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Abstract—Data is becoming the world’s most valuable asset and the ultimate renewable resource. This phenomenon has led to online
personal data markets where data owners and collectors engage in the data sale and purchase. From the collector’s standpoint, a key
question is how to set a proper pricing rule that brings profitable tradings. One feasible solution is to set the price slightly above the
owner’s data cost. Nonetheless, data cost is generally unknown by the collector as being the owner’s private information. To bridge this
gap, we propose a novel learning algorithm, modified stochastic gradient descent (MSGD) that infers the owner’s cost model from her
interactions with the collector. To protect owners’ data privacy during trading, we employ the framework of local differential privacy
(LDP) that allows owners to perturb their genuine data and trading behaviors. The vital challenge is how the collector can derive the
accurate cost model from noisy knowledge gathered from owners. For this, MSGD relies on auxiliary parameters to correct biased

gradients caused by noise. We formally prove that the proposed MSGD algorithm produces a sublinear regret of O(T
5
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The effectiveness of our design is further validated via a series of in-person experiments that involve 30 volunteers.

Index Terms—Local differential privacy, personal data market, private machine learning
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1 INTRODUCTION

PERSONAL data is recently perceived as a new oil or
currency in the digital world. A massive volume of

personal data is constantly produced every second. These
data are invaluable for public and private sectors to improve
their products or services. Demand for personal data for
research and business purposes excessively increases while
there is practically no efficient supply of these resources.
Seeing the commercial opportunities rooted in gaps between
demand and supply, the notion of personal data market is re-
cently introduced. This notion has transformed perceptions
of personal data as undisclosed information to a commodity,
as noted in [1] and [2]. Several start-up companies, such as
Meeco [3], Datacoup [4], and CitizenMe [5], have developed
online personal data trading sites and mobile applications
following this market orientation.

On one hand, a data agent, also referred as the collector,
needs to adequately compensate the data owners for the
usage of their personal data or any privacy leakage caused
thereby. On the other hand, the collector should properly
set the purchasing price to maximize his1 profit, since over-
pricing/underpricing can incur loss of profit. So far, most
personal data trading platforms employ rather coarse pric-
ing rules. For Datacoup, payment is fixed at approximately
$8 per month for accessing seller’s social media accounts
and financial data (i.e., credit/debit card transactions). This
is a similar case for CitizenMe, where owners are paid £0.09
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1. We use “he” to indicate the collector and “she” to indicate the data
owner without sex discrimination.

per self-reported demographic, attitudinal and behavioural
data. It is questionable whether $8 or £0.09 is reasonable
compensation, and how these prices were decided. In view
of this issue, we aim to find out proper pricing for the
collector for profit maximization in online data markets
while compensating owners adequately.

We consider a general personal data market where a
data collector interacts with data owners, who arrive in
an online fashion, to sell one category of data products,
e.g., location trace for the past one week2. With a price
offered by the collector, the owner compares it with her
data cost, i.e., the lowest price that she is willing to accept
to disclose her data [6]. She tends to accept the offer if the
price covers the cost, or reject it otherwise. To model data
cost, the concept of contextual pricing [7] in computational
economics is applied. It states that the cost of a product,
personal data here, is a deterministic function of its context
features. The data content should be one of the features.
For example, people value more for disclosing the infor-
mation that their car is damaged versus the information
that their car is undamaged. Also, the location of the user’s
home address is more valuable than a public location of a
supermarket for the same owner. Another feature counted is
the owner’s privacy budget. A higher budget means greater
privacy leakage caused by disclosing the data and thus more
cost incurred by selling it to the collector.

As personal data contains sensitive information regard-
ing the owner, directly revealing them would cause irre-
versible privacy leakage. It is also not rare that a platform
may be compromised by adversaries; so is the data stored
in the platform. Hence, we propose to apply the local dif-

2. We can easily extend our scheme to multiple categories of data
products, as each data category is independent.
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ferential privacy (LDP) framework to protect owner’s data
privacy. An owner chooses to perturb her raw data per
her privacy protection requirement, before selling it to the
collector. Apparently, the utility of the perturbed data would
be degraded. Hence, the corresponding payment would be
reduced too. In essence, the owner has the full control of
how much privacy to sell in data trading. LDP is superior
for providing customized privacy protection per owner’s
perceived privacy budget. Recently, Apple has deployed
LDP in macOS Sierra and iOS 10 to gain insight into Apple
users’ emoji and word usage, while preserving the privacy
of individual users [8].

In addition to raw data, an owner’s private information
also include her data cost and trading behaviors exhibited
during transactions. As the data cost is a function of raw
data (content), the disclosure of the former provides side in-
formation to infer the latter. Regarding the owner’s trading
behavior, since it is a function of data cost, it also correlates
to the data [9]. For example, if an owner turns down an
offered price, it indicates that her data cost is even higher,
then the data cost range is gradually narrowed down to
the true cost. By further given information of the function
mapping data cost and its content, owner’s trading behavior
can possibly reveal partial information regarding the data
being traded [10], [11].

To our best knowledge, our paper is the first one that
considers the scenario where the collector is untrusted, the
data cost/trading behavior is sensitive, and the data col-
lector’s desired market property (i.e., profit maximization)
and owners’ non-negative payoffs3 are achieved. Neverthe-
less, prior works just consider part of the above features.
Specificaly, one category of prior works [12], [13], [14],
[15], [16] assume a trustworthy collector. This category of
work achieves the collector’s desired market property (e.g.,
arbitrage-freeness, fairness, profit maximization, or truth-
fulness) or/and owners’ non-negative payoff. They usually
compensate data owners in accordance with the data cost
[12], [13] or the Shapley value that is the marginal contri-
bution/utility of a data owner [14], [15], [16]. The second
category of prior works [17], [18], [19], [20], [21] consider
an untrusted collector. They also consider the collector’s
desired market property or/and owner’s non-negative pay-
off. But none of them think the data cost/trading behavior
is sensitive. They propose incentive mechanisms, such as
auctions [17], [18], [19], game theory [20], or contracts [21]
to elicit data owners to honestly reveal their true cost, as
their payment to data owners is a function of data costs.

In our paper, to ensure the collector’s profit maximiza-
tion and owners’ non-negative payoff, a feasible strategy is
to set the offered price slightly above the owner’s data cost–
a lower price produces a negative payoff at the owner, while
a higher one is less profitable. Although the idea seems to
be straightforward, its implementation is faced with a vital
challenge–how to predict the data cost on the untrusted
collector side, given that data cost is a piece of private
information known by the owner herself. Apparently, above
incentive mechanisms from the second category [17], [18],
[19], [20], [21] are not viable. They will incur extra privacy

3. The payoff equals to payment minus cost

leakage, as private information, i.e., data costs, are truthfully
elicited.

Under the observation that data cost relates to owner’s
raw data and trading behaviors, i.e., accepting or turning
down an offered price, we propose to learn from them the
data cost (model). Nonetheless, this is a non-trivial task. As
mentioned above, owners can perturb their raw data and
trading behaviors using LDP for privacy protection. In other
words, knowledge gathered by the collector is noisy. Thus,
directly learning over samples with calibrated noise via
conventional learning algorithms would lead to inaccurate
estimate.

We formulate an online learning problem. All the trading
rounds are divided into the exploration phase and the
exploitation phase. In the exploration phase, the stochastic
gradient descent (SGD) is adopted to approximate owner’s
cost model. In each round, an owner interacts with the
collector her noisy data and trading decision. They are then
utilized by the collector to compute the gradient to update
the model. As directly applying the noisy samples produces
biased gradients, we thus quantify and compensate the bias
to reconstruct an unbiased estimate. To facilitate the bias
quantification, owners are asked to provide some auxiliary
parameters (i.e., the bias and privacy budget) together with
their data. We prove that the gap between the derived learn-
ing model and the ground truth is bounded within a small
margin. The derived model is then leveraged to compute
proper pricing for profitable tradings in the exploitation. We
modify the existing truncated Laplace based perturbation
mechanism. Rather than directly injecting noise to the raw
data, noise is first added to gradients. Then an optimization
problem is formulated to identify the final perturbed data
and auxiliary parameters. We list our key contributions in
this paper.

