
Continuous Authentication Using Human-Induced Electric
Potential

Srinivasan Murali
srinivasan.murali@mavs.uta.edu

The University of Texas at Arlington
Arlington, Texas, USA

Wenqiang Jin
wqjin@hnu.edu.cn
Hunan University

Changsha, Hunan, China

Vighnesh Sivaraman
vxs8596@mavs.uta.edu

The University of Texas at Arlington
Arlington, Texas, USA

Huadi Zhu
huadi.zhu@mavs.uta.edu

The University of Texas at Arlington
Arlington, Texas, USA

Tianxi Ji
tiji@ttu.edu

Texas Tech University
Lubbock, Texas, USA

Pan Li
pxl288@case.edu

Case Western Reserve University
Cleveland, Ohio, USA

Ming Li
ming.li@uta.edu

The University of Texas at Arlington
Arlington, Texas, USA

ABSTRACT
Most terminal devices authenticate users only once at the time
of initial login, leaving the terminal unprotected during an active
session when the original user leaves it unattended. To address this
issue, continuous authentication has been proposed by automati-
cally locking the terminal after a period of inactivity. However, it
does not fully eliminate the risk of unauthorized access before the
session expires. Recent research has also investigated the feasibility
of using physiological and behavioral patterns as biometrics. This
study presents a novel two-factor continuous authentication that
explores a new form of signal called human-induced electric potential
captured by wearables in contact with the user’s body. By analyzing
this signal, we can determine the time of user-terminal interactions
and compare it with information recorded by the terminal’s OS.
If the original user remains on the same terminal, the two-source
readings would match. Additionally, the proposed scheme includes
an extra layer of protection by extracting terminal’s physical finger-
prints from the human-induced electric potential to defend against
advanced mimicry attacks. To test the effectiveness of our design,
a low-cost wearable prototype is developed. Through extensive
experiments, it is found that the proposed scheme has a low error
rate of 2.3%, with minimal computational and energy requirements.
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1 INTRODUCTION
Terminal devices often contain sensitive information that needs to
be protected from unauthorized accesses. To accomplish this, user
authentication mechanisms have been developed and implemented.
These mechanisms verify a user’s identity based on login creden-
tials, such as passwords, facial recognition, and fingerprints, before
granting access to the terminal. The verification is executed only
at the time of initial login. This can leave the terminal vulnerable
to intruders during an active session if the original user leaves the
terminal unattended. To address the security flaws of traditional
one-time authentication, research has been conducted on contin-
uous authentication, also known as recurring authentication. It is
a verification method that provides identity confirmation on an
ongoing basis.

Initial efforts on continuous authentication involve automati-
cally locking the terminal after a period of inactivity. A user needs
to re-enter the correct credential to log in again. However, this can
be inconvenient for users and does not fully eliminate the risk of
unauthorized access before the session expires. Classic approaches
use the user’s proximity as a decision criterion [9, 10, 15, 16]. If
the logged-in user is detected within the terminal’s proximity, the
terminal is presumably in the user’s physical control and remains
unlocked. Otherwise, the deauthentication is triggered. The ma-
jor challenge in this approach is to precisely locate the user at
the sub-meter level. Existing solutions mostly use received signal
strength (RSS) for distance measurement [9, 10]. Their precision
level depends on the employed radio technology. Take Bluetooth
Low Energy (BLE) as an example. It only achieves meter-level dis-
tance estimation (2-4 m, according to prior study [13]) which is
imprecise for proximity-based continuous authentication. While
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recent advanced radio technologies, such as ultra-wide band (UWB)
and mmWave, have been reported to achieve satisfactory sub-
meter level distance estimation [61], they require sophisticated
transceiver modules that are not commonly found in commodity
devices. Recently, an increasing number of studies utilize physio-
logical signals [11, 12, 27, 28, 38, 40, 42, 64] or behavioral patterns
[1, 5, 14, 26, 51, 58] as biometrics for continuous authentication.
Appendix 8 provides a comprehensive discussion of them.

Unlike any of the existing approaches, in this work we make
use of a new type of signal, human-induced electric potential, for
continuous authentication. In particular, we find that a certain por-
tion of electric charges are transferred from the screen to the user’s
body as they touch the screen. This induced electric potential can
then be picked up by a wearable in physical contact with the user’s
body. As shown in our preliminary study (Section 3.2), the signal
exhibits a significant correlation with touch events, making it an
ideal indicator of user-terminal interactions. Based on this obser-
vation, we propose a novel two-factor authentication scheme that
adopts a bilateral authentication framework. The user’s continued
presence is examined by observing her actions from two differ-
ent sources and cross-checking them. One of them is the realtime
measures of the human-induced electric potential, which can be
accessed by a self-developed prototype worn by the user. The other
is the time-resolved touch events recorded by the target terminal’s
operating system (OS). Our scheme compares the time sequences
of interactions derived from these two sources and checks if they
match. If the wearable is worn by the user who provides inputs
to the terminal, then the wearable measurement (of the human-
induced electric potential) and the terminal’s OS readings should
be correlated in timing. Conversely, if they no longer correlate, it
can be inferred that a different person is now using the terminal.

The above design is called the basic scheme. As discussed later,
it works well in defending against innocent adversaries who acci-
dentally access the target terminal without realizing that another
user is already logged in. Nonetheless, it would be defeated by
malicious adversaries who intentionally mimic the victim user’s
hand behaviors. To deal with this issue, we develop an advanced
scheme that further monitors the consistency of the in-use terminal
as the second authentication factor, i.e., whether the user switches
the terminal during an active session. For this purpose, the ad-
vanced scheme recognizes the terminal’s identity by analyzing the
captured human-induced electric potential by the wearable. It has
been validated in prior studies that different hardware exhibits di-
verse electric characteristics due to manufacturing imperfections
[8, 17, 21, 57]. In our case, the pattern of wearable measurements
should be consistent if the legitimate user remains on the same
terminal. Otherwise, it indicates that the user has made a switch.
Therefore, even if an adversary imitates the legitimate user’s inter-
action behavior that produces a time sequence matched with the
one generated from the terminal OS, the derived terminal finger-
print would have changed. To sum up, the advanced scheme is a
two-factor authentication: It compares the two-source interaction
sequences and checks if they match. Additionally, it monitors the
in-use terminal’s fingerprint consistency by analyzing the wear-
able measurement. A deauthentication process is triggered if any
condition is violated.

Initial authentication & Pairing

Wearable Terminal

Continuous auth. triggeredAuthentication 
request 

Human-induced electric
potential recording Measurement 

Two-factor authentication

Repeated 

Continuous
authentication
(focus of this

work)

Figure 1: Workflow of the proposed continuous authentica-
tion scheme. In this work, we aim to protect target terminals
(e.g., all-in-one PCs/laptops, ipad, and tablets) from unautho-
rized access. The wearable assists with the proposed continu-
ous authentication scheme. The terminal and the wearable
are two different parties.

In the technical aspect, our design focuses on (a) detecting critical
moments, i.e., screen touch/release, from wearable measurements,
and (b) using the same measurement to fingerprint the terminal.
To achieve the first objective, we leverage advanced signal process-
ing techniques to develop a series of modules, including envelope
extraction, waveform segment, and irrelevant waveform removal.
Raw electric measurements are first cleaned and then processed
to obtain the timing of touch events. For the second objective, we
resort to time-frequency domain analysis. Particularly, we first com-
pute the Gammatone Frequency Cepstral Coefficients (GFCC) from
the processed signals as features, then apply the Gaussian Mixtures
Model (GMM) for terminal fingerprinting.

Our main contributions are summarized as follows.

• We devise a two-factor continuous authentication scheme
that combines examining what the user is doing and which
terminal the user is working on.

• We explore a new type of signal, i.e., human-induced electric
potential, to recognize user-terminal interactions. It serves
as a reliable source with a high signal-to-noise ratio (SNR)
to timestamp touch events. What’s more, this signal can
be accessed anywhere on the human body, rendering our
scheme implementable on a wide range of wearables, an
advantage not found in prior wearable-assisted solutions.

