeks, to gather su�cient
samples; otherwise, the model personalization cannot be success-
fully performed. To resolve this issue, we enhance the few-shot
learning framework with a lightweight data synthesis scheme that
augments the new user’s dataset. To be speci�c, we �rst identify the
new user’s “close neighbors”, which share high similarity in data
distribution with the new user, from the existing training dataset.
We then calibrate the new user’s data distribution through those
from her close neighbors. An adequate number of samples, covering
all QoE scores, are sampled from the calibrated distribution. We
then �ne-tune the model via a joint set of real and synthetic data
samples. In this way, the data collection overhead can be reduced
signi�cantly. Compared with conventional data synthesis and data
augmentation methods [50, 53, 63, 69, 77], our approach can deal
with the absence of samples from certain QoE level(s), a unique
situation in our problem.

The proposed sample synthesis method relies on an adequate
number of close neighbors. In practice, this assumption may not
always hold when the user pool is not large enough. As a last piece
of the jigsaw puzzle, our design is integrated with the parametric
model. It serves as a protective backup and is activated once insuf-
�cient close neighbors are identi�ed. The hybrid design prevents
the QoE assessment from catastrophic performance degradation.

To evaluate SpeechQoE, we develop a prototype and conduct
in-person experiments in a lab setting. Our collected speech dataset
contains 190 hours of clean speech signals from 38 users. Our eval-
uation results show that SpeechQoE can achieve 91.4% accuracy
on average. It beats three state-of-the-art baselines by 42.5%, 18.4%,
and 13.0% , respectively. It delivers consistent performances over a
variety of calling environments. SpeechQoE represents the �rst per-
sonalized QoE assessment model leveraging speech signals while
overcoming the data collection issue. Through the SpeechQoE de-
sign, we make the following contributions:

• We investigate the relationship between QoE and speech
signals through a measurement study.

• We introduce SpeechQoE, a personalized QoE assessment
model for voice services using speech-based cues. Compared
with conventional models, ours exploits subjective factors
to characterize user’s perceived service quality. More impor-
tantly, it is a user-speci�c model that takes into account user
diversity in QoE modeling.

• We renovate the conventional few-shot learning framework
by introducing a novel data synthesis scheme. It allows the
model to quickly adapt to a new user within limited samples.
The data synthesis scheme can potentially be applied to other
data-hungry cases.

• We build our own dataset1 via a six-month data collection
campaign. 38 volunteers and 5 student workers get involved.
To our knowledge, it would be the �rst data source of anno-
tated audio tracks for conversational call QoE assessment.
Extensive tests are performed over our dataset. Results vali-
date the e�cacy and e�ciency of the new QoE model.

The rest of this paper is organized as follows. Section 2 covers
necessary background of leveraging speech for QoE assessment.
A measurement study that validates the feasibility of our idea is
presented as well. A basic QoE assessment model using few-shot
learning and its limitation are discussed in Section 3. In Section 4,
we presents an advanced model that can quickly adapt to a new
user within limited samples. We evaluate SpeechQoE in Section
5. Section 6 reviews prior works related to our topic. A discus-
sion regarding potential future works is provided in Section 7. We
conclude the paper in Section 8. The entire study is IRB-approved.

2 BACKGROUND
The object of this part is to validate the feasibility of exploiting
speech patterns for QoE assessment of voice services.

2.1 Speech as A Cue for Subjective Perceptions
A strong connection between acoustic properties of speech sig-
nals and human perceptions has been accepted for a decade [21,
25, 47, 72]. Such properties include prosodic (i.e., pitch, loudness,
and rhythm) and voice quality. In neurophysiological literature,
it is demonstrated that phonation, respiration, and articulation in
speech are unconsciously regulated by autonomic nervous sys-
tem stimulation, which is known to produce responsive output
under numerous emotional states. For example, speech made in
a state of fear, anger, or joy becomes loud and fast, with a higher
and wider range in pitch, whereas emotions such as sadness or
tiredness generate slow and low-pitched speech [51, 64]. Mostly
based on established procedures in phonetics and speech sciences,
researchers have explored a large number of acoustic parameters,
both in the time domain (e.g., speaking rate and zero-crossing rate)
and the frequency domain (e.g., fundamental frequency �0, formant
frequencies, and intensity or energy in di�erent frequency bands)
to assess speaker’s emotional perception. For example, Alpert et al.
[9] found that depression leads to reduced intensity, lower speaking
rate, and narrower pitch range. Gudmalwar et al. [34] observed that
zero-crossing rate (ZCR) is higher in arousal emotion states (e.g.,
1The dataset is open-sourced via https://github.com/MobiSec-CSE-UTA/SpeechQoE
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Figure 1: Feature vectors as-
sociated with di�erent QoE
scores.

Figure 2: Top-to-down: Spec-
trogram of audio segments
with QoE scores 1, 3 and 5.

anger) compared with suppressed emotion states (e.g., sadness).
Hammerschmidt and Jurgens [35] performed acoustic analysis on a
set of speech utterances. The �ndings con�rm that acoustic parame-
ters extracted from both time and frequency domains are important
cues of subjective feelings. All these �ndings motivate us to in-
vestigate the feasibility of leveraging speech-based cues to infer
subjective QoE perception on voice services.

2.2 Measurement Study
The measurement study intends to explore potential correlations
between speech-based cues and QoE perception.

Measurement setup. Six subjects are involved in the measure-
ment study. Two form a pair and conduct calling sessions in two
separate rooms via a VoIP platform we set up. We simulate call-
ing environments by varying network conditions in the platform
and background noise in rooms to render voice services of various
qualities. After each calling session, subjects are asked to rate the
service quality from 1 to 5, with 1 the worst and 5 the best. We
record at least 8 calls from each subject under each QoE score. More
details about experiment setup are elaborated in Section 5.1.

Observation 1: Speech patterns correlate with perceived
QoE.We extract a standard acoustic parameter set, Geneva mini-
malistic acoustic parameter set (GeMAPS) [23], which consists of
65 features, such as pitch, jitter, and MFCC etc., out of recorded
audio tracks from the participants. OpenSMILE [24] is used, an
open-source framework for feature extraction from audio signals.
For Figure 1, the data is from one randomly selected subject out
of six. All the features are extracted from 40 recorded audio tracks
from the subject. There are 8 tracks under each QoE score. The
feature values are the average result over 8 tracks. The curves are
obtained by further applying a Polynomial regression over the 65
features. We observe in Figure 1 that features exhibit high inter-
class di�erence in their values. We further examine the spectrogram
of three audio segments labeled with di�erent QoE scores in Figure
2. To avoid the impact from individual heterogeneity, all speech
segments are from the same subject. Short-time Fourier transform
(STFT) is applied, with a 0.2 s length Hann window and 0.01 s
length hop. It is evidenced that the spectrogram intensity is higher
at a lower QoE score across the frequency components. It implies
that speakers tend to raise their voices as experiencing a worse
calling quality. This phenomenon meets our expectation–people
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Figure 3: Comparison of statistics of speech features under
di�erent QoE perceptions. (a) Zero crossing rate (ZCR). (b)
Jitter.

speak louder to be heard by their peers under a poor conversation
condition.