• We study a personal data trading market to max-
imize the collector’s profit while maintaining the
owner’s non-negative payoffs and tunable privacy.
Unlike prior works, we consider the case where the
collector is untrustworthy, and the data cost/trading
behavior is also sensitive, which renders the problem
much more challenging.

• We propose a novel learning algorithm MSGD that
enables the collector to learn an accurate model of
owner’s data cost from their perturbed data and
decisions. In particular, the gap between the learning
model and the ground truth is bounded to a small
margin. As a result, it attains the regret of collector’s

profit at O(T
5
6

q
log(T

1
3 )) which is sublinear.

• In addition to the owner’s data, the data cost and
their trading behaviors are also sensitive and pro-
tected under (✏, �)-LDP, which have been neglected
in prior works.

• We conduct extensive evaluations of our proposed
scheme in terms of learning performance, computa-
tion overhead, and communication cost. All evalua-
tions are done based on our dataset that is collected
from 30 volunteers over three months.
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2 SYSTEM MODEL AND PROBLEM FORMULATION

2.1 System Model

We consider a general system model for personal data
trading markets that consists of two kinds of entities: a data
collector and a set of data owners. The latter sell personal
data to the former in the trade of monetary reward. In real-
world applications, a data owner is not necessarily a real
person, but an app or a browser add-on that automatically
interacts with the collector on behalf of the owner under a
pre-configured policy. As the number of collectors does not
impact the mechanism design in this work, one collector
is considered. Data owners join the market in an online
fashion. In each round t = 1, · · · , t̄, the collector trades with
one owner. The trading process is described as follows. (1)
The collector offers a price pt. (2) The owner compares pt

with her data cost ct for revealing her (noisy) data and
decides whether to accept or turn down the offer. (3) If
the perturbed decision is to accept the offer, the owner
submits her noisy data and receives pt from the collector
accordingly; otherwise, the trading is aborted. An owner is
allowed to participate in multiple rounds of trading. In a
new round, the owner is required to provide the data that
has not been sold before, either a newly generated one or
the one from a previously aborted trading.

In this paper we adopt the contextual pricing in computa-
tional economics to model owner’s data cost ct. It states that
the cost of a product, personal data here, is a deterministic
function of its contextual features. Let dt denote the owner’s
n-dimensional raw binary data vector, e.g., the location trace
to be traded on t-iteration. (✏, �) 2 [0, 1]2 be her privacy
budget. We also discuss in the supplemental file how to
extend our design to data in numerical and categorical for-
mats. Then dt, ✏, and � are deemed the contextual features.
In specific, (✏, �) decides how much noise to inject to the
raw data. Intuitively, the more “noisy” the reported data
is, the more privacy is retained, and thus the less cost is
incurred. Denote by xt = [dt, ✏, �]> the owner’s contextual
feature set. Following prior works on data trading [19],
[22], data cost is formulated as the linear function of xt,
i.e., ct = w⇤>xt. The discussion is further extended to
nonlinear model in the supplemental file. xt is assumed to
draw according to a fixed and underlying distribution D,
with w⇤

2 W = {w : kwk2 
1p
n+2

} and w⇤>xt  1 4.
With the emergence of data trading, how to allow indi-

viduals to estimate the cost of revealing a piece of personal
data has been investigated extensively in experimental eco-
nomics (e.g., [6], [23], [24]). With this basis, a data owner is
deemed to be aware of her data cost in this work.

2.2 Preliminaries

Local differential privacy (LDP). Given a a pair of privacy
parameter (✏, �) that controls the privacy disclosure, a ran-
domized function A satisfies (✏, �)-LDP, defined as follows.

4. In fact, we can have a generalized form W = {w : kwk2  W}

and w⇤>xt  Wkxtk2  W
p
n+ 2. The upper bound of ct can still

be transformed to 1 by rescaling w via w/(W
p
n+ 2).

TABLE 1
Notations.

dt raw data d̃t perturbed data
t trading index ⇠ extra payment
g⇤
t optimum gradient gt biased gradient

g0
t corrected gradient g̃t noisy gradient

✏, � privacy parameters ct data cost
lt, rt auxiliary parameters pt offered price
at perturbed decision x̃t [d̃t, ✏, �]
↵ fraction of exploration stage xt [dt, ✏, �]
w⇤ ground truth model wt estimate of w⇤

⌧ no. of data traded in explor. 1{pt�ct} raw decision
T no. of data traded over t̄ t̄ total no. of trad.

Definition 1. ((✏, �)-LDP). A randomized function A satisfies

(✏, �)-LDP iff for any two arbitrary inputs (x, x0
) and for any

possible output S of A, we have

Pr[A(x) 2 S]  exp(✏) Pr[A(x0) 2 S] + �.

LDP is a special case of differential privacy [25] where
the random perturbation is performed by the data owner,
not by the collector. In other words, the collector never
possesses the exact private data of any data owner. Ac-
cording to the above definition, the collector, who receives
the perturbed data, cannot distinguish whether the true
input is x or x0 with high confidence (controlled by the
parameter ✏ and �). Here, ✏ and � are called privacy budget

that control the strength of privacy protection, depending
on owner’s respective privacy requirements. A smaller ✏

indicates strong privacy protection because the adversary
has lower confidence when trying to distinguish any pair
of inputs x and x0. � is a small probability that allows
the upper bound that ✏ does not hold. Hence, a smaller �

indicates a stringent privacy requirement. When � becomes
0, (✏, �)-LDP is transformed to conventional ✏-LDP. Two
well-known composition properties of LDP will be used in
this paper, sequential composition and parallel composition.

Theorem 1. (Sequential composition [25]). If a randomized

mechanism Mi satisfies (✏i, �i)-LDP for i 2 [1, k], then their se-

quential composition M(D) = (M1(D), · · ·Mk(D)) satisfies

(
P

i ✏i,
P

i �i)-LDP, given the input dataset D.

According to sequential composition, given a privacy
budget, a computation task can be split into multiple por-
tions, where each portion corresponds to the budget for a
sub-task.

Theorem 2. (Parallel composition [26]). A randomized mech-

anism Mi satisfies (✏i, �i)-LDP. Let Di, 8i 2 [1, k] be ar-

bitrary disjoint subsets of the input domain D. The paral-

lel composition M(D) = (M1(D1), · · · ,Mk(Dk)) provides

(maxi(✏i),maxi(�i))-LDP.

Parallel composition provides privacy bound of multiple
parallel mechanisms. Specifically, if the domain of input
data is partitioned into disjoint sets which are subjected to
differential private analysis, the ultimate privacy guarantee
depends only on the worst guarantee of each analysis.

2.3 Problem Statement
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Problem statement at data owners. The goal of a data
owner is to protect her privacy from adversaries including
the collector during tradings. Besides personal data dt,
owner’s raw trading behaviors also bear sensitive infor-
mation regarding the data. To be specific, an owner’s raw
decision is to accept an offer pt if pt � ct; reject the offer
pt otherwise. Recall that ct is a function of xt (dt). Thus,
collector can compromise data privacy through analyzing
owner’s trading behaviors. The framework of (✏, �)-LDP is
applied. Each owner perturbs her released information by
injecting calibrated noise according to her privacy budget
(✏, �).

Problem statement at data collector. Let vt be the col-
lector’s perceived value for purchasing data in each round
t. Then, the collector’s profit, denoted by rt, is calculated
by rt = at(vt � pt), i.e., the difference between vt and the
incurred payment pt. at is a binary (noisy) trading decision
(at = 1 if the owner accepts the offer, and 0 otherwise). The
collector’s goal is to select proper payment pt in each round
t that maximizes his overall (expected) profit, equivalently
minimizes the (expected) regret R(T ) =

Pt̄
t=1(r

⇤
t � E[rt]),

where r⇤t = maxE[rt] [27]. The expectation is with respect to
owner’s random data. Denote by T (T > t̄) the total number
of data records the collector purchased during t̄ trading
rounds. R(T ) can be interpreted as the difference between
the collector’s maximum expected profit and the actual one
(by offering pt) over T total data records. The definition of
R(T ) here is slightly different from the conventional one
where T denotes the total iteration rounds. Owners are
allowed to trade multiple data records in one round.