• Extensive experiments show that our scheme has a low equal
error rate (EER) of 2.3%, which beats state-of-the-art methods.
It is also shown robust against various adversaries. Addition-
ally, the presence of illegitimate presence can be detected
within 5.1 s. The incurred energy cost at the wearable is as
low as 0.02 mAh for the entire authentication procedure.
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2 SYSTEM AND ADVERSARIAL MODELS
2.1 System Model
In this study, we consider a shared workspace environment, a preva-
lent office configuration designed to accommodate multiple profes-
sionals, either within the same room or in individual cubicles. This
arrangement is widely implemented in various sectors, including
businesses, healthcare facilities, and laboratories. We aim to protect
the terminals with a touchscreen in such an open work environ-
ment from unauthorized access. Take the healthcare workspace as
an example. Touchscreen terminals, such as all-in-one PCs/laptops,
iPads, and tablets, have become increasingly commonplace in clinics
and hospitals [18, 35]. These terminals store sensitive patient infor-
mation, necessitating robust protection against unauthorized ac-
cess. Healthcare professionals are typically required to authenticate
themselves before using a terminal (e.g., by entering a username
and password) and deauthenticate (i.e., log out) upon completion.
However, in practice, users often neglect to log out or intentionally
avoid doing so to circumvent subsequent log-ins. The failure to
log out can have serious consequences: unauthorized individuals
may access the terminal to view private information, alter or delete
patient data, or steal the logged-in user’s credentials to perform
actions on their behalf. Even in non-adversarial situations, other
authorized users might inadvertently misuse the active user’s ac-
count if the latter fails to log out. For example, Koppel et al. [23, 24]
reported that physicians frequently input data into the incorrect
patient’s record, assuming that the open record pertained to their
current patient, when in reality, another physician had used the
terminal to update a different patient’s record and neglected to log
out. Moreover, clinicians may deliberately leave terminals logged
in as a professional courtesy to subsequent users, sparing them the
need to log in.

To prevent an intruder from taking control of the target terminal,
either unconsciously or intentionally, we adopt a typical continuous
authentication framework [12, 27, 29]. The user’s identity is contin-
uously verified by the terminal once the user successfully logs in.
The terminal keeps unlocked as long as the original user’s presence
remains; otherwise, the current account is automatically logged off.
Our scheme is not an initial authentication, rather it complements
any existing initial authentication schemes by providing recurring
user authenticity validation and automatic deauthentication.

As shown in Figure 1, our authentication process is triggered
when any interaction involving the screen is detected by the termi-
nal. Upon the reception of an authentication request, the wearable
worn by the user records the electric potential signals induced by
finger touches and sends them to the terminal for further process-
ing. The authentication decision is made at the terminal using the
proposed scheme discussed later. The wearable remains inactive if
no request is received.

Clarifications. Our scheme operates with assistance from a
user’s worn wearable. It is worth mentioning that wearable-assisted
(continuous) authentication has been explored by both industry
[38] and academia [1, 29, 30]. We also acknowledge that the pro-
posed scheme cannot be directly implemented on COTS wearables
due to the requirement of capturing human-induced electric po-
tential from the human skin. Still, the scheme presents a practical

continuous authentication solution through a customized wear-
able. This fashion has been widely embraced in the industry, as
demonstrated by products like the Nymi Band [38] and Gatekeeper
[15]. For example, Nymi Band is a commercial wearable specifically
designed for authentication, which computes an employee’s unique
biometric signal to unlock their computer in the workplace.

2.2 Adversarial Model
The adversary is in the same space as the victim user and has access
to the target terminal. Two types of adversaries are considered:
innocent and malicious. An innocent adversary is a user who acci-
dentally accesses the target terminal while it is unlocked, without
realizing that another user is already logged in. This is a common
occurrence in shared workspaces. On the other hand, a malicious
adversary deliberately uses an unattended terminal with the intent
of impersonating the victim to gain access to sensitive informa-
tion or exploit the victim’s account. It may observe the victim’s
behavior and actions to perform mimic attacks in order to deceive
the terminal into falsely authenticating it as the original logged-in
user. The adversary is assumed to have direct visual observation
or access to a video aid such as a surveillance camera to observe
the victim’s interaction with the terminal. It is worth mentioning a
special kind of malicious adversary, called opportunistic adversary
[19]. Contrary to replicating every individual activity of the victim
(e.g., keyboard events) at the authentication terminal, research indi-
cates that an attacker can achieve success by selectively imitating
only a portion of the victim’s actions. As a result, certain existing
bilateral continuous authentication methods (e.g., [29]) may prove
inadequate, given the substantial increase in attack success rates
associated with this opportunistic approach.

We make the following assumptions throughout the paper. First,
each wearable is associated with a specific user and users do not
share their wearables. The wearable is worn by the owner. If it is
taken off, it will be deactivated. The owner is then required to enter
a passcode to activate it again. A similar approach has been adopted
by Apple Watch. It can effectively prevent potential misuse of the
continuous authentication system when the wearable is stolen by
another user. Second, the wearable and the terminal are paired prior
to the continuous authentication, for example, right after the initial
authentication. This can be done using suitable pairing methods
as a one-time effort. Third, the communication channel between
the wearable and the terminal is secure. In this work, the BLE
communication protocol is adopted.

3 PRELIMINARIES
3.1 Touchscreen Background
A touchscreen is a typical UI that allows users to interact with
a terminal using their fingers. It has been equipped to a variety
of devices, such as all-in-one PCs/laptops, smartphones, tablets,
cash registers, and information kiosks. While there are various
sensing touch technologies, mutual capacitive sensing has been
the most prominent owing to its high sensitivity, energy efficiency,
and low manufacturing cost [41]. It is reported that capacitive
screens account for 65% of touchscreen marketshare in 2021 [6].
We thus focus on this type of touchscreen in this work. A capacitive
touchscreen consists of a grid of transmitter (TX) and receiver (RX)
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Figure 2: (a) Illustration of how human-induced electric po-
tential is formed and how it is picked up by the wearable. (b)
Front- and back-view of the wearable prototype.

electrodes that are mutually coupled. The TX electrodes are driven
by an excitation signal with voltage 𝑉𝑠 . When a finger touches the
screen, some electric charges from the electrode grid are transferred
to the human body through a coupling capacitance 𝐶𝑟 . This results
in the induced electric potential at the human body, which causes a
change of the mutual capacitance at the touch point. A touchscreen
controller detects this change in the current and reports it as a touch
event to the system’s OS. The OS then locates the touch point on
the screen and timestamps the event. Such information is accessible
via designated APIs offered by OS.

Prior research suggests that the human body can be viewed as a
conductor with a relatively low impedance [43, 60, 69]. When the
finger touches the screen, it absorbs some electric charges from the
electric field generated by the driving circuit and forms an electric
potential in the human body, known as the human-induced electric
potential. These charges then traverse through the body. By creating
a physical contact (e.g., using an electrode or electric conductor)
between the human body and the wearable’s analog input (e.g.,
ADC pin), the device can pick up the charges absorbed by the finger
from the touchscreen, as shown in Figure 2(a). The analog input is a
common component in commercial off-the-shelf (COTS) wearables
that have reading capabilities.

3.2 Feasibility Study
The objective of this part is to investigate the feasibility of utilizing
human-induced potential for continuous authentication.

Measurement setup. To measure the human-induced potential,
we build a wearable prototype using a Seeed Studio nRF52840 [55]
as the microcontroller unit (MCU), as shown in Figure 2(b). A 3D
printed housing is created to enclose the MCU and other peripheral
components, such as the battery and connecting wires. A conduc-
tive tape is attached to the back of the housing case and connected
with the board’s ADC pin via a connecting wire. The tape estab-
lishes physical contact between the human skin and the ADC pin.
Then part of the electric charges absorbed from the touchscreen
are captured by the prototype. The nRF52840’s onboard BLE com-
munication module allows for real-time data exchange between
the wearable and the paired terminal. We choose to build our own
prototype rather than using COTS wearables, as slight hardware
modifications are needed, especially adding a conductive tape and
a connecting wire to the ADC pin for interfacing with the human
skin. The entire prototype costs less than $30. In the study, a Sam-
sung Galaxy S7+ Android tablet serves as the terminal. The clock

Figure 3: (a) The two-source readings, one from the wearable
and the other from the terminal OS, match well in timing
when the legitimate user stays on the original logged-in ter-
minal. (b) The readings from both sources become irrelevant
when an unauthorized user accesses the target terminal. (c)
The readings from both sources match well regardless of
where the wearable is placed as long as the legitimate user
stays on the original logged-in terminal.

synchronization between the terminal and the wearable is imple-
mented using the classic Flooding Time Synchronization protocol
(FTSP) [32].