We also show the distribution of two acoustic features, zero cross-
ing rate (ZCR) and jitter, under di�erent QoE perception in Figure
3a and Figure 3b, respectively. The data is from one randomly se-
lected subject. The two features are derived from 40 recorded audio
tracks from the subject. There are 8 tracks under each QoE score.
The feature values are the average result over 8 tracks. Both �gures
demonstrate clear di�erences in feature statistics with respect to
QoE scores. Speci�cally, ZCR measures how many times the wave-
form crosses the zero axis. It is an indicator of the smoothness of
audio waveforms. Speaker’s speech is observed varying more in
her sound under a worse quality perception. Jitter, di�erent from
the network parameter jitter, is quanti�ed as the cycle-to-cycle vari-
ations of fundamental frequency. A more signi�cant jitter usually
indicates faster speaking. Figure 3b shows that people tend to speak
faster when experiencing a better calling condition.

0 20 40 60

Feature Index

-10

-6

-2

2

6

10

F
ea

tu
re

 V
al

u
e

Trial 1
Trial 2
Trial 3

Trial 4
Trial 5

(a)

0 20 40 60

Feature Index

-10

-6

-2

2

6

10

F
ea

tu
re

 V
al

u
e

Trial 1
Trial 2
Trial 3

Trial 4
Trial 5

(b)

Figure 4: Comparison of feature vectors extracted from dif-
ferent trials (QoE=1) under (a) the same contextual speaking
content and (b) di�erent contents.

Observation 2: Speech-QoE correlation is consistent. Fig-
ure 4a compares the feature vector in �ve trials under the same
QoE score (QoE=1). The �ve trials are randomly picked from all
recorded audio tracks from one participant. The features exhibit
high consistency. It implies that the speech-QoE correlation dis-
cussed above is not a sporadic event but a persistent property. Note
that we adopt the same contextual speaking content in these trials.
We are also interested in examining if the consistency would be
impacted when contents are changed. Figure 4b shows the feature
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vector in another �ve trials, each associated with a unique conver-
sation. The sentences involved in each conversation are di�erent.
The consistency is still observed, though some variations are intro-
duced. Besides, it is noteworthy that some features are more robust
against content diversity than others. This insight suggests that
those content-agnostic features should play a more signi�cant role
in our QoE assessment model.

Observation 3: Pattern diversity among users. Speech as one
kind of biometric, it exhibits diverse patterns among individuals.
We use pitch as an illustration. Particularly, pitch is the relative
highness or lowness of a tone as perceived by the ear. It depends on
the number of vibrations per second produced by the vocal cords.
Figure 5a shows the pitch distribution of two randomly selected sub-
jects from two trials under the same QoE score. The distributions
are distinguishable. As a comparison, those from the same person
in two trials are similar. We further show in Figure 5b a correla-
tion matrix (15⇥15) on pitch values among �ve participants, each
involving three trials. A similar observation is obtained–features
extracted from speakers’ speech are diverse, even though they may
perceive the same quality of service. It meets our expectation: Each
person’s vocal tract is unique; physical features, both phonetic and
morphological, are particular to each individual.
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Figure 5: Illustration of speech pattern diversity among users.
(a) CDF of pitch from two subjects (S) each involving two
trials (T). (b) Correlation matrix among 15 tests: 5 subjects
each involving 3 trials.

Summary.Our �ndings are encouraging. First, speaker’s speech
patterns are distinguishable under di�erent QoE scores, that is,
speaker’s satisfactory level toward service quality can be re�ected
by her speech response. Second, the relationship between the speech
pattern and QoE is consistent for the same individual even under a
variety of conversations. These two properties lay the foundation
for our idea. In the meantime, to exploit speech signals as a cue
for QoE assessment is faced with a critical challenge that speech
characteristics are diverse among individuals. Hence, how to con-
struct a personalized QoE assessment model that accommodates the
individual heterogeneity is one of the main focuses of our design.

3 BASIC QOE ASSESSMENT MODEL USING
FEW-SHOT LEARNING

In the measurement study, we show the statistical properties of
some classic features to illustrate the feasibility of our idea. The
remaining question is how to extract useful features out of speech

signals for QoE assessment. We employ convolutional neural net-
work (CNN) as the classi�er, with the inputs as time-frequency (t-f)
domain speech spectrogram. CNN is expected to extract explicit
and implicit features that are most bene�cial for QoE classi�cation
from the inputs.

In the following, we �rst present a basicmodel that turns speaker’s
speech signals into her QoE perception via a CNN. To quickly adapt
the trained model to an unseen user, few-shot learning is adopted.
At the end of this section, we discuss the limitation of the basic
model. To overcome it, an advanced model is developed in the next
section. The basic model is vital for serving as a basis for the entire
design.

3.1 CNN-based QoE Classi�er
We propose to employ CNN as a classi�er that maps a user’s speech
to her QoE perception. The input is the t-f domain speech spec-
trogram. Its output is a 5-point MOS, where 5 represents the best
quality and 1 represents the worst.

The speech is captured by the speaker’s microphone. It is then
down-sampled to 16 kHz, as signals above 8 kHz barely a�ect the
speech intelligibility and human perception [56]. A higher sampling
rate may unnecessarily increase the computational complexity. The
t-f domain speech spectrogram is generated by applying STFT on
the time domain waveform. The STFT adopts a window size of 32
ms, hop length of 10 ms, and FFT size of 512 points under 16 kHz
sampling rate, resulting in 100⇥ 257⇥ 1 complex-valued scalars per
second. In the implementation, we cut an audio track into multiple
clips, each with a duration of 10 s. Each clip is one sample with the
size 997⇥257⇥1. The classi�er takes the t-f domain spectrogram as
input. Then, implicit features are obtained by conducting multiple
levels of non-linear operations. Each operation transforms the data
representation learnt at the previous level into a representation
at a higher and more abstract level. In particular, the multi-layer
non-linear operations, in the form of non-linear activation function
and pooling layers, make the obtained data representation sensitive
to subtle details embedded in the spectrogram, and insensitive to
large-scale irrelevant variations resulting from speaking contextual
diversity. Lastly, the learned representation is fed into the fully
connected layers for QoE inference.

3.2 Handling Unseen Users via Few-shot
Learning

As presented in the previous section, human speech patterns are di-
verse even under the same QoE perception. Hence, the CNN-based
classi�er should be user-speci�c and readily scale to an unseen
user. We propose to employ the few-shot learning [27, 28]. Audio
samples from existing users and unseen users are treated as the
source domain and the target domain, respectively. The few-shot
learning technique aims to �ne-tune parameters of models, trained
in the source domain, to adapt to the target domain within limited
data samples from the target domain. To be speci�c, we adopt the
model-agnostic meta-learning (MAML) [29], a few-shot learning
framework that uses gradient descent and requires only a few gra-
dient steps to update the model. It consists of themeta-training and
adaption phases. In the following, we cover essential steps in each
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phase. Although MAML is not the technical contribution of this
work, it provides the structural framework of SpeechQoE.