Proposition 1. The collector’s expected regret, R(T ) =Pt̄
t=1(r

⇤
t � E[rt]), is minimized at pt = ct (t 2 [1, · · · , t̄]).

All proofs are given in the supplemental file. As stated
in Proposition 1, the minimum regret is attained when the
collector sets the price pt the same as owner’s data cost
ct. Nonetheless, ct is unknown to the collector as it is
private information to the owner for being a function of
the raw data dt (xt). To circumvent this, the collector learns
the proper price pt from owner’s noisy data d̃t (x̃t) and
perturbed trading behaviors at. It would be desirable if pt
leads to sublinear regret. i.e., the averaged R(T ) for each
trading data record diminishes and approximates to 0 as
T ! 1.

Design overview at data collector. Our scheme starts
from learning w⇤ via minimizing a surrogate loss function

for which w⇤ is the minimizer. Given ct = w⇤>xt, once
w⇤ is derived, so is ct. The basic framework of Stochastic
Gradient Descent (SGD) [28] is applied. A salient difference
from existing online learning scenarios is that samples are
perturbed with owner’s calibrated noise here. As a result,
the conventional SGD online learning process is biased.
To resolve this issue, we first quantify the bias caused by
noisy data. Then, in the exploration phase, the gradient is
adapted to compensate for the bias. The learning model is
updated through the unbiased gradient to approximate w⇤

gradually. In the exploitation phase, the collector utilizes the
pricing rule, calculated from the learning result over w⇤, to
purchase data.

Design overview at data owners. We intend to release

the collector’s required information to cooperate with the
collector and facilitate trading, while achieving (✏, �)-LDP
in both the exploration phase via Ar and the exploitation
phase via At. In the exploration phase, as mentioned above,
the learning algorithm at the collector needs to be aware
of the bias of gradients caused by noisy samples. For this
purpose, a data owner first injects calibrated noise to the
optimal rate of gradient descent. Then, the gap between the
optimal rate and the one derived from perturbed data is
quantified. She then resorts to an optimization problem that
minimizes the gap. The optimum results include the final
perturbed data and nonsensitive auxiliary parameters (e.g.,
the gradient bias), which are all forwarded to the collector.
The proposed data perturbation method is different from
the conventional one which directly injects noise to the
raw data. In the latter, gradients are biased. Since the bias
contains information regarding the raw data, it cannot be
released. Also, existing SGD based differentially private
learning algorithms where noisy gradients are submitted
to the collector are not viable here, as the commodity in
real-world personal data markets is the data record itself
rather than query results (e.g., gradients). Details will be
discussed in Section 4.1. The randomization schemes for
trading decision perturbation in both the exploration and
exploitation phases and data perturbation in the exploita-
tion phase mainly follow random response (RR) to attain LDP.

Structure of following sections. The entire design con-
sists of the collector-side learning algorithm and the owner-
side perturbation schemes. The former is elaborated in
Section 3. Since the perturbation schemes for the exploration
phase and the exploitation phase are distinct, we present
them in Section 4 and Section 5, respectively. Theoretical
analysis is provided in Section 6. Table 1 summarizes the
notions that are frequently mentioned.

3 ONLINE LEARNING ALGORITHM FOR COLLEC-
TOR

According to Proposition 1, the collector’s goal is to in-
fer w⇤ and thus ct. Then R(T ) is minimized by setting
pt equal to ct in each round t. Since R(T ) is not con-
vex, differentiable, or even continuous, it is hard to work
on it directly. We thus resort to a surrogate loss function

F (wt) = Ext⇠D[(w>
t xt �w⇤>xt)2], whose minimizer is

exactly w⇤. The collector minimizes F so as to infer w⇤ in
an online learning fashion.

We now introduce the notion of strong convexity. A twice-
differentiable function H(w) is �-strongly convex if and
only if the Hessian matrix r

2
H(w) is full rank and the

minimum eigenvalue of r
2
H(w) is at least �. Note that

F is strongly convex if and only if the covariance matrix of
the data is full-rank, since r

2
F (wt) = 2Ext⇠D[xtx>

t ]. We
make the following assumption throughout the paper.

Assumption 1. The minimum eigenvalue of 2Ext⇠D[xtx>
t ] is

at least �.

If the above assumption does not hold, then there is
redundancy in the attributes and the data can be projected
into a lower dimensional space with a full-rank covariance
matrix (for example using PCA) and without any loss in
information [29].
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Algorithm 1 A naive algo-
rithm

1: Input: 0  ↵  1, w1 =
1 2 W , T↵ = d↵T e;
// Exploration phase

2: for t = 1, · · · , T↵ do
3: Publish the pricing rule:

pt = w>
t x̃t;

4: Observe at;
5: if at = 1 then
6: Collect x̃t;
7: gt = 2(w>

t x̃t � ct)x̃t;
8: wt+1 =

Q
W(wt �

⌘tgt), where ⌘t =
1/�t;

9: else
10: wt+1 = wt;
11: end if
12: end for

// Exploitation
phase

13: for t = T↵ + 1, · · · , T do
14: Publish the pricing rule:

pt = w>
T↵+1x̃t;

15: if at = 1 then
16: Collect x̃t;
17: end if
18: end for

Algorithm 2 The MSGD Al-
gorithm

1: Input: 0  ↵  1, w1 =
0 2 W , T↵ = d↵T e, ⌧ = 0;
// Exploration phase

2: for t = 1, · · · , T↵ do
3: Offer pt ⇠ U [0, 2];
4: Observe at;
5: if at = 1 then
6: ⌧ = ⌧ + 1;
7: Collect x̃t, lt and rt;
8: g0

t = gt � rt + lt =
2(w>

t x̃t)x̃t � rt + lt;
9: wt+1 =

Q
W(wt �

⌘tg
0
t), where ⌘t = 1

�⌧ ;
10: else
11: wt+1 = wt;
12: end if
13: end for

// Exploitation
phase

14: for t = T↵ + 1, · · · , t̄ do
15: Publish pricing rule

pt = pt(d̃t,wT↵+1, ⇠);
16: Observe at;
17: if at = 1 then
18: Collect x̃t;
19: end if
20: end for

3.1 A Naive Online Learning Approach
We start from a naive approach that employs the well-
known stochastic gradient descent (SGD) online learning
algorithm [28]. It conducts a stochastic gradient descent to
minimize the surrogate loss function F .

The naive algorithm consists of exploration and exploita-
tion phases. A parameter ↵ 2 [0, 1] determines the fraction
of transactions that are spent in the exploration phase as
oppose to the exploitation phase. Like many online learning
algorithms, a large ↵ indicates more learning rounds, and
the opposite at a small ↵. In the exploration phase, the
goal is to minimize F over some convex domain W . The
collector utilizes a stochastic gradient oracle, which given
some wt 2 W , produces a vector gt = 2(w>

t x̃t � ct)x̃t.
wt+1 is updated via

Q
W(wt � ⌘tgt). ⌘t is the learning rate

that is set to 1/�t.
Q

W is the projection operator on W .
Note that wt+1 is only updated when a new data record
is collected from the data owner, i.e., the owner accepts the
offered price. In the exploitation phase, the pricing rule is
published as pt = w>

T↵+1x̃t, with wT↵+1 the learned value
toward w⇤ from the last round of the exploration phase. The
owner computes the payment pt, compares it with the data
cost ct, and decides whether to sell her data. ↵ is the learning
ratio that strikes the exploration-exploitation trade-off.

There is a limitation in the naive algorithm. The SGD
online learning algorithm requires gt as an unbiased esti-
mate of rF (wt), i.e., E[gt|w] = rF (wt) with rF (wt) =
@F
@xt

= Ext⇠D[2(w>
t xt � ct)xt]. Otherwise, wT↵+1 cannot

be a good approximation of w⇤. This is not a concern if the
collected samples are clean. In our scenario, the collector
only has access to perturbed data x̃t. Hence, gt, calculated

based on x̃t, cannot have the above condition hold. Now
that wT↵+1 is a erroneous estimate of w⇤, the offered price
derived accordingly (line 14) can hardly produce the regret
at o(T ).