Relationship between two-source readings. In the first exper-
iment, a user wears the prototype and interacts with the terminal.
The interactions can be varied, such as tapping, typing, and swiping.
Figure 3(a) shows the readings obtained from the wearable (blue
curve) and the terminal OS (red shaded region). Three interactions
were performed. In the wearable measurement, the signal peaks
occur at the moments the screen is touched, whereas the signal
falling edges coincide with finger releases. More importantly, the
time sequences of screen onsets and offsets derived from the two
sources match well. In a separate experiment, a second user (i.e.,
an intruder) is asked to interact with the terminal while the le-
gitimate user is away. Figure 3(b) illustrates how the two-source
time sequences appear. They are obviously irrelevant to each other.
The result reveals that the time instances of touch events obtained
from two sources match well as the legitimate user interacts with the
terminal. However, this property vanishes when the terminal is under
the control of an intruder.

Measurements at different parts of a human body. We fur-
ther ask the user to interact with the terminal while wearing three
identical prototypes in different locations: neck, wrist, and arm. As
can be seen in Figure 3(c), the variations in the readings across the
three locations are highly synchronous: The peak maxima all occur
when the user touches the screen, whereas sudden drops exist as the
screen is released. Furthermore, they all match well with the touch
events recorded at the terminal OS regardless of the wearable’s
placement, as long as it has direct contact with the user’s skin. It is
worth noting that the amplitudes of the three measurements differ,
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Figure 4: The high-level idea of the basic scheme.

which can be attributed to the corresponding distances between
the wearable and the fingertip.

4 BASIC CONTINUOUS AUTHENTICATION
SCHEME

Encouraged by the feasibility study, we first present a basic contin-
uous authentication scheme. Its limitation is discussed at the end of
this section. To overcome it, an advanced scheme is developed in the
next section. The basic scheme serves as a framework and a crucial
component of the advanced scheme. To clearly present the entire
design, we discuss the basic and advanced schemes separately in
an incremental manner.

4.1 Scheme Design
Overview. The basic scheme operates as follows: After the initial
login, the terminal continuously verifies the identity of the logged-
in user. As the user interacts with the terminal’s touchscreen, her
wearable captures human-induced electric charges and sends them
to the terminal. The terminal then generates a time sequence indi-
cating the moments of touch events, i.e., screen touch and release,
based on these readings. Meanwhile, the terminal’s OS also gener-
ates another time sequence based on the inputs it receives from the
touchscreen. The two-source sequences will match in timing, if the
current user is still the initial logged-in user, the one with the paired
wearable. Otherwise, the terminal is considered to be controlled by
an intruder. This is because the sequences are now generated by two
distinct sources: The one derived from the wearable measurement
still comes from the legitimate user, while the one generated by the
terminal OS is now from the intruder’s interaction. If a mismatch
is detected, the terminal will trigger deauthentication to prevent
the intruder from misusing the legitimate user’s account.

From a technical standpoint, the basic scheme consists of four
main components: denoising, waveform segmentation, irrelevant
waveform removal, and two-source interaction sequence comparison.
In the following, we explain each one in detail.

Denoising. The raw readings at the wearable are mixed with
electrical noises from two main sources. The first one is the touch-
screen itself. Typically, a touchscreen refreshes at a constant fre-
quency, e.g., 60Hz or 120Hz [25, 46]. The alternating driving voltage
causes constant radiation that can be picked up by the wearable.
The second source is EM interference from the power line, which
is particularly apparent in indoor environments. In the US, the
frequency of such radiation is 60Hz [39]. These noises introduce
small-scale variations to the useful readings. To get rid of them,
we propose to extract the envelope using the Hilbert function [33].
Specifically, a sliding time window is applied over the raw reading.
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The local maximal value within this window is deemed as the fil-
tered output for the window [34]. Note that other strong EMIs (e.g.,
WiFi/cellular) operate at a much higher frequency band, e.g., GHz,
and would not cause any interference in our case.

Waveform segmentation. The purpose of this step is to seg-
ment the signal for each interaction out of a continuous wave-
form. We first identify critical time instances associated with finger
touch/release events. Finger touches correspond to the measured
peaks according to the discussion in Section 3.2. We thus apply the
classic peak detection algorithm [4] on the envelope signal to iden-
tify these events. Once the finger leaves the screen, the decoupling
causes a sudden drop in the electric readings as shown in Figure 5.
Hence, the finger release event is identified by locating the most
negative derivative between two consecutive peaks when the signal
amplitude experiences the most significant drop. Upon identifying
these critical events, the electric signal of one interaction is the
waveform segment between the adjacent finger touch and release
as indicated in Figure 5.

Irrelevant waveforms removal. We observe in our experi-
ments that regular hand/body movements can also cause variations
in the measurement as shown in Figure 6. This is because EM ra-
diations are ubiquitously present in open space. Typical sources
include FM/AM radio stations, power systems, and a wide variety of
electronic equipment. Under the hand/body movement, the conduc-
tive property of the user’s body changes, resulting in changes in the
electric measurements at the wearable. These signals can impact
the accuracy of touch event detection and should be removed. Our
experiment results show that the amplitude of the signal caused by
hand/body movements is significantly lower than that caused by
touchscreen interactions. This confirms our expectation that the
radiation from the touchscreen is stronger than the ambient EM
radiation in the open air. To distinguish between the useful signal
(from interactions) and the noise caused by hand/body movements,
we first perform a statistical analysis of the latter. Specifically, we
calculate its average 𝜇 and standard deviation 𝜎 . Then, we set a
threshold 𝜇 + 2𝜎 , 2 standard deviations above the average profile.
If a waveform segment exceeds this threshold, it is considered to
be generated by interactions; otherwise, it is treated as noise from
irrelevant movements and discarded.

Two-source interaction sequence comparison. In the end,
we are able to derive a time sequence from the wearable’s electronic
measurement during the wearer’s interactions. This sequence is rep-
resented as 𝑆𝑤 = {(𝑡𝑤

𝑝,1, 𝑡
𝑤
𝑟,1), (𝑡

𝑤
𝑝,2, 𝑡

𝑤
𝑟,2), · · · }, where the subscript
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𝑤 stands for readings from the wearable, 𝑡𝑤𝑝 and 𝑡𝑤𝑟 represent the
time instances of screen touch and release, respectively, and the
numbers are their indices. The sequence 𝑆𝑤 is wirelessly trans-
mitted from the wearable to the terminal. Similarly, another time
sequence 𝑆𝑑 = {(𝑡𝑑

𝑝,1, 𝑡
𝑑
𝑟,1), (𝑡

𝑑
𝑝,2, 𝑡

𝑑
𝑟,2), · · · } is obtained at the termi-

nal’s OS. By comparing these two sequences of interactions, the
terminal verifies whether the user interacting with the terminal
is the initially logged-in user. If it is, the two sequences 𝑆𝑤 and
𝑆𝑑 should match well in the timing; otherwise, they are barely
correlated. Once a mismatch between the two-source sequences is
detected, the terminal triggers deauthentication, such as logging
out the current user and locking the screen.

4.2 Discussions of the Basic Scheme
The basic scheme is effective against the innocent adversary, i.e.,
users who accidentally access the terminal. The corresponding secu-
rity analysis is provided in Section 6. However, it is not completely
resistant to malicious adversaries in certain situations. For exam-
ple, in a shared workspace with multiple terminals, a victim user
may temporarily switch to another terminal, leaving the original
terminal unattended. An adversary can exploit this time window to
stealthily access the victim’s original terminal. Assume that both
the victim and the adversary are working on similar tasks, say,
filling out forms. Then it becomes possible for the adversary to
mimic the victim’s interactions, particularly the timing of screen
touch/release. As a result, the adversary can generate an interaction
sequence at the terminal’s OS that may match the one derived from
the victim’s wearable electronic measurements. This would cause
the basic scheme to wrongly classify the adversary as the original
logged-in user. As discussed in the adversarial model, the adversary
is assumed to have either direct visual observation or access to
a video aid, such as a surveillance camera, to target the victim’s
hand movements. These types of attacks are possible in a realistic
scenario, as a malicious adversary can be motivated and trained
to mimic how people interact with terminals. Therefore, the odds
of an experienced adversary defeating the basic scheme would be
non-negligible.