Algorithm 1: Meta-training
input :Source dataset D( , learning rate hyperparameters U

and V
1 \0  random initialization;
2 while not �nished do
3 Generate a batch of tasks T from source dataset D( ;
4 for all generated T8 2 T do
5 (T8  Sample K · M support instances from T8 ;
6 &T8  Sample K · M query instances from T8 ;
7 Evaluate r\LT8 (5\ ,ST8 ) with (T8 via equation (2);
8 Compute T8 -speci�c parameters \ 0T8 through SGD:

\ 0T8 = \0 � Ur\LT8 (5\ ,ST8 );
9 Evaluate LT8 (5\ 0T8 ,&T8 ) with &T8 ;

10 \ 0  \ 0 � Vr\
Õ

T8 2T LT8 (5\ 0T8 ,&T8 );
output :Trained parameter \ 0

Meta-training phase. Formally, we denote the QoE classi�er as
5\ (x) with neural network parameters \ initialized to \0. Let D( =
{(x 9 ,~ 9 )} be the source dataset, where x 9 is the t-f spectrogram of
the 9 th sample with~ 9 as its label, i.e., a discrete QoE level from 1 to
5. WithD( , a set of tasks T are generated (line 3). Each task T8 2 T
is a  -shot"-way classi�cation problem, where the classi�er aims
to predict" QoE classes by using  labeled instances in each class.
Note that" is 5 in our case (i.e., 5 di�erent QoE levels) and  is a
small number, e.g., 5 or 10. Each task T8 is associated with a support
set (T8 and a query set &T8 . The two sets are disjoint with each other
((T8 \ &T8 = ;). Each set contains  · " instances from T8 (line
5-6). Each task mimics the situation that only limited labeled audio
samples are available from a “virtual user” in our case. 5 is trained
using the support set (T8 . To be speci�c, it computes temporary
parameters \ 0T8 via gradient descent with (T8 (line 7-8)

\ 0T8 = \0 � Ur\LT8 (5\ , (T8 ), (1)

where U is the learning rate. The loss function is de�ned as

LT8 (5\ ,ST8 ) =
’

(xj ,~ 9 )2ST8

~ 9 log 5\ (xj)+(1�~ 9 ) log 5\ (1�xj). (2)

which is a task-speci�c cross-entropy loss of 5\ on the support set
(T8 . With the task-speci�c parameters \ 0T8 for all T8 , we then de�ne
an optimization problem, with an objective function to �nd the
across-tasks parameters \ 0 that minimizes the sum of task-speci�c
losses for all tasks in T ,min\

Õ
T8 2T LT8 (5\ 0T8 ,QT8 ). Note that each

task-speci�c loss LT8 (5\ 0T8 ,QT8 ) is evaluated by the task-speci�c
parameters \ 0T8 on the corresponding query set &T8 (line 9). The
optimization problem is solved by stochastic gradient descent (SGD)
[45] (line 10).

\ 0  \ 0 � Vr\
’
T8 2T

LT8 (5\ 0T8 ,QT8 )
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Figure 6: QoE scores are unevenly distributed. (a) Distribution
for individuals. (b) Overall distribution.

where V is the learning rate for SGD optimization. The trained
optimal parameters \ 0 then serves as an instantiation of the model
5 . The process of meta-training is given in Algorithm 1.

During the meta-training, each task T8 is generated in a way to
simulate the situation that an unseen user of di�erent speaking
characteristics is encountered. The training is done on a task-basis.
Hence, the model learns how to adapt to a new task (i.e., unseen
user) quickly in  ·" samples.

Adaptation. Once the model 5\ 0 is trained by the source dataset
D( , it can be deployed and adapted to any target user. MAML
ensures that the adaption can be done with only  ·" data sam-
ples. Speci�cally, a new  -shot "-way classi�cation problem is
formulated with the target dataset D) . The original model 5\ 0 is
�ne-tuned to the new classi�cation problem using a few gradient
steps as

\̃  \̃ � Ur\LD) (5\̃ ) .
Note that \̃ is initialized with \ 0. An annotated sample in the target
datasetD) is collected by asking the new user to rate her perceived
quality after each voice call. Apparently, a small number of  ·"
is desirable to minimize the data collection overhead.

3.3 Limitation of the Basic Model
Although the basic model is designed to be user-speci�c and adapt
to an unseen user quickly, it still acquires  samples from each
of " classes from the unseen user. For example, when  = 3
(i.e., 3 labeled conversational audio tracks in each QoE level), then
the model adaption under MAML demands 15 samples from the
unseen user, given the 5 QoE levels. While the number is small,
the sample collection overhead, in terms of time duration, may be
non-negligible in practical implementation.

Figure 6a shows the QoE score distribution from 8 randomly
selected subjects. 25 tests are performed for each one of them. We
vary the network condition smoothly from the worst to the best.
Subjects are asked to rate their perceived service quality after each
test. The subjective ratings are observed highly unbalanced across
�ve QoE levels for most individuals. Particularly, lower scores, say
1 and 2, are less reported compared with medium and higher scores.
Take the second subject as an example. It takes 25 trials to gather
at least 3 samples of each QoE score, which is 10 samples more
than the ideal case (25 � 3 ⇥ 5 = 10). This is partially because
most users tend to avoid badmouthing their received service, a
phenomenon that has been studied in psychological and cognitive
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science [32, 66, 74]. Note that the extra 10 samples are useless for
the model adaption. This situation becomes even worse if applying
a larger  in few-shot learning, as more redundant samples would
be collected and wasted.

One may argue to employ one-shot learning, a special case for
few-shot learning, to mitigate the data collection overhead in the
adaption phase. First of all, as a model tends to over�t on limited
samples [71], the adoption of one-shot learning is restricted by
several conditions. For example, the collected one-shot samples
must satisfy the distribution of the source domain dataset [79],
which cannot be guaranteed here due to user diversity. Second, the
network conditions nowadays rarely down-grade to “unacceptably
bad” that leads to the lowest QoE, especially for voice services
that demand relatively small bandwidth. Therefore, even one-shot
learning may still take a long time before acquiring a sample labeled
with QoE=12. In summary, it is impractical to directly apply few-
shot learning to our case.

4 ADVANCED QOE ASSESSMENT MODEL
In this section, we present our proposed advanced model. It is still
built on the framework of MAML-based few-shot learning, but is
enhanced to quickly adapt to an unseen user within few samples
which are likely to unevenly distribute across the QoE classes.

4.1 Adaption with Limited Target Samples of
Uneven Distribution

Overview. The meta training phase in the advanced model is iden-
tical to that in the basic model. In the adaption phase, instead of
gathering  samples in each QoE class, which may take signi�-
cant time in practice, we propose to generate synthetic data for the
target user. To be speci�c, we seek to calibrate the distribution of
the target user’s dataset via her limited samples. Then an adequate
number of samples, covering all the QoE scores, can be sampled
from the calibrated distribution. We then �ne-tune the model via
the joint set of real and synthetic data samples. In this way, the
data collection overhead would be reduced greatly. Although the
idea seems straightforward, the design is faced with two challenges.
First, as only limited samples are available, they tend to be biased.
It is non-trivial to infer the target user’s ground truth distribution
from the biased samples. Second, because of the unbalanced distri-
bution property, it is not rare that samples of certain class(es) are
missing. Without any reference, is it feasible to generate synthetic
dataset for those class(es)?