3.2 Our Online Learning Algorithm
The key contribution of our algorithm lies in quantifying
and remedying the bias in gradients caused by perturbed
data. First of all, we need to identify one unbiased estimate
of rF (wt). Let g⇤

t = 2(w>
t xt � 2(1 � 1{pt�ct}))xt, where

pt ⇠ U [0, 2] and 1A denotes the indicator function of some
event A. g⇤

t is an unbiased estimate of the gradient of F , as
stated by the following proposition.

Proposition 2. The random variable g⇤
t satisfies E[g⇤

t |wt] =
rF (wt).

According to [28], g⇤
t can update wt that converges to

w⇤ with sufficient iterations. Note that g⇤
t is computed

from owner’s raw data xt and decision 1{pt�ct}. As the
collector is only aware of the perturbed data x̃t and
decision at, g⇤

t cannot be directly obtained. Instead, the
collector can compute gt = 2(w>

t x̃t � 2(1 � at))x̃t (by
replacing xt and 1{pt�ct} with x̃t and at in g⇤

t ) 5. As
E[gt|wt] 6= rF (wt), gt is biased. Luckily, we are able to
quantify the bias E[gt|wt]�rF (wt) = rt�lt, where rt and
lt are two auxiliary vectors submitted by the data owner.
As E[gt � rt + lt|wt] = rF (wt) (proved in Lemma 3),
then gt � rt + lt, denoted by g0

t, can serve as an unbiased
estimate of gradient of F . Then, being updated by g0

t, wt

can approximate w⇤. The values of rt and lt are dependent
on perturbation schemes adopted by the data owner. Their
instantiation will be discussed in Section 4.1.

We are now ready to present our algorithm which is
called modified SGD (MSGD). It follows the basic frame-
work of SGD online learning [28], but differs in the follow-
ing key aspects. (1) In the exploration phase, the offered
prices follow uniform distribution (line 3). The rationale
behind is to allow the collector to infer owner’s cost model
via their responses toward various offers. More specific, the
collector intentionally offers uniformly distributed prices
pt so that, in each round, the user’s behavior reveals the
gradient of the surrogate loss at our current estimate for
w⇤. (2) As discussed, since g0

t is an unbiased gradient of
F , MSGD uses it to update wt that approximates w⇤. (3)
In the exploitation phase, the pricing rule is published as
pt = pt(d̃t,wT↵+1, ⇠) (line 15). Its explicit expression is
given in (1). ⇠ is a small value that ensures sublinear regret
of MSGD. Details are provided in Section 5.

Bounding learning gap. Now that g0
t is an unbiased

gradient, we readily have the following result that bounds
the gap between wt and w⇤.

Lemma 1. (Revised from Proposition 1 of [28]). Let � 2

(0, 1/e) and ⌧ > 4. Suppose F is �-strongly convex over

a convex set W , and that kg0
tk

2
2  G

2
. Then it holds that

kw⌧ �w⇤
k
2
2 

(624 log(log(⌧)/�)+1)G2

�2⌧ with a probability at least

1��. Note that ⌧ is the total number of data records successfully

traded during the exploration phase.

5. at = 1{pt�ct} if the trading decision is not perturbed by the
owner.
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Lemma 1 guarantees that, with high probability, the
distance between the learned parameter vector wt and the
target w⇤ is bounded. G is negatively correlated with ✏ and
�. Thus, a higher privacy budget, i.e., larger (✏, �) and thus
less noisy data, leads to a smaller learning gap. The exact
value of G2 is presented in Proposition 4 of the appendix.
Note that the `2 distance bound in Lemma 1 serves as the
cornerstone of deriving ⇠ and thus the price pt. (Details are
provided in Section 5).

Again, the training samples (data) in SGD online learn-
ing [28] is noiseless. Based on them, it is straightforward
to compute the unbiased gradient of F . In our case, the
collector has access to perturbed data only. Nevertheless,
as one of the contributions of our MSGD, it can still derive
unbiased gradient g0

t to update wt so as to approximate w⇤.
That is why we have Lemma 1 via minor modification of
Proposition 1 in [28].

4 PERTURBATION IN EXPLORATION PHASE

The randomized algorithm in the exploration phase Ar

consists of two stages. In stage I (II), it perturbs owner’s raw
data dt (trading decision 1{pt�ct}) into noisy one d̃t (at). We
then denote by Ar,I and Ar,II the randomized algorithms
developed for these two stages, respectively. In specific, we
aim to attain (✏I , �)-LDP for Ar,I and ✏II -LDP for Ar,II ,
where ✏I + ✏II = ✏.

4.1 Stage I: Data Perturbation
Noise is first injected to the optimal gradient of F . We then
resort to an optimization problem with perturbed gradient
as its inputs. The optimum solution includes the final per-
turbed data. Here we give the formal definition of the data
perturbation algorithm Ar,I .

Definition 2. (Randomized algorithm Ar,I ). Given the raw

data dt as the input, the randomized algorithm Ar,I outputs the

perturbed data d̃t and auxiliary parameters lt, rt.

Generating noised stochastic gradients. Recall that g⇤
t

is an unbiased estimate of rF . It is calculated as g⇤
t =

2(w>
t xt�2(1�1{pt�ct}))xt. Inspired by the one-dimension

truncated Laplacian mechanism [30], a (n + 2)-dimension
noise Z is generated, with each element following a trun-
cated Laplacian distribution:

f(Z|�1g
⇤
t , ✏I , �)=

8
<

:

1

2
�1g⇤

t
✏I

(1� 1

1+e✏I�1
2�

)
e�|Z|/(�1g

⇤
t /✏I ), Z 2 [�A,A],

0, otherwise,

where A = �1g
⇤
t

✏I
log(1+ e✏I�1

2� ) and �1g⇤
t is the `1 sensitivity

of g⇤
t . Then the data owner first generates noisy gradient

vector g̃t as g̃t = g⇤
t+Z = 2(w>

t xt�2(1�1{pt�ct}))xt+Z.
Here we choose truncated Laplace noise over Laplace
noise adopted in conventional differential privacy mecha-
nism. This is because the former bears bounded amplitude,
while the latter does not. Noise with bounded attitude
produces bounded gradients in MSGD which is essential
to bound kw⌧ � w⇤

k
2
2 in Lemma 1. �1g⇤

t is defined as
maxkg⇤

t (dt) � g⇤
t (d

0
t)k1, where dt and d0

t are two arbitrary
data records from the data owner. The following proposition
quantifies �1g⇤

t .

Proposition 3. The `1 sensitivity of g⇤
t (�1g⇤

t ) is 8(n+ 2).

Generating the output of Ar,I . The following part
takes the above noisy gradient as input and generates
the perturbed data dt and auxiliary parameters lt, rt. As
E[g̃t|wt] = E[g⇤

t |wt] = rF (wt), g̃t is an unbiased esti-
mate of rF (wt). Following the result of [28], the online
SGD converges w⇤ to with wt updated in a way wt+1 =Q

W(wt � ⌘g̃t) given sufficient iterations. On the other
hand, as the data collector is only aware of perturbed data
d̃t and decision at, g̃t is not accessible but gt. Recall that
gt = 2(w>

t x̃t � 2(1 � at))x̃t. It is degraded to 2(w>
t x̃t)x̃t

when the owner accepts the offer, i.e., at = 1. As discussed
in Section 3.2, gt is a biased estimate of rF (wt). To remedy
the bias, we first quantify the difference between g̃t and gt.
Let lt and rt be two non-negative vectors. The difference is
expressed as �lt  gt � g̃t  rt. We then formulate the
following optimization problem, denoted as P1

Min : klt + rtk1
s.t. �lt  2(w>

t x̃t)x̃t � g̃t  rt,

x̃t = [d̃t, ✏, �]
>
, d̃t 2 {0, 1}n, lt, rt 2 Rn+2

.

P1 aims to minimize the `1 distance between gt and g̃t. The
optimization variables include d̃t, lt, and rt. The solution
of d̃t is the final noisy data. lt and rt measure the bias
and serve as auxiliary parameters for the collector to adjust
biased gradient gt caused by perturbed data d̃t (x̃t) (Line
8 of Algorithm 2). x̃t, lt and rt are then forwarded to the
collector.