5 ADVANCED CONTINUOUS
AUTHENTICATION SCHEME

Given the limitations of the basic scheme, we propose an advanced
scheme that addresses them. In addition to comparing the timing
of two-source interaction sequences, the advanced scheme also
examines if the in-use terminal has been switched by analyzing the
signal patterns of the captured human-induced electric potential.
It will be clear soon that the pattern should be consistent if the
original logged-in user remains on the same terminal. Otherwise,
it implies that the original user has switched to another terminal.
Note that the advanced scheme is our final design. Before we delve
into the technical details of the advanced scheme, we first present
a phenomenon that is essential for our design.

5.1 Terminal Fingerprinting Using
Human-Induced Electric Potential

The characteristics of emitted electric charges from touchscreens,
such as their amplitude and frequency, vary across terminals. This
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Figure 7: (a) Frequency responses of three terminals are dis-
tinguishable. (b) Frequency responses are similar in three
trials on the same terminal.

is due to the terminal’s unique mechanical and electronic features
formed during manufacturing, which is referred to as manufac-
turing imperfection [8, 17, 21, 57]. These imperfections commonly
found in various analog circuitry components in electric devices and
equipment. The imperfections are terminal-specific and manifest
themselves as artifacts of the emitted signals.

As discussed in Section 3, when a user taps on the touchscreen,
the finger extracts electric charges from it and some of them are
then picked up by the wearable. Hence, the wearable measurement
reflects the terminal-specific imperfection. In this work, we propose
to leverage these minute imperfections of hardware to fingerprint
terminals. Specifically, if a user works on the same terminal, the
pattern of wearable’s electric measurement should be relatively
consistent; if the user switches to another terminal, the pattern
would experience some changes before/after the switch. To validate
the feasibility of this idea, we perform some preliminary exper-
iments with our wearable prototype. Three terminals are tested,
including one Samsung S7+ tablet and two LG V30 smartphones.
To eliminate the influence introduced by user behaviors, the sub-
ject simply rests the index finger on the screen in all trials. The
frequency-domain representation of threemeasurements with three
different terminals are plotted in Figure 7(a). It can be seen that
their frequency components are distinguishable. For example, the
signal from the tablet exhibits a higher amplitude in the frequency
range [0, 200 Hz] than the other two. The difference even exists be-
tween the two phones of the same model. Figure 7(b) further shows
the measurements in three trials over the same terminal Samsung
S7+ tablet. Their patterns are highly similar, which is as expected.
This phenomenon motivates us to harness the wearable-captured
human-induced electric potential for terminal fingerprinting; the
measurement provides evidence of whether a user has changed the
terminal or not after initial login.

5.2 Scheme Design
Overview.We enhance the basic scheme by introducing an addi-
tional layer of protection. In addition to verifying the correlation
of the two-source interaction sequences, it also monitors the pat-
tern consistency in the wearable electric measurement. The user’s
continued presence is validated only when both conditions are
met. Specifically, once the terminal receives measurements from
the wearable, it first checks if the timing of interactions obtained
from two sources matches. If not, deauthentication is triggered.
This is identical to the basic scheme. If the two-source sequences
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Figure 8: Overview of the advanced continuous authentica-
tion scheme.

match, the terminal further examines if the signal pattern, derived
from the same wearable measurement, is consistent with the one
recorded during initial login. If it is, the user is on the same ter-
minal where she was initially authenticated. It not, the user has
switched terminals; the deauthentication is then triggered. In sum-
mary, the advanced scheme is two-factor continuous authentication
that not only keeps on checking what the user is doing but also
which terminal the user is interacting with.

Next, we focus on the technical design of terminal fingerprinting.
GFCC Feature extraction. To characterize the electric mea-

surement at the wearable, we resort to the signal presentation in
the time-frequency (T-F) domain. In particular, the Gammatone
Frequency Cepstral Coefficients (GFCCs) are adopted. The GFCC
is derived by decomposing the input signal into the T-F domain
using a bank of Gammatone filters, followed by a down-sampling
operation of the filter-bank responses along the time dimension.
GFCCs are one of the most commonly used features in speech and
speaker recognition [48, 66, 67]. It is employed here owing to its
high resolution at low-frequency bands and its resilience to noise
[7]. To extract GFCC from the electric signals, we first divide the
processed waveform signals into overlapping frames. Each frame
has a duration of 250 ms. The overlap fraction 𝑓 takes the value
from [0, 1), 0 being no overlap. GFCC is calculated for each frame.
Due to the hardware restriction, a lightweight MCU board with
BLE connection module cannot perform too-high sampling as oth-
erwise realtime communication via BLE tend to be unreliable. In
our implementation, we adopt a sampling rate of 400 Hz. Accord-
ing to the Nyquist theory, we are able to obtain frequency-domain
features below 200 Hz. To facilitate low-frequency feature extrac-
tion, a filterbank is created by dividing the 0-200 Hz frequency into
multiple non-overlapping bands called filters. A filterbank is an
array of bandpass filters that separate the input signal into multiple
components, each one carrying a single frequency sub-band of the
original signal. The filterbank centre frequencies are distributed
across frequency in proportion to their bandwidth, known as the
Equivalent Rectangular Bandwidth (ERB) scale [37]. ERB scale pro-
vides an approximation as how bandwidths of filters should be
divided. We then calculate the log-energy for each filter. The fi-
nal GFCC coefficients are obtained by applying a Discrete Cosine
Transformation (DCT) on the output of each filter, to magnify the
subtle changes in the lower frequency bands. We extract 10 GFCC
as features using a 10-Gammatone filterbank. We also use GFCC
delta and GFCC delta-delta as features, which capture the rate of

change between two consecutive GFCC and GFCC delta coefficients
respectively. In total, we adopt 30 features. Take an interaction of
1-second duration as an example. Let 𝑓 = 0.5. Then there are a total
of 8 frames, each with a duration of 250 ms. Since 30 GFCC features
are derived from each frame, then 240 features are derived for this
interaction.

User interactions introduce an additional dimension of uncer-
tainty to the electric signal due to the behavior diversity. To elimi-
nate its impact, we propose to apply a high-pass filter with a cutoff
frequency of 15 Hz to the signal before calculating its GFCC. Ac-
cording to a prior study [3], human finger-tapping speed is upper-
bounded by 61 taps for 10 seconds. We select 15 Hz as a conser-
vative value to accommodate users with all kinds of typing styles
and speeds. This step ensures that the GFCC features are user-
independent and thus more accurate for terminal fingerprinting.

Terminal fingerprinting using GMM. The next step in the
pipeline is to decide if the obtained GFCC features are from the
original terminal where the user was initially authenticated. We
adopt the Gaussian Mixtures Model (GMM) as a classifier. We pick
GMM over the Support Vector Machine model (SVM) because the
inputs in our case have variant sizes. Although Dynamic Time
Warping (DTW) is also capable of clustering time series that vary
in length, GMM has shown to outperform DTW in recognition and
classification tasks [22, 44]. GMM is a probabilistic model, which
assumes that all the data points from the same class are generated
from a mixture of a finite number of Gaussian distributions. Each
Gaussian distribution has its ownmean and covariance and is called
a component in the GMM model.

Consider a set of GFCC features 𝒙 obtained by one or multiple in-
teractions. Our terminal identity recognition task can be formulated
as a hypothesis test between

• 𝜆ℎ𝑦𝑝 : feature set 𝒙 is from the original terminal;
• 𝜆

ℎ𝑦𝑝
: feature set 𝒙 is not from the original terminal.