To tackle these two challenges, we develop a novel data synthe-
sizing scheme. In a holistic view, we �rst calibrate the distribution
of the few samples of the target user by transferring statistics from
the “close” source users. Then an adequate number of samples for
each class of the target user are produced from the calibrated dis-
tribution. The proposed scheme is composed of three steps: source
user pro�ling, identifying close neighbors, and generating target data
samples.

Source user pro�ling. Consider a source dataset D( collected
from a set of source users ( . Let D? 2 D( be the subset associated

2As the source dataset is gathered in a lab environment, data points annotated with low
QoE scores can be obtained easily by creating poor network conditions via parameter
setting. Hence, the above concern does not exist in data collection for meta-training.

Algorithm 2: Data synthesis scheme
input :Source dataset D( , real target dataset D) , source

user set (
1 for ? 2 ( do
2 Calculate mean vector -?,8 and ⌃?,8 following (3);
3 Calculate covariance matrix ⌃?,8 following (4);
4 Calculate Euclidean distance between D and ? following

(5);
5 Identify D’s close neighbors from ( in respect of their

Euclidean distances;
6 Calibrate target user’s pro�le using (6);
7 Generate synthetic target dataset D̃) using (7);
output :Augmented target dataset D0) = D̃) [D)

with user ? 2 ( . We assume the t-f domain speech spectrogram
from a user ? satisfy a multivariate Gaussian distribution. Their
mean vector -? is expressed as -? = {-?,8 |8 = 1, 2, · · · , 5}, where
-?,8 stands for the mean vector of user’s samples annotated with
QoE score 8 . It is calculated as the mean of every single dimension
in the sample vector

-?,8 =
1
=?,8

=?,8’
9=1

x 9 (3)

where =?,8 is the number of samples of class 8 from user ? . x 9 is
the t-f domain speech spectrogram of the 9-th sample. Similarly,
the covariance matrix is expressed as ⌃? = {⌃?,8 |8 = 1, 2, · · · , 5},
where ⌃?,8 is calculated as

⌃?,8 =
1

=?,8 � 1

=?,8’
9=1

(x 9 � -?,8 ) (x 9 � -?,8 )> . (4)

Given above, the distribution of user ?’s t-f domain speech spectro-
gram can be expressed as N(-? , ⌃? ), called the pro�le.

Identifying close neighbors from source users. Once the
statistics of all source users are derived, we further identify from
them the ones that share the most similar pro�les of the target user
D. Speci�cally, we calculate the Euclidean distance of the sample
space between the target user D and each source user ? 2 (

3D,? =
1
=D

5’
8=1

=D,8’
9=1

| |x 9 � -?,8 | |2 . (5)

LetD) be the real samples from the target user D. =D stands for the
total number and =D,8 is the number from each class 8 . Apparently,
we have =D =

Õ
8 =D,8 . We assume source users have samples of

all QoE scores. This is a practical assumption as those samples
are collected o�ine. The calculation of (5) does not require the
presence of target samples from each class. In another word, 3D,?
can still be derived, even samples of certain QoE score(s) are absent
from the target dataset. In an extreme case, as few as one sample
is su�cient for the calculation. This property is desirable for our
situation–the adaption no longer has to wait until the arrival of  
samples from each QoE score. A total number of =D (e.g., 3 to 5)
target samples are su�cient, regardless of their classes. Apparently,
it e�ectively shortens the period of time for adaption, comparing
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Figure 7: System architecture of SpeechQoE.

with the conventional few-shot learning. On the other hand, the
value of =D does impact the assessment accuracy, which will be
evaluated in Section 5.

We adopt Euclidean distance to measure the similarity between
the target user and the source user. The idea is inspired by :-nearest
neighbor (:-NN) [20], a classic machine learning algorithm mainly
for classi�cation. :-NN works by �nding the distances between
a query sample and all the examples in the dataset, selecting the
speci�ed number examples (:) closest to the query, then votes
for the most frequent label. Particularly, the Euclidean distance is
commonly adopted by :-NN to quantify the similarity between two
samples.

Afterwards, we select from ( a subset of source users whose
distances with D are less than a threshold d . They are considered
as D’s close neighbors who share high similarities in their pro�les
with D. Denote by ( 0 the set of quali�ed neighbors. The selection
of d and how it impacts the QoE assessment accuracy is discussed
in Section 5.3.

Generating samples for the target user. We then leverage
statistics from eligible neighbors to estimate the target user’s data
distribution. Speci�cally, the mean and the covariance of the distri-
bution is calibrated as

-0D,8 =
1
|( 0 |

’
?2( 0

-?,8 , ⌃0D,8 =
1
|( 0 |

’
?2( 0

⌃?,8 . (6)

With the calibrated distribution of the target user, we are able
to generate su�cient samples covering all QoE scores from the
multivariate Gaussian distribution

D̃) = {(x,~) |x ⇠ N(-0D,8 , ⌃0D,8 ), 88 2 {1, 2, · · · , 5}}. (7)

The synthetic target dataset D̃) , together with real dataset D) ,
then form the augmented target datasetD0) = D̃) [D) .D0) is used
to �ne-tune the model following operations covered in Section 3.2.
Theoretically, target samples can be generated as many as desired.
On the other hand, the performance becomes stable as the number
surpasses a certain threshold. We are going to examine it in Section
5.3. The steps of proposed sample synthesis method is given in
Algorithm 2.

We perform a series of distribution tests, which determinewhether
our collected sample data are drawn from a certain probability dis-
tribution. In particular, the classic Kolmogorov–Smirnov (K-S) test

1 2 3 4 5

QoE Score

(a)

1 2 3 4 5

QoE Score

(b)

Figure 8: t-SNE visualization of (a) synthetic samples and (b)
real samples.

is adopted. A set of common statistical distributions, including
Gaussian distribution, Gamma distribution, and Exponential distri-
bution, are considered. The result suggests that our dataset, in most
cases, complies with the Gaussian distribution the best among all
distributions considered.

Discussion. We compare in Figure 8 the t-SNE [75] representa-
tion of synthetic samples and real samples collected from the target
user. t-SNE is a statistical method to visualize high-dimensional data
by giving each datapoint a location in a two or three-dimensional
map. Their distributions across �ve QoE scores are similar, e.g.,
the relative positions of �ve clusters on the 2-D dimension. Hence,
model �ne-tuning through synthetic samples is expected to adapt
to the target user properly. Besides, the proposed data synthesis
scheme can potentially be applied to another context with a similar
data hungry issue.

There have been some existing e�orts on data synthesis [50, 69]
and data augmentation [53, 63, 77]. Unfortunately, they are inappli-
cable here. Most data synthesis methods are built with specialized
modules, such as Generative Adversarial Networks (GANs) [33]
and Variational Autoencoders (VAEs) [82]. These methods require
the design of a complex model, while our distribution calibration
algorithm is simple. Besides, as they are mostly data-driven models,
they require proper training before deployment. In our scenario,
these models tend to be over-�tting given the limited target samples,
especially with uneven distribution. Data augmentation is a con-
ventional way of increasing the number of training samples. The
mainstream approaches involve using simple tricks (e.g., cropping,
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rotating, and zooming). However, they are unsuitable for t-f domain
speech spectrogram, a more complex-form of data representation.
More importantly, none of the above methods can deal with the
absence of samples from certain class(es), a unique challenge in our
problem.