P1 is a mixed integer quadratically constrained program
(MIQCP) with the sum of absolute value as the objective
function. Following [31], P1 is transformed to the MIQCP
with linear objective function, which can be optimally
solved by plenty of commercial solvers, such as CPLEX.

Theoretical analysis of Ar,I . As gt is a biased gradient,
the data collector cannot directly apply it to update wt. In-
stead, g0

t, calculated as g0
t = gt�rt+lt, is used in Algorithm

2. This is because g0
t becomes an unbiased gradient after

adjustment, as stated in Lemma 3. We first present Lemma
2.

Lemma 2. We have g0
t = g̃t = g⇤

t +Z, where g0
t = gt�rt+lt.

Since each element of Z follows the truncated Laplace
distribution, the mean of Z is 0. Then we have E[g⇤

t |wt] =
E[g0

t|wt]. Besides, Proposition 2 claims that E[g⇤
t |wt] =

rF (wt). Hence, Lemma 3 directly follows.

Lemma 3. The random variable g0
t satisfies E[g0

t|wt] =
rF (wt).

Aside from perturbed data, a data owner also forwards
auxiliary parameters lt and rt to the collector to facilitate
the calculation of g0

t. One concern is whether the disclosure
of lt and rt compromises owner’s privacy. As proved in
Lemma 4, Ar,I still satisfies (✏I , �)-LDP over the input, i.e.,
owner’s raw data xt, even with the knowledge of lt and rt.

Lemma 4. Randomized algorithm Ar,I satisfies (✏I , �)-LDP.

The intuition why auxiliary parameters are nonsen-
sitive. Auxiliary parameters, i.e., lt and rt, specify the
bias, and thus are employed to do bias correction. The
intuition why auxiliary parameters are nonsensitive is that
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adversaries can only get noisy but unbiased gradients after
the bias correction with those parameters. In other words,
adversaries do not know genuine gradients, raw personal
data, and decisions. Hence, adversaries can not identify any
individual even with the knowledge of lt and rt.

Why is directly perturbing the raw data inapplicable?
A key novelty of data perturbation in the exploration phase
(Ar,I ) is that the noise is first inserted to the gradient which
then generates perturbed data by solving an optimization
problem. Conventional LDP mechanisms add noise to raw
data directly, which are inapplicable here. As the gradient
gt derived from noisy data is biased with both approaches
due to the nonlinearity of gt, the collector should remedy
this bias properly. In MSGD, it is achieved by forwarding
auxiliary parameters rt and lt to the collector. As proved
in Lemma 4, Ar,I satisfies (✏I , �)-LDP even with the closure
of auxiliary parameters. Under conventional LDP mecha-
nisms, the collector should be aware of the bias denoted
as gt � g⇤

t so as to do bias correction. However, this value
should not be revealed. Otherwise, g⇤

t becomes public as it
can be derived by subtracting gt with the bias. As a result,
user’s private data dt can be inferred as g⇤

t is a function
of dt. In a word, approaches of directly applying LDP for
data perturbation and then employing bias correction is not
viable in our scenario.

Why is directly submitting the perturbed gradients
inapplicable? It is worth mentioning some prior works on
SGD based differentially private learning [32], [33], [34],
[35], [36], [37], [38], [39]. They enable the agent (the col-
lector here) to learn owner’s model w⇤ without viewing
owner’s data. They share the idea of adding noise to the
gradients under the framework of SGD and forwarding
noisy gradients to the agent, so that the model is gradually
approximated at agent’s side. These works are different
from ours, as the agent only has access to the gradients but
the data. Nonetheless, the collector is only interested in the
data record itself rather “gradients” in real-world personal
data trading markets [3], [4], [5], as data records have more
usage than one specific query result (e.g., gradients). Now,
one may suggest to provide to the collector the noisy data in
addition to the noisy gradients. There is a limitation of this
idea. Assume that the privacy budget is also ✏I . ✏I needs be
divided into, say, ✏1 and ✏2 with ✏I = ✏1 + ✏2. Then noise,
generated following two probabilistic distributions under
✏1 and ✏2, is injected to the gradients and data, separately.
The entire process satisfies ✏I -LDP according to sequential

composition as stated in Theorem 1. Nonetheless, as a smaller
privacy budget indicates more randomly distributed noise,
the data produced via this approach is much more noisy
and thus of less use to the collector, compared with Ar,I .

4.2 Stage II: Decision Perturbation
Directly releasing the raw decision on whether to accept an
offered price or not, i.e., 1{pt�ct}, reveals ct. Recall that ct is
a function of dt. Thus, to avoid the collector from inferring
raw data dt by analyzing data owner’s trading decisions,
we propose to perturb the decisions too. A randomized
algorithm Ar,II is developed.

Definition 3. (Randomized algorithm Ar,II ). Given the raw

decision 1{pt�ct} as the input, the randomized algorithm Ar,II

outputs the perturbed decision at 2 {0, 1}.

Ar,II follows the idea of random response (RR) [40]. It
is a technique developed for the interviewees in a survey to
give a random answer to a sensitive boolean question so that
they can achieve plausible deniability. Specifically, each in-
terviewee gives the raw answer with probability q and gives
the opposite answer with probability 1� q. RR has been the
predominant binary data perturbation mechanism for LDP.
To satisfy ✏-LDP, raw answer is revealed with probability
q = e✏

e✏+1 and the opposite answer is given with probability
1 � q = 1

e✏+1 . In our case, given the privacy parameter ✏II

of Ar,II , the probability that a data owner submits her raw
decision is q = Pr[at = 1|pt � ct] = Pr[at = 0|pt < ct] =
e✏II

e✏II+1 . The probability that she submits a false decision is
1�q=Pr[at=0|pt � ct]=Pr[at=1|pt < ct]=

1
e✏II+1 .

Lemma 5. Randomized algorithm Ar,II satisfies ✏II -LDP.

Discussions. Since an owner’s trading decision is per-
turbed under Ar,II , she is possible to accept an offer which
produces negative payoff, i.e., at = 1 even pt < ct. Fortu-
nately, as proved in Theorem 5, the owner’s expected payoff,
i.e., the difference between the payment and data cost, is
nonnegative. Hence, they are well motivated to participate
in data trading especially from a long-term view.

4.3 Piecing Together Stage I and Stage II
The perturbation Ar in the exploration phase consists of
data perturbation Ar,I in stage I and decision perturbation
Ar,II in stage II. As stated in Lemma 4 and Lemma 5,
Ar,I and Ar,II satisfy (✏I , �)-LDP and ✏II -LDP (i.e., (✏II , 0)-
LDP), respectively. Besides, Ar,I and Ar,II are deemed
sequential operations as the execution of the latter relies
on the output of the former. According to the sequential

composition presented in Theorem 1, we have the following
theorem intuitively.

Theorem 3. Ar satisfies (✏, �)-LDP, where ✏ = ✏I + ✏II .

5 PERTURBATION IN EXPLOITATION PHASE

Like the exploration phase, perturbation in the exploitation
phase At also consists of two stages: data perturbation in
stage I At,I and decision perturbation in stage II At,II . We
aim to attain ✏I -LDP for At,I and ✏II -LDP for At,II , where
✏I + ✏II = ✏.

Stage I: Data perturbation. In the exploitation phase,
a data owner can trade Q pieces of data records in one
round t. Let dt,q 2 {0, 1}n be a single data record. The
whole sets are represented as dt = {dt,1, · · · ,dt,Q} and
xt = {xt,1, · · · ,xt,Q}, where xt,q = [dt,q, ✏, �]>. Moreover,
ct is denoted as ct =

PQ
q=1 w

⇤>xt,q .

Definition 4. (Randomized algorithm At,I ). Given the input

dt, the randomized algorithm outputs the perturbed data d̃t.

At,I follows the idea of RR. For dt,q , we perturb each
bit sequentially under the privacy budget ✏I/n. The raw
bit is revealed with probability p = Pr[d̃t,q = 1|dt,q = 1] =

Pr[d̃t,q=0|dt,q=0]= e✏I/n

e✏I/n+1
. The opposite value is reported

with probability 1�p = Pr[d̃t,q = 1|dt,q = 0] = Pr[d̃t,q =
0|dt,q = 1] = 1

e✏I/n+1
. Since xt,q is assumed to be drawn
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independently from a underlying distribution D, the bits are
deemed disjoint. Therefore, given the parallel composition
in Theorem 2, the randomized algorithm At,I satisfies ✏I -
LDP.