The verification test to decide between these two hypotheses is a
log-likelihood ratio test given by

Γ(𝒙) = log
𝑝 (𝒙 |𝜆ℎ𝑦𝑝 )
𝑝 (𝒙 |𝜆

ℎ𝑦𝑝
)

{
≥ 𝜃, Accept hypothesis 𝜆ℎ𝑦𝑝
< 𝜃, Reject hypothesis 𝜆ℎ𝑦𝑝

(1)

where 𝑝 (𝒙 |𝜆) is the probability density function (pdf) and 𝜃 is the
decision threshold. For a feature vector 𝒙 , the mixture density used
for the likelihood function can be written as 𝑝 (𝒙 |𝜆) = ∑𝐾

𝑖=1𝑤𝑖𝑝𝑖 (𝒙),
where 𝑝𝑖 (𝒙) is the individual Gaussian density function N(𝝁𝑖 ,𝝈𝑖 ),
and𝑤𝑖 is the mixture weight with

∑𝐾
𝑖=1𝑤𝑖 = 1. 𝝁𝑖 and 𝝈𝑖 are the

mean vector and covariance matrix, respectively. Once the parame-
ters {𝑤𝑖 , 𝝁𝑖 ,𝝈𝑖 } of 𝑝 (𝒙 |𝜆) are fixed, the classification decision can
be made for an given 𝒙 using (1).

The parameters of 𝑝 (𝒙 |𝜆ℎ𝑦𝑝 ) and 𝑝 (𝒙 |𝜆
ℎ𝑦𝑝

) are estimated us-
ing the collected GFCC feature vectors from the original terminal
(i.e., the terminal itself) and reference terminals (i.e., other ter-
minals), separately. The estimation is performed using the itera-
tive expectation-maximization (EM) algorithm [36] and is done
offline. During the authentication, the incoming electric signal is di-
vided into 250 ms frames. Time-series GFCC features are extracted
𝑿 = {𝒙1, 𝒙2, · · · 𝒙𝑇 }. Then the log-likelihood of a model 𝜆 for 𝑿 is
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calculated as

log𝑝 (𝑿 |𝜆) =
𝑇∑︁
𝑡=1

1
𝑇
log 𝑝 (𝒙𝑡 |𝜆).

The log-likelihood value is divided by 𝑇 to normalize out duration
effects from inputs with variant sizes.

5.3 Parameter Considerations
The authentication performance is mainly fine-tuned by three pa-
rameters: synchronization tolerance (Δ𝑡 ),window size (𝑤 ), andmatch
threshold (𝜌). While FTSP is employed to align the clocks at the
wearable and the terminal, clock synchronization is not perfect in
practice. Timing mismatches are occasionally observed through
the tests, mostly within 200 ms. To alleviate false alarms caused
thereby, we adopt a common practice to introduce a parameter
synchronization tolerance Δ𝑡 [49, 60, 62]. The two time sequences
are deemed matched as long as the pair-wise element comparison
holds within Δ𝑡 . The window size 𝑤 is the number of interactions
the authenticator considers to reach a decision. For each window
the authenticator applies the pair-wise element comparison to com-
pute a matching score indicating howwell the two sequences match
in that window. If the score is higher than the match threshold 𝜌 ,
they match; otherwise, they do not. We set 𝜌 as the fraction of
interactions in a window that should match for the authenticator
to decide the user’s legitimacy. We are going to examine the impact
of these parameters in Appendix A.

6 SECURITY ANALYSIS
In this section, we perform analytic evaluation regarding the secu-
rity performance with reference to the adversarial model.

Innocent adversary. An innocent adversary is a user who uses
an unattended terminal inadvertently without realizing that another
user (i.e., legitimate user) is already logged in. We consider the fol-
lowing three cases based on the legitimate user’s behaviors. In the
first case, the legitimate user is performing random activities, e.g.,
walking to a different cubic or grabbing snacks nearby. As shown
in Figure 6, while variations are observed in the received signal at
the wearable, its amplitude is much lower than when the legitimate
user interacts with the terminal. The component of irrelevant wave-
form removal of our scheme eliminates these signals. The filtered
signals would not produce any time sequence. Consequently, the
two-source timing comparison fails. In the second case, the legiti-
mate user is touching a conductive surface, e.g., using smartphones
or working on another terminal. The time sequence of user’s in-
teractions (with the conductive surface) can still be obtained at
the wearable, but it is unlikely to correlate with that produced by
the adversary at the terminal. As a result, the two-source timing
comparison would fail too. In the third case, the legitimate user
walks out of the terminal’s vicinity, causing the wearable to lose its
connection with the terminal. Since no measurement is received
from the wearable, the time sequence comparison fails. In all these
cases, the deauthenticationwill be triggered, logging out the current
account and locking the screen immediately.

From the discussion above, it can be inferred that the detection
of the innocent adversary is based on the comparison of two-source
interaction sequences in timing. As both the basic and advanced

schemes have this module, they are effective in detecting and pre-
venting the actions of an innocent adversary.

Malicious adversary. We further analyze how the advanced
scheme can defend against malicious adversaries, including oppor-
tunistic adversaries. A malicious adversary can observe the actions
of the victim user and imitate her hand movements made while in-
teractingwith another terminal, e.g., the victim’s smartphone or any
other device with a touchscreen in a shared workspace. To pass the
timing matching, the adversary performs screen touches/releases at
the correct moments mimicking the victim’s actions. As discussed
earlier, the chance of success is non-negligible for an experienced
attacker who has been trained to mimic how people interact with
terminals. Fortunately, our advanced scheme introduces an addi-
tional defensive layer by taking into consideration the terminal
fingerprint, a unique identifier for each terminal. As the terminal
changes, the pattern of wearable signals changes accordingly, as
elaborated in Section 5.1. Although the adversary may produce a
matched time sequence, fabricating the electronic characteristics
of the terminal would pose a considerable challenge. This holds
true for opportunistic adversaries as well. Consequently, the ad-
vanced scheme remains capable of detecting the presence of such
adversaries.

7 EVALUATION
The evaluation of the proposed scheme is conducted using the pro-
totype as described in Section 3.2. Five terminals are used, including
Google Pixel 6 Pro, Samsung Galaxy S10, Galaxy S8, Pixel 5a, and
the Samsung Galaxy S7+ tablet. The evaluation consists of two
phases. The goal of phase-I study is to determine the optimal sys-
tem parameters that deliver the best overall performance. (Details
are given in Appendix A.) Once they are identified, the phase-II
study is carried out to evaluate the real-world performance of our
scheme. To facilitate evaluation, we adopt several commonly used
metrics: false acceptance rate (FAR), false rejection rate (FRR), equal
error rate (EER). A wide range of impact factors are thoroughly ex-
amined. A comprehensive comparison is made with state-of-the-art
solutions.

The participants are recruited through various methods, such
as emails, social media postings, and verbal communications. Ef-
forts have been made to recruit a diverse population based on age,
gender, and race. A total of 25 participants, including 15 males and
10 females, are recruited. Before each experiment, participants are
also asked to fill out the informed consent document. It provides a
detailed description of the study’s procedure, compensation, possi-
ble risks, and rights. Participants are free to take a break or quit at
any time without penalty. The entire study is IRB-approved. Upon
completion of the two phases, each participant is asked to take a
short survey to assess the perceived usability of our scheme. The
survey result is presented in Appendix D. Besides, participants are
asked to wear the prototype with a reasonably snug fit to maintain
the necessary skin contact for accessing human-induced potential
readings.

7.1 Performance Against Adversaries
In this part, we evaluate the performance against adversaries, in-
cluding both the innocent adversary and the malicious adversary.
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Figure 9: Attack success rate of (a) innocent adversary and
(b) malicious adversary.

Robustness against the innocent adversary. An innocent
adversary is a user who happens to use an unattended terminal
inadvertently. Six pairs of subjects participate in the experiment. In
each pair, the two take turns to play as the innocent adversary, with
the other as the legitimate user. The attackers simply interact with
the target terminal with no intention of mimicking the legitimate
user. The legitimate user can freely a) perform random activities, b)
interact with a second terminal, or c) walk around. It resembles the
three scenarios discussed in Section 6. For each pair, the experiment
is repeated 80 times. Figure 9(a) depicts the success rate across six
pairs. It is consistently low, ranging between 1.5% to 2%. Hence, the
odds are rare for an innocent adversary to act synchronously with
the legitimate user without any side information.