4.2 Integration with Parametric Model
Our sample synthesis method relies on an adequate number of
close neighbors in the source user set, so that the target user’s data
distribution can be accurately calibrated. In practice, this assump-
tion may not always hold due to the lack of a large user pool in
the source dataset. To address this issue, we propose to integrate
with the conventional parametric model, e.g., the well-known E-
model [30]. Essentially, the parametric model serves as a protective
backup. It is activated once close neighbors cannot be identi�ed
in the source domain with a meaningful amount. As the adaption
cannot be successfully performed, the parametric model is then
employed to assess the target user’s perceived QoE. Recall that
a parametric model quanti�es QoE through underlying network
conditions. It is thus free from the restriction mentioned above.
The hybrid design can e�ectively avoid catastrophic performance
degradation caused by adaption failure. Note that the paramet-
ric model branch is not expected to execute often. Still, it helps
to ensure robustness in QoE assessment. A similar idea has also
been adopted in prior works [7, 81]. They combine the classic and
learning-based approaches on adaptive network resource manage-
ment and congestion control. Their results show that the hybrid
design can signi�cantly alleviate the issues (e.g., unseen scenarios)
of clean-slate learning-based counterparts.

5 EVALUATION
5.1 Experiment Design
System setup. A VoIP testbed is set up for the experiments. Two
laptops are used as terminals and installed with Linphone [3], an
open-source app o�ering free audio/video calls with �exible con-
�guration capabilities. To establish a connection between the two
terminals, we deploy a voice service server on a desktop running
Ubuntu 20.04. Asterisk [2], an open-source communication plat-
form, is installed on the server to control the VoIP packet �ow over
SIP/RTP. Asterisk is the heart of this platform since every activity
is through Asterisk. We con�gure via Linphone the destination
address on each terminal as the server’s IP address to get them
connected. A router is deployed to facilitate the connection among
the three entities. Our testbed is built on a local area network (LAN),
which has no interconnection with the external Internet. The LAN
environment allows the network to run as con�gured. As a VoIP
packet will not be routed externally, it does not experience any
extra congestion or delay caused by the external network. To simu-
late various calling environments, we control network parameters
through Network Link Conditioner (NLC) [4] that is installed on
both terminals. Table 1 lists the set of simulated calling environ-
ment pro�les by tuning di�erent network parameters. Speci�cally,
packet loss rate (PLR) is the ratio of packets not received to the total
number of sent packets. It is a metric representing how reliable a
network is. Latency in our experiment is the one-way delay that
takes to transmit a packet from one terminal to the other. We also

Figure 9: Testbed setup.

consider background noise, which is pre-recorded from the cafete-
ria. It is played during the entire calling session. Period refers to a
short duration of network disconnection. It is commonly observed
when there is bandwidth competition. In total, twenty-�ve testing
conditions are created following settings in prior works [15, 19].
They are expected to cover a variety set of calling environments in
real scenarios.

Table 1: Calling environment pro�les.

Condition PLR (%) Latency (ms) Noise (dB) Period (s)
Excellent [0-0.1) [0-50) [0-30) [0-0.5)
Very Good [0.1-0.5) [50-100) [30-50) [0.5-1)

Good [0.5-1.0) [100-200) [50-60) [1-2)
Fair [1.0-2.0) [200-300) [60-70) [2-3)
Poor [2.0-3.0] [300-500] [70-80] [3-5]

Data collection. A total of 38 subjects, 23 male and 15 female,
are recruited for the experiments. Two subjects form a pair to
complete 200 calling sessions, each lasting 90 seconds. They sit in
separate rooms to avoid mutual-interference. Their conversational
topic is the so-called Richard’s task [59], commonly employed in
telephone conversational quality evaluation. It is like charades.
Two subjects take turns describing a shape on a given sheet for the
other to identify. During the 90 seconds conversation, they aim to
guess as many shapes correctly as they can for a larger amount of
rewards. Their conversation is recorded by Quick Time Player [6].
At the end of each session, subjects are asked to rate their perceived
QoE from 1 to 5. To prevent subjects from excessive fatigue, the
200 sessions are accomplished in �ve rounds on di�erent days.
Each subject devotes about 6 hours on average to carry out the
experiments. The entire data collection campaign lasts for 6 months.
To our knowledge, our dataset is the �rst medium-scale QoE-labeled
dataset for conversational voice services.

CNNclassi�er implementation. SpeechQoE is built with CNN.
The classi�er consists of four convolution layers, followed by four
max pooling layers. Two fully-connected layers are attached at the
end. ReLU is used as the activation function after each of the con-
volutional layers. !2-regulation is employed to prevent over�tting.
The classi�er is trained with Adam optimizer [46]. We implement
SpeechQoE using PyTorch framework [5]. The meta-training of the
model is performed in a server equipped with eight NVIDIA RTX
A6000 GPUs with Intel Xeon Gold-5218R 2.10 GHz processors.

We train SpeechQoE in a leave-one-out manner, in which the
data collected from one subject is used as the target dataset and
the data collected from all the other subjects act as the source
dataset. The model training and adaption are performed under the
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Figure 10: Performance comparison with two baseline ap-
proaches in (a) accuracy and (b) F1-score.

framework of MAML. In the training phase, we sample 74 tasks,
twice of the source domain size, from the source dataset. The task
is further decomposed into support set and query set, which are
fed into the model for training. The adaption is performed with
the target user’s synthetic dataset. The inference is performed over
the target user’s real dataset. There are 38 evaluations in total. The
overall performance is the average result from 38 evaluations.

Baseline methods. We compare SpeechQoE against the follow-
ing models which represent the state-of-the-art in QoE assessment
for voice services: (1) PESQ [60], a speech quality based approach.
It requires the original speech source and the degraded speech �les
as inputs to analyze audible distortion and further convert it into a
QoE score. (2) MLQoE [16], which maps network metrics, such as
latency, jitter, and packet loss, into a QoE score. It employs a set of
AI techniques, including Support Vector Regression (SVR), Arti�-
cial Neural Networks (ANNs), Decision Trees (DTs), and Gaussian
Naive Bayes (GNB), and selects the best one automatically [73].
(3) E-model [30], which is a classical parametric model. Unlike
SpeechQoE and MLQoE, which are data-driven models, E-model is
an analytic model.

5.2 System-level Evaluation
Overall performance.We �rst compare SpeechQoEwith the three
baseline approaches in overall performance. Two metrics are exam-
ined, accuracy and F-1 score. Accuracy is de�ned as the percentage
of correct assessments over all trials. The F1-score combines the
precision and recall of a classi�er into a single metric by taking
their harmonic mean. We observe in Figure 10 that SpeechQoE con-
sistently outperforms the baselines for all QoE scores. Speci�cally,
the average accuracy of PESQ, E-model, MLQoE and SpeechQoE
is 64.1%, 77.2%, 80.9%, and 91.4%, respectively. The inferior perfor-
mance of the baseline approaches is primarily due to the lack of
subjective factors considered in their models. Instead, SpeechQoE
exploits speaker’s speech patterns as an essential cue to assess
the subjective QoE perception. Moreover, SpeechQoE integrates
E-model as a backup classi�er when the speech-based classi�er
becomes infeasible. It thus takes advantage of both data-driven and
analytic approaches in QoE modeling. Below we provide a more
in-depth analysis of the results.