Pricing rule. One remaining task in Algorithm 2 is to
design a proper pricing rule pt. As stated in Proposition 1, an
ideal value is owner’s data cost ct. Recall that the collector
derives wT↵+1 in the last round of the exploration phase.
Lemma 1 bounds its distance with w⇤ to a narrow margin.
Still, pt cannot be directly calculated by

PQ
q=1 w

>
T↵+1xt,q , as

the raw data dt,q (xt,q) is unavailable at the collector, but the
perturbed data d̃t,q (x̃t,q). Luckily, under the framework of
RR, p�1+d̃t,q

2p�1 , a modification of d̃t,q , is an unbiased estimate

of dt,q , as E[p�1+d̃t,q

2p�1 ] = E[dt,q] [41]. Intuitively, we have

E[x0
t,q] = E[xt,q], where x0

t,q = [ (p�1)e+d̃t,q

2p�1 , ✏, �]> and e =

{1}n. Then it is not difficult to infer E[
PQ

q=1 w
>
T↵+1x

0
t,q] =

E[
PQ

j=1 w
>
T↵+1xt,q]. Finally, the pricing rule is published as

pt =
QX

q=1

wT↵+1x
0
t,q + ⇠. (1)

where

⇠=2

r
Q

2
log

2

�0 +Q

s

(n+✏2+�2)
(624log(log(⌧)/�)+1)G2

�2⌧
.

⇠ is used to compensate the difference betweenPQ
q=1 wT↵+1x0

t,q and ct caused by the gap between wT↵+1

and w⇤. As shown in the proof of Theorem 6, the value
of ⇠ plays a critical role in attaining sublinear regret of our
scheme. The instantiation of � and �

0 is given in the proof
of Theorem 6 too. The above expression is inserted back
to line 15 of Algorithm 2. The pricing rule, i.e., parameters
involved in (1) except x̃t, is first published by the collector.
Then an owner calculates pt based on her perturbed data x̃t

and decides if to accept the offer. If accepted, pt is calculated
by the collector based on the received data x̃t and paid to
the owner.

To ensure sublinear regret, this work makes an assump-
tion on the value of Q.

Assumption 2. The minimum number of data records Q that an

owner sells to the collector at one time in the exploitation phase is

at least T
1/3

.

In practice, if an owner does not meet the requirement
at a specific time, she can choose to delay the trading, e.g.,
wait for a period of time until sufficient data records are
collected.

Stage II: Decision Perturbation. At,II is the same with
Ar,II for decision perturbation. Hence, ✏II -LDP directly
follows. We thus omit its discussions here.

Piecing Together Stage I and Stage II. At,I and At,II

satisfy ✏I -LDP and ✏II -LDP, respectively. Like the explo-
ration phase, At,I and At,II are executed sequentially. Due
to the sequential composition property, we have the following
theorem intuitively.

Theorem 4. At satisfies ✏-LDP, where ✏ = ✏I + ✏II .

6 THEORETICAL ANALYSIS

Learning performance of MSGD. In this part, we show that
the proposed MSGD achieves sublinear regret.

Lemma 6. Given any T such that ⌧ � 4, the proposed MSGD

algorithm ensures 0  pt � ct  2⇠, 8t 2 [T↵ + 1, t̄] with

the probability at least (1 � �)(1 � �
0)2, where the constants

�,�
0
2 (0, 1/e).

It guarantees, with a high probability, pt � ct in the
exploitation phase. Based on Lemma 6, we further derive
the following result.

Theorem 5. For any T such that ⌧ � 4, with ↵ = � = �
0 =

T
�1/3

, owner’s expected payoff, i.e., E[pt � ct], in each trading

round t 2 [1, t̄] is non-negative.

This is a critical property for a self-sustained data trad-
ing market: An owner receives payment for selling her
data no less than the incurred cost on average. Thus it
is profitable for owners to join the market. On the other
hand, it is undesirable for a collector to overpay for profit
maximization. Lemma 6 bounds the overpay within 2⇠ at a
high probability. As discussed in the evaluation, the average
regret per data record approximates to 0 as T ! 1, so does
the overpay per data record. As proved in Proposition 1,
R(T ) is minimized for setting pt equal to ct. Due to the
LDP-based privacy protection, it is extremely challenging to
estimate ct exactly based on owner’s noisy inputs. Still, the
following theorem, also the main result of this work, proves
sublinear R(T ) attained by MSGD.

Theorem 6. For any T such that ⌧ � 4, with ↵ = � = �
0 =

T
�1/3

, the MSGD algorithm has expected regret at most R(T ) =

O(T
5
6

q
log(T

1
3 )) which is sublinear.

Discussion. In general, regret is with respect to the total
number of iterations, i.e., t̄ here. Instead, R(T ) is evaluated
to the total number of data records T in this work. We make
this compromise in trade of retaining sublinear R(T ). In
our scenario, an owner is allowed to strategically report
her decision without following the ground truth for privacy
consideration. According to the impossibility theory proved
in [29], [42], there is no online learning algorithm with
sublinear regret, when entities’ strategical behaviors are not
weakened as training continues. To circumvent this, these
works introduce the discount factor to the surplus function
to retain sublinear regret. Instead of following their idea, we
show that it is still possible to realize sublinearity, but for an
alternative regret R(T ) that is respect to the total number of
data records T .

Privacy protection. So far, we have proved that the
perturbation in the exploration phase Ar and the exploita-
tion phase At satisfies (✏, �)-LDP (Theorem 3) and ✏-LDP
(Theorem 4), respectively. An owner can participate in mul-
tiple rounds of trading in both phases and sell her data
newly generated in different periods. However, the owner
is restricted from double selling. Thus, datasets traded in
different rounds are disjoint to each other. By applying the
parallel composition property in Theorem 2, the entire scheme
achieves (✏, �)-LDP as stated below.

Theorem 7. Our scheme satisfies (✏, �)-LDP.
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The privacy protection achieved by our scheme is on
owner basis. For example, if two owners have different
privacy budgets (✏, �) and (✏0, �0), then our scheme provides
(✏, �)-LDP and (✏0, �0)-LDP to each, separately.

Truthfulness. According to prior works [43], [44] that
explore the relationship between differential privacy and
mechanism design, differential privacy implicitly leads to
approximate truthfulness, a relaxation of truthfulness where
the incentive to misreport a value is non-zero, but tightly
controlled (see Definition 5). The intuition behind this is that
(local) differential private schemes guarantee their noisy
outputs are insensitive to the change in the data of a single
individual. Specifically, no matter how one data owner
misreports her raw data (i.e., personal data and trading
decisions in our paper), the noisy outputs of LDP scheme
are almost the same. Note that the learned wt and the price
pt depend on the noisy outputs, and thus are also almost the
same. Therefore, there is no incentive for owners to misre-
port. The following is the formal definition of approximate
truthfulness.

Definition 5. (✏-dominant-strategy truthful [44]). A mechanism

M : In
! O is ✏-dominant-strategy truthful if, for all agents,

all vectors of inputs I�t and It, I
0
t 2 I , M satisfies

E[u(It,M(I�t, It))] � E[u(It,M(I�t, I
0
t))]� ✏,

where u is the utility function: I ⇥O ! [0, a] over the outcome

space.

The following theorem proves our scheme achieves ap-
proximate truthfulness.

Theorem 8. (Revised from Theorem 6 in [45]) Suppose the utility

function u is bounded by a > 0. Let M be our scheme that is

(✏, �)-local differential private, where ✏  1. Then, M is 2(✏ +
�)a-dominant-strategy truthful, where a = 2.