Robustness against the malicious adversary. The same set
of subjects participate in the experiment. The adversary has a direct
line of sight observation of the victim subject. The former is asked to
mimic the latter’s typing interactions on the original terminal, when
the latter interacts with a second terminal. Figure 9(b) depicts the
attack success rate by varying the observation distance from 1 to 30
feet. The maximum success rate 8.5% exists when the distance is at 1
ft. Compared with the innocent adversary, the malicious one passes
the authentication at a higher chance, which meets our expectation.
Still, its advantage is marginal thanks to the proposed terminal
fingerprinting component. We also observe that the adversary’s
performance gain vanishes quickly as the observation distance
increases. In particular, its success rate is almost similar to that of
the innocent adversary when the distance becomes 20 ft or larger.

Detection efficiency. It is desirable to detect the presence of an
adversary on the terminal quickly, so we can prevent any accidental
or intentional misuse of the logged-in user’s account. We call it
detection efficiency. Figure 10(a) plots the cumulative distribution
function (CDF) of time needed for adversary detection, as a result
of 476 trials. The time ranges between 2.8 s and 5.1 s, with 90% of
illegitimate presence spotted within 4.3 s. The detection efficiency
is practically satisfactory. This metric is partially determined by the
window size (𝑤 ), i.e., the number of interactions needed to make a
decision. The window size is set to 4 per the discussion of Appendix
A.

The time to perform the 4 interactions varies in accordance with
the interaction types and the context. As a controlled study, we
further measure how long a legitimate user remains authenticated
under the proposed scheme. Participants are asked to freely inter-
act with the terminal as they would normally. The total length of
each trial is 5 min, which covers the duration for most common
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Figure 10: Detection efficiency. (a) CDF of how soon an adver-
sary’s presence is detected. (b) CDF of how long a legitimate
user remains authenticated.

Table 1: Performance comparison with ZEBRA [29].

Our scheme ZEBRA

Window size 2 3 4 5 5 7 9 11

FAR (%) 1.5 2.8 4.3 4.7 27.5 25 22.5 21
FRR (%) 11.2 7.5 4.5 3.9 6 4.5 3 2.8

interactions, such as typing a message or composing an email. We
find in Figure 10(b) that around 5% of participants are wrongly de-
authenticated within 4.6 min. The percentage increases slightly as
time proceeds. The majority (78%) of the participants remain logged
in even for the total duration of 5 min, with the 90% percentile at
4.85 min. Combining the results above, we infer that the detection
can be performed efficiently without sacrificing usability.

7.2 Comparison with Prior Works
We further compare the performance with prior works. For a fair
comparison, we directly cite the results from these works. Table 1
compares with ZEBRA [29] in terms of FAR and FRR with respect to
window size. In ZEBRA, a user wears a bracelet equipped with IMU
sensors to track the user’s hand movement. ZEBRA utilizes IMU
readings to infer the time sequence of interactions. As shown, our
scheme beats ZEBRA by a large margin given the same window size.
For example, ours produces FAR=4.7% and FRR=3.9% while ZEBRA
produces FAR=27.5% and FRR=6% when the window size is 5. Note
that a larger window size corresponds to a longer authentication
time. There is a trade-off between the authentication time and the
accuracy. Ideally, the authentication accuracy comparison should
be made given the same window size between the two schemes. ZE-
BRA adopts a minimum window size of 5, as its accuracy becomes
unsatisfactory with a smaller window. In contrast, ours performs
reasonably well even when the size is as small as 2. The superior-
ity of our scheme is due to the fact that human-induced electric
potential can timestamp touch events more precisely than IMU
readings.

Table 2 compares the detection efficiency, i.e., the time dura-
tion to detect an adversary. Ours is the fastest; its 90 percentile
is 4.3 s. Regarding ZEBRA, as IMU readings tend to be noisier, it
takes a longer duration to reach a decision. Its 90 percentile is
around 8 s. For [12], it exploits eye movements as biometrics for
user identification. Its 90 percentile is around 40 s. Prior work [63]
also leverages eye movement to monitor user’s continued presence.
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Table 2: Performance comparison on detection efficiency.

Schemes Eberz et al.
[12] Our scheme ZEBRA

[29]
Zhang et al.

[63]
Segundo et al.

[40]

Time (s) ≈40 4.3 ≈8 ≈125 1

Differently, eye movement is driven by implicit visual stimuli. The
whole process takes around 125 s. The approach [40] employs facial
recognition for identity recognition. It is the fastest among the
four for taking only 1 s to detect the adversary. Note that not all
terminals are equipped with a camera. Besides, keeping cameras on
all the time, especially in a shared workspace, would cause severe
privacy concerns.

7.3 Evaluation Under Various Scenarios
Impact of different touch gestures.Users interact with the termi-
nal via various touch gestures. It is essential to ensure that authen-
tication is robust to touch diversity. Figure 11(a) shows the result.
Three common touch gestures are evaluated: tap, swipe, and pinch.
We find that tap has the best performance with an average FAR and
FRR of 1.9% and 2.5% respectively. FRR for pinch is a little bit higher.
It is probably due to the complexity of the gesture involving two
fingers, as opposed to single-finger gestures. Besides, FAR remains
stable for all gestures. It implies that touch gestures do not affect
the security performance of our scheme.

Impact of wearable positions. In this set of experiments, we
evaluate the impact of device placements on the body surface. Sev-
eral locations are examined, including the head, wrist, arm, and
finger. Figure 11(b) shows that FRR and FAR are relatively stable
for all locations. This is because the received electric charges at
different locations of the body experience similar varying tenden-
cies, as the user touches/releases the screen. The result agrees with
our feasibility study in Section 3.2. This is a desirable property as
the wearable is not restricted to specific locations on the human
body. In comparison, many prior works [1, 29, 30, 65] require the
wearable to be wrist-worn to access meaningful readings. Their
deployment is thus largely confined.

Impact of body movements.We observe in the preliminary
study that hand/body movements would cause variations in the
wearable’s measurement. Luckily, those variations are associated
with weaker amplitudes than those caused by touch events. Mo-
tivated by this phenomenon, in the design we develop a module
that removes irrelevant waveforms caused by body movements, as
mentioned in Section 4. In the experiments, we consider four typical
movements, including sitting, grabbing a book, drinking from a
mug, and making a turn. The corresponding FAR/FRR is depicted
in Figure 11(c). We find that the best performance is achieved at
the sitting status with the averaged FAR=1.5% and FRR=3.2%, while
moving actions slightly bring up the error rate. Still, the authenti-
cation accuracy is practically acceptable. It validates the efficacy of
the proposed module. Some prior works [29, 30] make use of IMU
readings to characterize hand movements. They cannot tell which
readings are associated with intended interactions and which are
caused by random hand/body movement. The polluted readings
easily degrade the authentication accuracy especially when the
user is not completely static.
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Figure 11: Impact of (a) touch gestures (b) wearable positions
(c) body movements, and (d) device heterogeneity.

Impact of different devices. To evaluate the impact of dif-
ferent devices, the proposed scheme is implemented on a variety
of terminals, including Google Pixel 6 Pro (P1), Samsung Galaxy
S10 (P2), Galaxy S8 (P3), Pixel 5a (P4), and the Samsung Galaxy
S7+ tablet (P5). Note that the wearable prototype is the same for
all experiments. According to Figure 11(d), the performance re-
mains stable across devices. It indicates that the proposed scheme
is terminal-agnostic and can be widely deployed.

Impact of skin conditions. Users may interact with the termi-
nal while their finger skin is exposed to varying degrees of moisture,
such as after hand-washing or due to perspiration. To assess the
impact of these conditions, we conduct experiments involving dif-
ferent skin states (dry, moderately wet, and soaked). In order to
replicate real-world scenarios, water is sprayed onto the hands of
the user to achieve the desired levels of wetness. Table 3 presents
the results of the experiment. As the finger becomes wetter, we
observe a decline in authentication accuracy. Nevertheless, the
overall performance remains practically acceptable even when the
finger is moderately wet, with FAR and FRR measuring 3.84% and
8.33%, respectively. This can be attributed to the fact that a wet
finger distributes the electrical charge over a larger area, rather
than focusing it at the point of contact. Consequently, the capacitive
touchscreen may struggle to detect the exact location of the touch
or might fail to register the touch altogether. It is worth noting that
manufacturers typically advise against using terminals with touch-
screens while hands are wet, as the terminal may have difficulty
recognizing touch inputs from a wet hand.