The result also suggests that SpeechQoE works for voice ser-
vices of various qualities, from low to high. Figure 10 shows that
SpeechQoE delivers consistent performance across QoE scores.
Take accuracy as an example, our achieved values are 92.2% (QoE=1),

90.4% (QoE=2), 91.6% (QoE=3), 89.7% (QoE=4), 93.1% (QoE=5), re-
spectively.

Performance breakdown. This part intends to provide in-
depth understanding why SpeechQoE outperforms the baselines.

(i) User diversity. Figure 11a shows the assessment accuracy for
each subject.We �nd that the performance variation among subjects
under SpeechQoE is smaller. Speci�cally, the standard deviation
is 3.36, 5.78, and 5.82 for SpeechQoE, E-model, and MLQoE, re-
spectively. It indicates that our model delivers a more stable and
consistent performance in QoE assessment across users than the
other two. Besides, employing few-shot learning framework ren-
ders our model adaptive to user diversity. In contrast, the baselines
solely rely on network conditions for QoE prediction.While MLQoE
claims as a user-centric QoE model, still no subjective factors are
considered. Hence, all users share a uniform model, which can
hardly capture user’s uniqueness in their perception.

Table 2: QoE assessment on two participant groups.

QoE Score 1 2 3 4 5
Group 1 0.92 0.91 0.90 0.89 0.92
Group 2 0.92 0.90 0.92 0.90 0.93

We further evaluate SpeechQoE on two participant groups. One
is non-college students (group 1), whereas the other is college stu-
dents (group 2). We cannot identify noticeable di�erence from the
results of the two groups, with their average accuracy as 91.4% and
90.9%, respectively. It indicates that our scheme works for users of
diverse background.

(ii) Background noise. In practice, calls are often made in noisy
environments, e.g., cafes, streets, and shopping malls. A QoE model
should account for this in�uence factor as well. In the experiments,
we play pre-recorded sound in testing rooms to create a noisy
environment. Three sound levels are adopted, i.e., low (0-50 dB),
medium (50-60 dB), and high (60-80 dB). Figure 11b shows that the
performance of baseline approaches degrades signi�cantly with a
higher background noise, which apparently causes non-negligible
in�uence on speaker’s QoE perception during a call. Note that
this factor has been largely overlooked in most parametric models.
On the other hand, noisy environments would impact the way
people speak. For example, they may unconsciously slow down
their speech rate and raise their voices. Those minute changes can
be e�ectively captured by our SpeechQoE.

(iii) Quality perception of the peer. In this series of experiments,
we set di�erent network conditions at the two calling parties. Three
settings are considered. In case 1, calling environments are set as
excellent (in in Table 1) for both terminals. In case 2, one of them is
set as excellent, whereas the other is set as good. In case 3, they are
set as excellent and poor, separately. We aim to simulate “symmetric”
and “asymmetric” uplink/downlink conditions via these settings.
We observe that SpeechQoE performs consistently over the three
cases. However, the accuracy of baselines drops signi�cantly as
network conditions become asymmetric. In a conversational call,
one party’s quality perception is also dependent on that of the peer.
Imagine that the callee keeps on asking the caller to repeat due to
the poor connection at the callee side, while the caller can hear the
callee clearly. Neither of them would rate the QoE high at the end
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Figure 11: Performance comparison under various impact factors. (a) User diversity, (b) background noise, (c) quality perception
of the peer, and (d) call fatigue.

of the call. This situation can be counted by asymmetric network
conditions experienced by the uplink and downlink. As parametric
models treat calling parties separately, it would wrongly classify
caller’s QoE and thus impair the overall accuracy performance. On
the contrary, our approach predicts QoE through speech patterns,
which nicely re�ect the speaker’s in-situ perception, including the
in�uence introduced by the peer.

(iv) Call fatigue. Call fatigue can also impact QoE. A similar
phenomenon has been observed in other online applications and
services, such as web browsing and watching videos [57, 67]. It is
thus crucial to count this factor too. In the experiment, participants
are asked to evaluate their fatigue level, from low to high, after
each calling session. We notice that a user’s standard for QoE rating
is dynamic, subject to her fatigue status. Hence, it is crucial for a
QoE model to capture such dynamics. Figure 11d shows that the
performance of our scheme is relatively stable across all condi-
tions. It implies that speech serves as a nice QoE indicator robust
to speaker’s fatigue levels. On the other hand, the performance of
baselines degrades with respect to the increased fatigue. As dis-
cussed, neither E-model or MLQoE considers subjective factors in
their modeling. As a result, the derived models are static regardless
of user’s spiritual conditions.
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Figure 12: QoE assessment accuracy vs. data collection over-
head. (a) The number if real samples needed by SpeechQoE
for model adaption. (b) Comparison between the advanced
model and basic model.

Adaption overhead. This part is to evaluate the adaption phase
of the advanced scheme.

(i) Number of samples needed. As one of the contributions of this
work, we develop a data synthesis scheme so that the number of
real samples collected from the target user can be reduced. Figure
12a shows the assessment accuracy by varying the sample number
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Figure 13: QoE assessment latency. (a) Stacked latency for
QoE assessment when adaption is unnecessary. (b) CDF.

from 1 to 10. The accuracy is enhanced by a large margin as the
number increases from 1 to 3. After that, the performance becomes
stable. It implies that our scheme calibrates the target user’s pro�le
accurately with as few as 3 real samples. The result is promising
because the original model can be adapted to a new user with rather
minor data collection overhead.

To evaluate the e�ectiveness of data synthesis, we also imple-
ment the basic model, which employs the conventional  -shot
learning. Speci�cally, Figure 12b is a performance comparison be-
tween the basic scheme (i.e., without data synthesis) and the ad-
vanced scheme (i.e., with data synthesis). Speci�cally, the basic
model needs a total of 30-45 samples to achieve the same accuracy
as the advanced model when  = 5. This is mainly attributed to the
uneven distribution of sample classes as discussed in Section 3.3;
lower ratings are less seen than the others. In order to gather at least
5 samples for each class, more calling sessions are needed, as many
of them would produce redundant samples. As for SpeechQoE, as
few as 3 samples, 10 times less than the basic model, are needed
from the new user to deliver the optimum performance. The result
suggests that the advanced model is more practical for deployment
than the basic model (with the conventional few-shot learning as
the substrate), due to its negligible data collection overhead.

(ii) QoE assessment latency. We now examine the time it takes to
assess QoE. Unlike model training, which is done on the GPU server,
the assessment is performed on personal terminals (i.e., laptops
with Intel Core i7 2.3GHz processors). We �rst consider the case
when adaption is unnecessary, i.e., the assessment is done directly
using the trained model. The latency is mainly attributed to audio
preprocessing and inference. Figure 13a exhibits the latency over
500 trials. The total value is 6.51 s on average, including 0.5 s on
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Figure 14: Assessment accuracy for individuals (a) with E-
model integrated and (b) without E-model integrated.

preprocessing and 6.11 s on testing. Figure 13b further illustrates
the CDF; 90% of measurements are lower than 8.77 s. We then
consider the case when adaption is needed. Since the preprocessing
and inference operations are identical to the �rst case above, we
focus on evaluating the time needed for the adaption. It is triggered
once a new user arrives. It involves two steps: data synthetization
and model �ne-tuning. Figure 13b shows that the latency for data
synthetization and model �ne-tuning is 1.29 s and 7.84 s on average,
respectively. The total latency for adaption is 9.13 s on average.
Note that model adaption is needed only once for a new user. In
summary, a predicted QoE score will be available shortly after a
conversational call in most cases.