7 EXPERIMENTAL EVALUATION

7.1 Data Preparation And Experiment Settings
Data preparation. We build our dataset from converting sur-
vey answers. The survey consists of questions regarding the
volunteer’s taxi rides recorded in all their ride-hailing apps,
such as Uber and Lyft. Each trip record can be reviewed
as a unique anonymous rider’s response to a set of survey
questions about his/her journey. Each question relates to
a particular binary attribute of the ride. The attributes
are coordinates/timestamps of pick-up/drop-off, payment
method, trip distance, tip paid, toll paid, total fare, and
passenger number as shown in Table 2. Besides, volunteers
are asked to provide their privacy budgets ✏, � 2 [0, 1]
toward each record, i.e., how sensitive they view attributes
in the record, and data costs. For experiment simplicity,
we adopt the same linear function that allows volunteers
to derive their data cost based on their data and privacy
budget. To allow one to estimate the implicit cost/value of
some item, i.e, data cost here, there have been some mature
solutions in the field of experimental economics [6], [23],
[24]. As this part is out of the range of this work, we employ
a simple method to have volunteers to estimate their data

TABLE 2
Questions regarding one taxi ride.

Attributes Questions
CC usage Do you pay with your credit card?

Toll Does the trip involve toll?
Distance Is the trip distance � 10 miles?

Pick-up time Is the pickup time � 8PM?
Drop-off time Is the drop-off time  3AM?

Pick-up location Is the pick-up location within A city?
Drop-off location Is the drop-off location within A city?

Tip Do you pay the tip � 25% of the total fare?
Passenger # Does passenger count > 1?

Fare Is total fare � $10?

cost instead. In the three-month data collection campaign,
we are able to collect more than N = 18, 000 trip records
from 30 volunteers. Note that the taxi ride dataset may not
be strictly compliant with the linear cost model imposed by
this work. As a control, we also generate a synthetic dataset
by sampling a uniformly distributed set that satisfies linear
cost model under a given w⇤.

Experiment settings. To model the interaction between
the collector and owners, we use PS-Lite [46], a light-
weight implementation of the parameter-server framework
to implement a simple distributed machine learning system
containing two user nodes and one server node. Each user
node contains Radeon Pro 570, Intel i5 processor, and 16GB
memory. The server node contains Intel Iris Plus Graphics
655, Intel i7 processor, and 16GB memory. The communica-
tions among the nodes are established via a local Ethernet
which has 1Gbps bandwidth. Moreover, the code for our
mechanism, including MSGD and perturbation, is written
in Python. CPLEX [47] is employed at the owner’s side to
solve optimization problems involved.

0 10 20 30 40 50
0

0.5

1
Ground truth Learning result

(a) Learning performance (with
Taxi ride dataset)

0 10 20 30 40 50
0

0.04

0.08

0.12

0.16
Taxi ride dataset
Synthetic dataset

(b) MSE of learning results

Fig. 1. Learning performance over 50 trading rounds. (�1/✏1 = 2, � =
10�4)

7.2 Experiment Results
Learning performance. We first evaluate the accuracy of our
proposed MSGD in learning w⇤ in the exploration phase.
Fig. 1(a) compares the estimate of owner’s data cost ct via
MSGD and the ground truth over 50 transactions. We notice
that the estimate follows the ground truth well after about
10 exploration rounds. This result complies with our theo-
retical result stated in Lemma 1; the gap between the learned
parameter vector wt and the target w⇤ is bounded and
decreasing at a high probability as the trading continues.
Fig. 1(b) further shows MSE of the learning result which
measures the average of the squares of the learning errors.
MSE drops quickly in the first a few rounds and then stays
relatively stable and decreases slowly. Besides, we notice
that MSE achieved under the Taxi ride dataset is slightly
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Fig. 3. Impact of privacy budget on learning accuracy and learning
regret. ( � = 10�4, T = 1000)

above the one for the synthetic dataset. This is because
the real-world dataset does not perfectly meet the linear
model assumption in MSGD. Still, the gap of MSE under
two datasets is pretty close and diminished as t increases.

Impact of ↵. We now examine the impact of ↵ on the
learning accuracy. Recall that ↵ is a tunable parameter in
MSGD, defined as the fraction of the exploration phase to
the entire duration of T . The result of Fig. 2(a) is derived
by varying � logT (↵) from 0.1 to 0.9. For example, when
� logT (↵) = 0.1, ↵T = T

0.9 trading rounds are designated
to exploration while the remaining tradings belong to the
exploitation phase. According to the figure, MSE of both
datasets drops to 0.015 almost linearly as � logT (↵) de-
creases to 0.3. After that, the decrease of MSE slows down
and approximate to 0.014 with a smaller � logT (↵). This is
because the convergence speed slows down as more training
samples are fed in. Moreover, MSE of the taxi ride dataset
is larger than that of the synthetic dataset due to the same
reason mentioned above.

Impact of ✏. We now examine the impact of privacy
budget ✏ on the learning accuracy. Recall that ✏I controls
the scale of inserted noise. The result of Fig. 3(a) is derived
by varying ✏I from 0.1 to 0.9. MSE drops to 0.017 and 0.007
for taxi ride dataset and synthetic dataset, respectively, as ✏I
increase to 0.9. This is because the larger ✏I produces less
noise, which in turn brings up the learning accuracy and
thus lower MSE.

Learning regret. One of the main goals in this work
is to minimize the learning regret so as to maximize
the collector’s profit. The learning regret is expressed asPt̄

t=1(r
⇤
t � rt), i.e., the difference between the collector’s

maximum benefit and the actual one (by offering pt) in each
round t. We examine the regret with respect to � logT (↵)
through Fig. 2(b). The regret is accumulated over T = 1000

2000 4000 6000 8000 10000
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Fig. 4. Average regret for each trading data.
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Fig. 5. Regret comparison between MSGD and SGD.

tradings records. We observe that the lowest regret of two
datasets exists when � logT (↵) is around 0.8. Either a too-
small or a too-large � logT (↵) leads to an enlarged regret.
For the former, most offered prices are randomly generated
and thus lead to poor profit; for the latter, insufficient rounds
of tradings are devoted to exploration and thus result in
poor learning performance. We observe a sharp decrease of
regret as training rounds rise from T

0.1 to T
0.2 (� logT (↵)

decreases from 0.9 to 0.8). This is because the model in
MSGD converges fast as shown in Fig.1(b) and becomes
properly trained when training rounds reach T

0.2. Fig. 3(b)
examines the regret with respect to ✏. The value drops as
the increase of ✏ for both datasets. This phenomenon can
be explained from two aspects. In the exploration phase, a
larger ✏I produces a smaller MSE as discussed above, which
causes smaller regret. In the exploitation phase, an owner
is more likely to reveal her true trading decision. Hence,
the pricing rule derived via learning is more profitable. Fig.
4 depicts the average regret for each trading data record,
expressed as

Pt̄
t=1(r

⇤
t � rt)/T . It shows that average regret

drops quickly when T increases to 500. Then it gradually
approaches to 0 with a larger T .

Comparison between MSGD and SGD. At the begin-
ning of this work, we propose a naive learning approach
based on SGD to derive optimum pricing. In Fig. 5, we
compare the learning regret between this approach and
our proposed MSGD. The solid lines represent the average
value, while colored ribbons are min-max boundaries. Fig.
5(a) shows the regret with respect to attribute dimensions
n. The regret grows linearly in general. Besides, MSGD
outperforms SGD under all dimensions. This is because the
naive algorithm cannot produce an unbiased estimate of
gradient of F to update wt. As a result, the offered price
can hardly lead to satisfactory regret. Fig. 5(b) shows the
regret versus privacy budget ✏. A small ✏ indicates a strict
privacy requirement, i.e., the perturbed data is injected with
a large amount of noise. Hence, a worse learning regret is
exhibited. Still, MSGD outperforms SGD for producing wt

converging to w⇤ effectively.
Computation time. We examine the computation time

for each trading of both the collector and data owners at
exploration and exploitation phases in Fig. 6.
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TABLE 3
Communication overhead.

Dimensionality (n) 2 4 6 8 10
Date size (KB) 50 79 107 133 160

Time (ms) 31 49 65 81 98

Privacy budget ✏ 0.9 0.7 0.5 0.3 0.1
Data size (KB) 44 44 44 44 44

Time (ms) 27 28 27 27 28

As shown in Fig. 6(a), the computation time at the owner
in the exploration phase ranges between 0.1 s and 1.5 s. Its
average and 95th percentile are 0.5 s and 1.3 s, respectively.
The most computation-demanding part is to solve P1, a
MIQCP. With the CPLEX solver, its optimum results can be
derived efficiently. We further show in Fig. 6(c) the owner’s
computation time in the exploitation phase. Its average and
95th percentile are 1 ms and 3 ms, respectively. The signifi-
cantly reduced computation time is due to lightweight noise
generation and injection. Thus the perturbation mechanism
developed for owners is practical to implement.