Due to the limited space, we present the ablation study, eval-
uation of system performances, and the user study in Appendix
B, C, and D, respectively. Particularly, in the ablation study, the
performance is compared between the basic scheme and the ad-
vanced scheme to understand the contribution of the terminal fin-
gerprinting component. We examine computation time and energy
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Table 3: Performance comparison on different skin condi-
tions.

Skin condition Dry Moderately wet Soaked

FAR (%) 3 3.84 7.82
FRR (%) 3.5 8.33 21.6

consumption of the proposed scheme in the evaluation of system
performances. The user study analyzes participant’s subjective
opinions on our proposed scheme.

8 RELATEDWORK
We focus on discussing prior works on continuous authentication.
In general, they can be classified into the following three categories.

Physiological biometrics based mechanisms. Physiological
biometrics have been widely investigated for continuous authenti-
cation [11, 12, 27, 28, 38, 40, 42, 64]. For example, Cardiac Scan [27]
leverages geometric and non-volitional features of cardiac motion
for identity recognition. There are also works using photoplethys-
mography (PPG) signals [64] and eye movement [11, 12] to verify
user’s continued presence. However, all these schemes require ded-
icated sensors (e.g., PPG, Doppler radar sensors, or eye trackers),
which are not readily available in most commodity devices. Some
schemes utilize electrocardiogram (ECG) [28, 38]. Despite the avail-
ability of ECG signals on some COTS devices, their applicability for
user authentication has been subject to scrutiny. An individual’s
ECG patterns may exhibit considerable variations depending on her
physical activity, such as when she is seated in contrast to walking.
Rasmussen et al. used human body bio-impedance for continuous
authentication [42]. A metal keyboard sends small electric current
through the user’s body; the user’s identity is verified by examining
his body’s resistance to the current. It is well-known that the body
bio-impedance can be altered by a variety of factors, such as instant
body movement, skin moisture level, and even the wearing clothes
[47]. Hence, its performance stability is not guaranteed. Segundo
et al. employed facial recognition for continuous authentication
using cameras [40]. First of all, keeping cameras on all the time,
especially in a shared workspace, would cause severe privacy con-
cerns. Besides, it depletes the battery-powered terminal’s battery
quickly. Our scheme does not have these limitations.

Behavioral biometrics based mechanisms. They can be clas-
sified into gait-based methods [52, 59], keystroke-based methods
[1, 58], touch gesture-based methods [5, 14, 26, 51], and the combi-
nation of multi-modal behavioral biometrics [45, 50, 54]. Gait-based
methods identify individuals by the manner of walking using the
target device’s IMU readings. They work only when users are mov-
ing so that motion sensors can produce meaningful measures for
authentication. Keystroke-based methods exploit the phenomenon
that users exhibit distinctive keystroke dynamics, such as typing
frequency, hold time, finger pressure, pressed area size, etc., when
interacting with an end device. The touch gesture-based methods
share a similar idea. Nonetheless, both keystroke and touch gesture-
based methods have been criticized for being incapable of handling
users’ behavior dynamics. For example, the behavioral patterns for
web browsing and playing games are totally different.

Other approaches. The timeout solution is widely adopted
in numerous commodity devices, where a terminal is automati-
cally locked if left idle for a specified duration. However, this ap-
proach fails to mitigate risks entirely before the timeout occurs.
Prior research has explored utilizing the relative distance between
the terminal and the logged-in user for authentication purposes,
with the target terminal remaining unlocked when the user is de-
tected within close proximity [9, 10, 16]. The primary challenge
in this approach lies in accurately measuring proximity at a sub-
meter level. Conventional methods rely on received signal strength
(RSS) to estimate distance; however, commonly used radio tech-
nologies in terminal devices, such as Wi-Fi [31, 68] and Bluetooth
Low Energy (BLE) [13], only provide meter-level distance estima-
tion. Furthermore, radio frequency signals are dynamic and highly
variant due to mutual interference and multi-path effects. As a re-
sult, approximation-based solutions have faced criticism for their
unreliability and high authentication error rates [29, 53]. It is worth
noting the Auto Unlock feature offered by Apple [2]. It enables
users to unlock their Mac computers when they are in close prox-
imity while wearing their Apple Watch. However, it does not solve
the key problem–when to execute the deauthentication.

A more comprehensive comparison with prior works is given
by Table 5 in Appendix E.

9 CONCLUSION
In this work, we investigate the feasibility of leveraging a new form
of signal, human-induced electric potential, for continuous authen-
tication. We find this signal superior in timestamping touch events
by exhibiting sharp rises and falls in its waveforms as the user
interacts with the terminal. This property renders the two-source
timing comparison, a crucial component of our design, highly pre-
cise. Additionally, the unique patterns embedded in the signal allow
for fingerprinting the in-use terminal. We exploit this phenome-
non to resist malicious adversaries who intend to mimic victim
user’s touch behavior to gain authentication. Furthermore, as the
human-induced electric potential is observable throughout the hu-
man body, the wearable can be placed anywhere as long as it has
physical contact with the skin. Through an extensive evaluation
involving 25 participants, we observe an average EER of 2.3% with
our scheme. In conclusion, we believe our design is a competitive
candidate for practical adoption.
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APPENDIX
A SYSTEM PARAMETER SELECTION
In the phase-I study, we aim to select the proper parameters for
the proposed scheme. They include synchronization tolerance (Δ𝑡 ),
window size (𝑤 ), match threshold (𝜌), and overlap fraction (𝑓 ). In
the experiment, participants are asked to interact with the terminal
arbitrarily. Each participant performs 5 sets of interactions, with
20 trials in each set. We thus collect a total of 100 samples from
each participant. The system parameters are selected by striking a
balance between security (FAR) and usability (FRR). In particular,
FAR is the probability by which an adversary passes the authenti-
cation, while FRR is the chance that a legitimate user is wrongly
classified as an imposter. To calculate FAR in the phase-I study, we
simply treat samples from participants other than the target user
as attacker’s trials to pass the authentication.

Synchronization tolerance. As discussed in Section 5.3, we in-
troduce a synchronization tolerance (Δ𝑡 ) to alleviate the false alarm
caused by imperfect clock synchronization. The two interactive
sequences are deemedmatched if the pair-wise element comparison
holds within Δ𝑡 . Figure 12(a) shows FAR/FRR with respect to Δ𝑡 .
By increasing Δ𝑡 , FAR grows whereas FRR drops. This is because a
larger Δ𝑡 corresponds to a more loose decision rule. It thus leads
to more wrong acceptances. On the other hand, the chance that a
legitimate user is wrongly classified is reduced. EER exists when
Δ𝑡 is around 165 ms.

Window size. It refers to the number of interactions the au-
thenticator compares to reach a decision. A larger window size (𝑤 )
allows more interactions to be considered. As shown, FRR drops
as 𝑤 increases. However, it is in the trade of system security, as
FAR climbs accordingly. From the perspective of usability, a small
window size is preferred; it implies the decision can be made with
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Figure 12: Scheme parameter selection. (a) Synchronization
tolerance (Δ𝑡 ) (b) window size (𝑤 ) (c) match threshold (𝜌) (d)
overlap fraction (𝑓 ).

fewer interactions. Besides, a big window size equivalently allows
the system to remain unlocked for a longer time, which renders the
system more vulnerable to other attacks. In our design, EER (3.8%)
exists when 𝑤 = 4 as shown in Figure 12(b). The result is quite
promising because only 4 finger-screen interactions are needed
to spot an adversary with satisfactory accuracy. As shown later,
prior works typically need far more interactions to make a concrete
decision.

Match threshold. Match threshold (𝜌) refers to the fraction of
interactions in a window that should match for the authenticator
to make a decision. We observe in Figure 12(c) that FAR is pretty
high for a small 𝜌 and it drops significantly as 𝜌 increases to 1; FRR
is generally low across all 𝜌’s. The best overall performance exists
when 𝜌 = 75%.

Overlap fraction. In the GFCC feature extraction, we first di-
vide the processed waveform signals into overlapping frames. The
overlap fraction (𝑓 ) determines the overlapping relationship be-
tween adjacent frames. It ranges from [0,1), with 0 being no overlap.
Figure 12(d) shows the impact of 𝑓 on the authentication accuracy.
We find that 𝑓 also plays an important role for striking a balance
between security and utility. According to the result, 𝑓 = 0.6 is a
proper value in our case.