In the current setting, SpeechQoE produces one QoE score after a
call �nishes. This score re�ects the speaker’s perceived quality dur-
ing the entire call. It is practically acceptable for service providers
to have the QoE inference result ready in several seconds. Take
the current audio/video telecommunication apps as an example.
After each call, users are typically prompted with a post-service
survey to rate the service quality, for example, from one star to �ve
stars corresponding to a QoE score from 1 to 5. This manual process
would not be faster than ours. Besides, many users may be reluctant
to provide their ratings as such process is e�ort-demanding and
sometimes annoying. As for SpeechQoE, the assessment is auto-
matically carried out. It avoids bothering users with questions to
collect opinions and feedback, and signi�cantly reduces human
labor e�orts.

5.3 SpeechQoE Deep Dive
Integration of parametric model. We show in Figure 14a and
14b the QoE prediction accuracy with and without integrating a
parametric model into our design, respectively. E-model is applied
in the implementation. We notice in Figure 14a that the accuracy
for each individual is relatively consistent. However, the accuracy
degrades drastically for three subjects (with indices 7, 13, and 31) in
Figure 14b. This is because insu�cient close neighbors are identi�ed
in the source user set (i.e., the remaining 37 subjects). Consequently,
the model �ne-tuning cannot be performed successfully. Although
the accuracy produced by the E-model for the three subjects is
around 80%, it e�ectively avoids catastrophic situations, an issue
widely observed in data-driven approaches. Note that our design
is modular. It is convenient to replace the E-model with any other
parametric or speech quality based model in the implementation.
We are going to evaluate those combinations in the future.

Impact of number of shots. SpeechQoE adopts the framework
of MAML. It is important to evaluate the impact of the number of
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Figure 17: Performance comparison with the state-of-the-art
learning frameworks. (a) Accuracy (b) RoC curve.

shots ( ) on the assessment accuracy. Figure 15 gives the result
by varying  . The accuracy increases as  grows from 1 to 8 and
stays slightly above 90% after that. Therefore, we can safely adopt
8-shot learning to achieve a satisfactory assessment accuracy. Note
that we do not need to collect all 40 samples (8 ⇥ 5 = 40) from
the new user for model adaption. As implied by Figure 12a, as few
as 3 real samples are su�cient to calibrate the new user’s pro�le.
The remaining 37 samples are all synthetic from the calibrated
distribution. It thus largely alleviates the data collection overhead.

Threshold d for close neighbor selection. In the proposed
data synthesis scheme, the threshold d plays an important role.
A target user’s close neighbors are the source users with their
Euclidean distances (to the target user) smaller than d . The target
user’s pro�le is then derived from the statistics of those neighbors.
Figure 16 shows the impact of d on the assessment accuracy.We �nd
that the optimum value exists at around 45 in our implementation.
Either a too low or a too high d leads to inferior performance.
Speci�cally, a smaller d implies a more stringent neighbor selection
rule. On one hand, speech patterns from the selected neighbors are
more similar to that of the target user. On the other hand, fewer
neighbors are quali�ed. In essence, we need to strike a balance
between these two factors.

Performance comparison with other learning frameworks.
SpeechQoE adopts MAML to adapt the model to unseen users. Here
we compare two other learning frameworks, transfer learning and
prototypical network, which can be applied for a similar purpose.
Regarding transfer learning, we follow the prevalent approach [79].
In the adaption, we freeze convolutional layers and retrain the FC
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layer to �ne-tune the model using samples from the target user. Pro-
totypical network [71] as another representative in meta-learning
[68], learns a metric space in which classi�cation can be performed
by computing distances to prototype representations of each class.
Figure 17a shows the accuracy with respect to the number of shots.
Overall, SpeechQoE outperforms the other two in all cases, espe-
cially when fewer shots are adopted. Hence, SpeechQoE is more
suitable for our scenario where an e�cient adaption is desired. Fig-
ure 17b depicts the receiver operating characteristic (ROC) curves.
We also specify the area under curve (AUC) for each approach. AUC
is the measure of the ability of a classi�er to distinguish between
classes. Typically, a higher AUC is desired. SpeechQoE delivers the
best classi�cation performance among the three.
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Figure 18: Training overhead in the adaption. (a) Accuracy
vs. number of epochs. (b) Loss vs. number of epochs.

Training overhead in adaption. Figure 18a plots the accuracy
versus the number of epochs for �ne-tuning. One epoch is when all
samples in the support set of target dataset are passed both forward
and backward through the model once. The accuracy becomes
stable after 10 epochs in our approach. Nonetheless, it takes more
than 40 epochs for the transfer learning [79] to reach stability. A
similar observation is obtained in Figure 18b. We conclude that few-
shot learning is a more desirable learning framework than transfer
learning for a smaller training overhead during model adaption.

6 RELATEDWORK
Existing QoE assessment methods for voice services can be broadly
classi�ed into the following three categories.

Parametric models. These models quantify QoE through the
characterization of underlying networks. A broad set of dedicated
parameters are employed, such as source rate, packet loss, coding
scheme, delay, and jitter. The E-model, de�ned by the ITU-T in Rec.
G.107 [30], is a classic parametric model that provides estimation
for the overall quality in a voice conversation as a weighted linear
sum over 20 input parameters. Despite its popularity, E-model is
static in a sense that all parameters are �xed. Therefore, it is mostly
used at the network planning stage, rather than quantifying QoE at
runtime for live services. To bridge the gap, some of its extensions
have been developed to adapt to network dynamics and are thus
more suitable for online assessment [12, 15]. All these methods
express the relation between network parameters and QoE into
mathematical formulas explicitly. More recently, some research
proposes to leverage arti�cial intelligent techniques to explore

the implicit and complex relationships [8, 14, 16, 19, 70]. Machine
learning models, such as arti�cial neural networks [14], Bayesisan
network [8], logistic regression [19], and support vector machine
(SVM) [70], have been employed.

All these models primarily make use of network-centric qual-
ity of service (QoS) to infer QoE. As pointed out by many prior
works (e.g., [39, 41, 42]), the former does not necessarily re�ect the
ground truth of the latter in many cases. Besides, as user diver-
sity is neglected, they are incapable of providing personalized QoE
assessment, the main focus of this work.

Speech quality basedmodels. They estimate QoE by analyzing
speech quality without speci�c knowledge of underlying network
conditions. They can be further classi�ed as full-reference models
[60–62, 76] and reference-free models [26, 43, 55, 58]. In the former,
both the original speech source and the degraded speech �le are
required. The audible distortion is then converted to a QoE score.
PESQ [60], as de�ned by ITU-T Rec. P.862, falls into this category.
The need for the original speech signalsmakes full-referencemodels
impractical assessing the quality of voice services in real time. As
opposed to the full-reference models, reference-free models directly
extract distortion measures from degraded speech to derive the �nal
score. Among them, ITU-T Rec. P.563 [58] serves as the state-of-the-
art algorithm. This line of research focuses on reconstructing a clean
reference signal from the degraded signal and then calculating the
distortion. Techniques, such as noise estimation and signal recovery,
are employed.