Fig. 6(b) plots the CDF of collector’s computation time
in the exploration phase. The dominant part is the update
of wt. The value ranges from 10 µs to 250 µs, with the
average and 95th percentile as 20 µs and 50 µs, respectively.
Some extremely low values are observed due to the case of
wt+1 = wt when the owner rejects the offer. Fig. 6(d) plots
the CDF of collector’s computation time in the exploitation
phase. Its average and 95th percentile is 1 ms and 5 ms,
respectively. Since multiple data records are allowed to
trade in each round of the exploitation phase, it experiences
increased computation time compared with the exploration
phase. Note that the collector is implemented on a desktop
with mediocre hardware capacity in the experiments. An
even lower time consumption will be observed by im-
plementing the collector in a designated server or cloud
platform. Besides, parallel computing can also be leveraged
to enhance the computation performance.

Communication overhead. We then evaluate in Table
3 the transmitted payload data size between the collector
and data owner for one transaction and the communication
time caused thereby. The communication time takes into

account the transmission delay and the propagation delay
(negligible in local Ethernet). In the exploration phase, the
transmitted data includes pt (collector to owner), x̃t, lt and
rt (owner to collector). In the exploitation phase, the trans-
mitted data include pt (collector to owner), x̃t containing
Q records (owner to collector). Obviously, the transmitted
data size in exploitation phase will be much larger, and thus
causes a higher communication overhead. When n = 6 and
Q = 100, the corresponding data size in the exploration
phase is 107 KB transmitted within 65 ms. We observe a pos-
itive correlation between the communication overhead and
the attribute dimension n. On the other hand, the privacy
budget ✏ does not influence the communication overhead
involved in each round. In general, the communication cost
is relatively low in our mechanism.

8 RELATED WORK

8.1 Pricing Data
Data pricing resides at the center of a data marketplace. It
discusses how much to sell or how much to buy a piece
of data or a dataset. The existing data pricing mechanisms
can be generally categorized into query-based pricing and
data-based pricing.

Query-based pricing. Papers in query-based pricing
focus on query answers trading between the collector and
data consumers. Works in this category basically answer the
question of “how much to charge a data consumer for a
query?”. Essentially, the merchandise in the marketplace is
query services based on the data rather than the data itself.
There exist various mechanisms in this line of work (see [15],
[48] for a survey), including a flat fee tariff, usage-based,
and output-based. These pricing methods aim to provide
market properties, e.g., arbitrage-freeness, profit maximiza-
tion, etc. The vision for arbitrage-free query-based pricing
is first introduced by Balazinska et al. [49], and is further
developed in a series of papers [50], [51], [52], [53], [54],
[55]. Here, arbitrage-freeness means that the data consumer
can buy a query with a lower price than the market price by
combining a bundle of other cheaper queries. Thus, the data
collector needs to rule out arbitrage opportunities to pre-
serve his revenue. Revenue maximization for query-based
pricing is a relatively less explored area. Niu, Chawla, et al.
[56], [57] study how the broker can maximize his revenue by
posting reasonable prices for sequential queries. In parallel,
the research community also proposes to use the notion of
privacy budget to price data when data owners’ privacy is
taken into consideration [19], [22], [58], [59], [60], [61]. These
mechanisms adopt the framework of differential privacy. To
each query, differential privacy assigns the privacy budget ✏
that indicates how much information is leaked by the query.
The data consumer then receives the noisy query result. Its
charge is computed as a function of ✏ accordingly. At the
same time, those mechanisms also achieve desired market
properties, e.g., arbitrage-freeness, profit maximization, etc.

Our paper does not fall into the line of query-based
pricing.

Data-based pricing. Papers in data-based pricing focus
on (raw) data trading between the collector and data own-
ers. We seek the answer to ”how much to pay a data owner
to compensate her privacy loss?”. One category of prior
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works [12], [13], [14], [15], [16], [22], [58], [59], [61] assumes
a trustworthy collector who perturbs queries results and has
access to all private information, e.g., raw data, data costs,
etc. This line of work emphasizes to achieve various market
properties. For example, fairness is the desired property
where each data owner gets a fair share of the revenue in the
coalition. Data owners are compensated by Shapley value to
achieve fairness [14], [15], [16]. Compensations are carefully
designed to achieve arbitrage-freeness [61]. Data owners are
paid by data costs to guarantee the owner’s non-negative
payoff [12], [13], [58], [59]. A contract is carefully designed
to achieve truthfulness of data owners reporting private in-
formation, etc [22]. The second category of prior works [17],
[18], [19], [20], [21], [60], [62] assume an untrusted collector
where data owners perturbed their data before selling it. In
this line of work, as they aim to compensate data owners
for the privacy loss, the payments are usually a function of
privacy loss (also called data costs in this paper). Therefore,
their problem is degraded to get data costs on the untrusted
collector side. The paper [62] assumes data costs are public
information. The other papers in the second category fo-
cus on the design of incentive mechanisms that truthfully
elicit data costs on the untrusted collector side. Specifically,
truthfulness mechanisms based on auctions [17], [18], [19],
game theory [20], or contracts [21], [60] are proposed to
elicit data owners to reveal her true cost honestly. All the
works from the second category think data costs are not
sensitive and thus are available from public information or
incentive mechanisms. On the contrary, our paper thinks in
addition to the owner’s data, the data cost and their trading
behaviors are also sensitive. Obviously, our paper considers
a more challenging scenario.

8.2 Differentially Private Learning

Differentially private learning mainly studies constructing
certain learning models from perturbed data. Based on
where the data is perturbed (or whether the learner (col-
lector here) is trusted), they are divided into two categories:
local differentially private learning where noise is injected
by the owner and differentially private learning where
one trustworthy central learner, e.g., the repository where
training data is stored, is responsible for data perturbation.

Empirical risk minimization in LDP has been studied in
[38], [39], [63], [64], [65], [66]. In detail, [63], [64] focus on
learning statistic characters, such as mean estimation and
median estimation, of a given locally differentially private
release of the dataset. They are targeting a different problem
from ours. The remaining works aim to derive learning
models by the empirical risk minimization with LDP as
ours. Specifically, [65] approximates the loss function by per-
turbing intermediate results released by owners and solves
the approximated loss function to get the noisy model. [38],
[39], [66] are SGD based where the learner obtains noisy
gradients from owners for constructing the model instead of
receiving data, noisy or not. This line of work is inapplicable
to data trading markets where the collector’s primary goal
is to purchase personal data instead of intermediate results.
Details are given in section 4.1.

There are some prior works constructing private ma-
chine learning under the framework of standard differential

privacy [32], [33], [34], [35], [36], [37], [67]. The noise is
added in a centralized manner. Since we adopt local dif-
ferential privacy framework, the noise is added at owners
locally. Those techniques are inapplicable here.

9 CONCLUSIONS

Determining the price of personal data is of great impor-
tance for implementing the personal data market. In this
paper, we study this problem in a setting where a data
collector interacts with a set of data owners for their newly
generated personal data. The goal of the collector is to pick
proper prices that maximize his overall profit. Given that
data owners perturb data and trading decisions for privacy
protection, the task of data pricing becomes non-trivial.
We cast the problem into an online stochastic optimization
problem, by which the collector gradually constructs a
model that captures the owner’s data cost. To remedy the
estimate error toward the optimal gradient caused by the
noisy samples, we develop the MSGD algorithm that utilizes
some auxiliary parameters to derive an unbiased estimation
of the learning model. MSGD also attains sublinear regret

of O(T
5
6

q
log(T

1
3 ). To facilitate the bias correction, we then

modify the existing truncated Laplace based perturbation
mechanism that satisfies (✏, �)-LDP for owner’s raw data
and trading decisions. Experiment results show that our
scheme achieves satisfactory learning accuracy with prac-
tical computation and communication overhead.
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