B ABLATION STUDY
In the ablation study, the performance is compared between the
basic scheme and the advanced scheme to understand the contri-
bution of the terminal fingerprinting component. Recall that the
advanced scheme differs from the basic scheme by introducing the
terminal fingerprinting component.

We conduct this study with consideration of both innocent and
malicious adversaries. The malicious adversary tries to mimic the
victim’s interactions with a direct line of sight observation.We show
the attack’s success rate by varying the distance from 1 to 30 ft. It is
observed from Table 4 that the success rate drops in both schemes.

421



ACSAC ’23, December 04–08, 2023, Austin, TX, USA Murali et al.

Table 4: Impact of terminal fingerprinting (TF) on attack
success rates.

Malicious adversary Innocent adversary

Distance (ft) 1 2 3 5 10 20 30 n/a

Without TF (%) 33 30 27 25 16.5 12 10 3
With TF (%) 8.5 6.2 4.2 3.7 3 2.7 2.6 2.4

The advanced scheme (with terminal fingerprinting) outperforms
the basic scheme (with terminal fingerprinting) by a considerable
margin in all cases. For instance, their success rates are 33% and
8.5%, respectively, under a distance of 1 ft. Regarding the innocent
adversary, its success rate is 3% and 2.4% for the advanced and basic
schemes, respectively. The above result validates the effectiveness
of terminal fingerprinting.

C SYSTEM PERFORMANCE
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Figure 13: Stacked computation time.

Computation time. Figure 13 shows the stacked time duration
for the three main components of our scheme, namely, interaction
sequence extraction, terminal fingerprinting, and two-factor au-
thentication. Among them, terminal fingerprinting takes the longest
time, with an average of 0.47 s, owing to the GFCC feature extrac-
tion and the GMMmodule. For interaction sequence extraction and
two-factor authentication, their average time is 0.33 s and 0.02 s,
respectively. We observe that all trials are accomplished within 1.6
s, with the 90 percentile at 1.0 s. As a reference, the execution time
for FaceID and TouchID on iOS is 1.48s and 0.91s, respectively [56].
Hence, our scheme is practical for real-world implementation.

Energy consumption.We focus on the energy consumption
of the wearable due to its battery constraint. The measurement is
done using a programmable power monitor INA 219 sensor [20].
As shown in Figure 14(a), the leads of INA 219 are connected across
the power supply line between the wearable and the battery. An
Arduino MCU board is connected to INA 219 for reading collec-
tion and analysis. The power consumption is recorded for every
experiment instance.

To facilitate the measurement, we first set up the wearable in
standby mode and get its energy consumption baseline. The energy
consumption of our scheme is derived by subtracting the baseline
from the instant measurements. Figure 14(b) depicts the CDF of
energy consumption at the wearable. We find that its 90 percentile
is around 0.0098 mAh, with a maximum value of 0.02 mAh. This is
negligible compared to a typical wearable’s battery capacity. For
instance, Apple Series 7 watch has a battery capacity of 309 mAh.
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Figure 14: (a) Measurement setup. (b) CDF of energy con-
sumption at the wearable.

In our design, the operations executed at the wearable are limited,
including human-induced electric potential measurement and its
transmission (to the terminal). Most operations are performed at
the terminal. Besides, the wearable will not be activated unless it re-
ceives from the terminal an authentication request that is triggered
by touch events. These strategies contribute to energy efficiency at
the wearable.

D USER STUDY
The goal of the user study is to evaluate participants’ perception
toward our proposed authentication scheme.

Design. All participants are asked to provide their perception
of our scheme after all the experiment sessions by responding to
10 questions on a 5-point Likert scale (with 1 = strongly disagree, 3
= neutral, and 5 = strongly agree). These questions cover multiple
aspects of security and usability. The following is a list of questions.

Q1 I would like to adopt the proposed continuous authentication
scheme for daily usage.

Q2 The proposed scheme requires no effort from me.
Q3 The system is easy to use.
Q4 The system performance is consistent.
Q5 I would not be less worried about temporarily leaving my

working terminal unattended with the proposed scheme
implemented.

Q6 The proposed scheme is more secure compared to the current
session timeout approach.

Q7 The operation is easy to learn.
Q8 The scheme would not disrupt my regular activities on the

terminal.
Q9 The scheme is more convenient than the session timeout

approach.
Q10 The system is reasonably fast and unobtrusive.
To make a fair comparison with the session timeout approach,

participants are asked to interact with it on a lab computer where
the approach is implemented. They are also provided with the
requisite understanding of the underlying mechanisms involved in
the session timeout approach.

Results. Figure 15 illustrates the participant’s responses on a
5-point Likert scale. 80% of the participants express their willing-
ness to use this system into their daily life (Q1). Only 16% report
that the proposed scheme requires some effort to perform (Q2).
88% agree that the system is easy to use (Q3). 84% of participants
find the system performance reasonably consistent (Q4) and 80%
indicate that they would feel less stressed about leaving their work-
ing terminals unattended when augmented with our scheme (Q5).
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Table 5: Comparison among different continuous authentication schemes, which are categorized into: physiological biometric
authentication (light gray), behavioral biometric authentication (gray), and other approaches (dark gray).  : method fulfills
criterion. G#: method quasi-fulfills criterion. #: method does not fulfill criterion. –: not enough information/not applicable.

Scheme
Additional
device
free

COTS
device

compatible

Robust
to
user

movement

Restriction-
free

on device
placement

Fast
authenti-
cation

Cost
efficient

Against
zero-

knowledge
attack

Against
mimic
attack

Signal
type cs

Cardiac Scan [27] # # G# #  #   
Cardiac motion

(Doppl. Radar Sens.)
Eberz et.al [12] # G# # # – G#  G# Gaze (Eye)
1DMRLBP [28] #  # # – #   ECG
TrueHeart [65] # # G# # – G#   PPG

Segundo et.al [40]   #  –   G# Face (camera)
Rasmussen et.al [42] # # # # – #   Electric pulse response
Touchalytics [14]   G#  –   G# Touch behavior

WACA [1] #  # # –   G# Keystroke(IMU)
KEH [59] # #  G# – G#  G# Gait (IMU)

HMOG [54]   G#  #   G# Hand movement (IMU)
Shen et.al [50]   G#  –   G# Touch behavior (IMU)
Li et.al [26]   G#  –   G# Touch behavior
Timeout     G#  # # –

ZEBRA [29] #  # # #   G# IMU

CSAW [30] #  # #    G#
Motion sensor
(Wrist Motion)

Transient Auth. [10] #  –  # –  #
Proximity
(Radio)

This work # G#       
Human-induced
electric potential

Percentage of respondents

Q
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Figure 15: Survey results.

56% of the respondents strongly believe that our scheme would be
more secure than the current continuous authentication methods
(Q6). If implemented in real-world devices, only 16% indicate that
the scheme would be difficult to learn or get used to (Q7). When
asked if our scheme would disrupt daily activities, only 8% strongly
feel that there may be some disruption (Q8). 76% of participants
find our design more convenient than current methods (Q9). This
number increases to 92% when asked if the system is fast enough
and unobtrusive (Q10).

In summary, the results indicate that most users hold a positive
view of our scheme. They are willing to adopt it in their daily lives

due to the security and convenience offered, in comparison with
the state-of-the-art solution.

E COMPARISONWITH PRIORWORKS
Additional device free: Whether an additional device, other than the
target terminal itself, is necessary for the scheme to work.

COTS device compatible:Whether the scheme is readily applicable
to COTS devices.

Robust to user movement: To ensure better usability, the scheme
should be robust evenwhen there are some randomusermovements
irrelevant to the scheme.

Restriction-free on device placement: For the scheme that involves
an additional device, it may impose restrictions regarding the device
placement (on the human body).

Fast authentication: A measure of how fast the scheme works,
i.e., the time it takes for the authenticator to make a decision about
whether a target user is legit or not. Training time is not included.

Cost-efficient: The implementation overhead of the scheme, par-
ticularly the hardware, should be affordable.

Against zero-knowledge attack: Resilience against adversaries
who have zero knowledge about the authentication system or the
victim user’s secret credentials or biometrics.

Against mimic attack: Resilience against adversaries who mimic
the legit user’s actions to bypass the authentication.

Signal type: It specifies the signal modality utilized by the scheme.
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