Being another objective factor basedmodels, the above approaches
bear a similar concern as the parametric model–the derived model
is uniform for all users and inapplicable for personalized QoE assess-
ment. Although also relying on speech analysis, the philosophy of
our design is totally di�erent: First, we treat speech as a physiolog-
ical marker to reveal speaker’s perceived quality of voice services,
rather than an objective indicator of underlying network conditions.
Second, instead of quantifying speech quality and remedying signal
distortion, we look into the way a user speaks, e.g., speed, pitch,
rhythm, loudness, tone, etc., as impacted by the service quality.

Psychophysiology-based models. Psychophysiology is con-
cerned with the measurement of physiological signals and psycho-
logical correlates thereof. It relies on the captured physiological
data along with the psychological bases of perceptual and cognitive
processes. Some recent works investigate the feasibility of utilizing
physiological data, such as facial expression, electrodermal activ-
ity (EDA), electrocardiography (ECG), and electroencephalogram
(EEG) readings, for QoE assessment in audio-visual entertainment
[10, 11, 48, 65]. For example, Porcu et al. [65] mapped user’s facial
expressions and gaze direction to perceived quality for watching
videos. An SVM with a quadratic kernel and a k-NN classi�er are
employed. Liu et al. [52] explored eye-tracking data to estimate
visual attention and further combined with other features extracted
from images to assess the perceived quality of images. Lassalle et al.
[49] study human perception of video quality through subjective
assessment and physiological measurement, such as blood volume
pulse, skin conductance, and eye tracking.

The access of physiological signals requires designated sensors
that are absent from most PCs and personal terminals. Therefore,
the deployment of the above models is largely con�ned by the
physiological signal accessibility. As a result, many of them are
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more meaningful for laboratory testing, rather than regular usage
of commercial voice services. In contrast, our design utilizes user’s
speech which is readily accessible via microphones in most personal
devices3. It is thus more practical for wide adoption.

7 DISCUSSION AND FUTUREWORK
Privacy considerations. As a user’s speech contains rich informa-
tion for identity recognition, it is critical to ensure that the proposed
SpeechQoE does not cause any privacy disclosure to the user. In
our case, an original model, trained o�ine by the source dataset,
is pre-installed on the terminals together with the voice service
app. The adaption phase is triggered by the arrival of a new user.
Several conversational calls are recorded by the terminal during the
adaption phase. Their corresponding t-f domain spectrograms serve
as target samples for model �ne-tuning. All operations involved are
performed locally. As no data leaves the terminal, user’s privacy
is well preserved. Besides, the terminal’s mic does the recording,
audio tracks only include voice from the enrolled user, without the
peer. It thus completely avoids any potential law violation in record-
ing other’s oral communication without permission4. To facilitate
model adaption, a bunch of source users’ pro�les are pre-loaded to
the terminal with the original model. Note that this information has
been anomynized. More importantly, pro�les are highly abstract
statistics, i.e., mean and covariance of source user’s samples. It is
impossible to convert them back to individual audio tracks.

Impact from other factors. Other than perceived service qual-
ity, speech patterns may be a�ected by other factors, for example, a
speaker’s mood in a call. A person may unconsciously speak faster
when announcing exciting news; a speech tone may be lowered
when she feels depressed. Apparently, the vocal variance caused by
these factors should be eliminated from the model. In general, our
idea is to suppress features in speech signals that are also subject
to other impact factors, while amplify the ones that are primarily
a�ected by the service quality. One viable solution is to enhance
the classi�er by applying a Siamese network [17]. The idea of the
Siamese network is to employ twin substructures with the same
neural network and weights. The whole model is trained through
sample pairs: two samples with the same QoE label but associated
with di�erent moods. Each element from a pair is passed through
each of the two substructures separately. The model is trained in a
way that two substructures cannot distinguish between such two
samples in testing. The designed structure, together with the train-
ing process, allow the model to tolerate inconsistency in speech
patterns caused by speaker’s mood. We plan to incorporate this idea
into the design in our future work. Note that Siamese network has
been widely adopted in model training with feature reconstruction
for being good at distilling relevant features and eliminating the
distracting ones [18, 31, 78].

Implementing SpeechQoE on resource-restricted termi-
nals.We have so far tested SpeechQoE on regular laptops. Themain
operations involved are model adaption and inference, whereas
the entire meta-training happens o�ine. According to the results
discussed in Section 5.2, they can be executed in several seconds.
3There is no need of QoE assessment of voice services on devices without microphones.
4Under the federal Wiretap Act [1], it is illegal for any person to secretly record an
oral, telephonic, or electronic communication that other parties to the communication
reasonably expect to be private.

Realizing that conversational calls are also widely carried on mobile
terminals, it is equivalently important to achieve practical perfor-
mances on them too, especially the resource-restricted ones. The
objective is to shrink the size of the CNN-based classi�er with-
out causing noticeable accuracy degradation. Existing approaches
include using reduced precision [22, 44, 80] (e.g., round the origi-
nal model parameters in 32-bit �oating point to 8-bit integer) and
weight pruning [36–38, 54] (e.g., prune the non-essential near-zero
weights after training). Besides, a large and complex teacher net-
work can be also used to train a small student network for compara-
ble results, thus distilling the knowledge to run the small network
on mobile devices [13, 40]. The above-mentioned methods are ap-
plied after meta-learning in our case. Hence, a shrunk model is
installed on resource-restricted terminals. Given the signi�cantly
reduced size, adaption and inference are envisioned to perform
much more e�ciently.

Hardware heterogeneity. The auditory property of two speak-
ers/mics can be di�erent. Consequently, hardware heterogeneity
might a�ect the model performance. To address this issue, one fea-
sible solution is to apply the domain adaption to the basic model
when a user switches to a new terminal. Like how the scheme han-
dles an unseen user, the framework of MAML can be employed. To
execute domain adaption, a few labeled speech samples should be
collected from the new device. Then the model is �ne-tuned using
these samples to adapt to the new device. We plan to investigate
this idea in our future work.

8 CONCLUSION
In this paper, we demonstrate that speech signals can serve as
a new type of indicator to infer QoE in voice services. We de-
velop SpeechQoE, a personalized QoE assessment model to convert
speech-based cues into a QoE score. The model is built with CNN
classi�er. In order to adapt the model to a new user, we adopt
the framework of MAML. A lightweight data synthesis scheme
is developed to mitigate the data collection overhead for model
adaption. SpeechQoE is a hybrid design that integrates with the
E-model; it is e�ective to avoid drastic performance degradation
caused by insu�cient “close neighbors” in the user pool. Compre-
hensive experiments are executed to evaluate the performance of
SpeechQoE. It delivers satisfactory performance under a variety of
settings. Moreover, the model can quickly adapt to a new user with
as few as 3 samples. In summary, SpeechQoE potentially opens
up a new direction for harnessing speech sensing for personalized
QoE assessment. The proposed lightweight data synthesis scheme
is applicable to another context with similar data-hungry issues.
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