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As virtual reality (VR) offers an unprecedented experience than any existing multimedia technologies, VR videos, or called 
360-degree videos, have attracted considerable attention from academia and industry. How to quantify and model end users’ 
perceived quality in watching 360-degree videos, or called QoE, resides the center for high-quality provisioning of these 
multimedia services. In this work, we present EyeQoE, a novel QoE assessment model for 360-degree videos using ocular 
behaviors. Unlike prior approaches, which mostly rely on objective factors, EyeQoE leverages the new ocular sensing modality 
to comprehensively capture both subjective and objective impact factors for QoE modeling. We propose a novel method that 
models eye-based cues into graphs and develop a GCN-based classifier to produce QoE assessment by extracting intrinsic 
features from graph-structured data. We further exploit the Siamese network to eliminate the impact from subjects and visual 
stimuli heterogeneity. A domain adaptation scheme named MADA is also devised to generalize our model to a vast range of 
unseen 360-degree videos. Extensive tests are carried out with our collected dataset. Results show that EyeQoE achieves the 
best prediction accuracy at 92.9%, which outperforms state-of-the-art approaches. As another contribution of this work, we 
have publicized our dataset on https://github.com/MobiSec-CSE-UTA/EyeQoE_Dataset.git.

CCS Concepts: • Human-centered computing → Ubiquitous and mobile computing design and evaluation methods.

Additional Key Words and Phrases: QoE assessment, graph learning, eye-based cues

1 INTRODUCTION
Motivation. With the development of Virtual Reality (VR) technologies, 360-degree videos, also referred to as 
omnidirectional or VR videos, have seen a revolutionary rise over the last decade. As a novel type of multimedia, 
360-degree videos provide an immersive and interactive watching experience by rendering spherical frames 
covering all directions around the viewer, attracting great interest from customers, researchers, and industry. In the 
meantime, these videos are mostly rendered in high resolutions to maintain fair visual quality. Given the limited
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network bandwidth, the network and service providers have to strike a balance between resource consumption
and service quality for 360-degree video streaming. Hence, it is of essential importance for them to get an in-depth
understanding of the user’s experience and take necessary adaptive actions in service management. As a critical
evaluation indicator, quality of experience (QoE), defined by ITU-T [34] as a measure of the acceptability of
an application or service perceived subjectively by end-users, has been widely adopted. In current multimedia
services, user’s QoE is mainly obtained by asking people to measure their perceived quality via surveys or
self-reports. However, such procedures are time-consuming and may be annoying for the users.
To address this issue, extensive prior efforts have been devoted to developing QoE assessment models that

map a diverse spectrum of impact factors, such as underlying network conditions and video qualities, to a QoE
score given a specific multimedia service type. In this way, it avoids bothering users with questions to collect
opinions and feedback. QoE assessment is automatically carried out with significantly reduced human labor efforts.
Nonetheless, this topic in the context of 360-degree videos in VR environments is yet far from well investigated.
One mainstream of existing approaches can be classified as video-centric models [14, 20, 26, 64, 66, 67, 74, 80, 81, 85].
QoE is derived by analyzing distortions of videos displayed under various video quality assessment (VQA) metrics.
These models are criticized for overlooking subjective factors. More recently, [43, 44, 75] integrate human visual
attention to their QoE models. Their basis is that viewers mostly focus on objects of interest in a scene. Thus,
distortions on different parts should impose a nonuniform impact on QoE estimation. These works then assign
weights in accordance with the viewer’s visual attention in aggregating pixel-wise distortions. The above ideas are
inherited from QoE modeling of conventional 2D videos and thus incapable of capturing unique characteristics
of 360-degree videos. As pointed out by prior studies [30, 38, 71, 86], subject feelings, such as cybersickness,
immersiveness, and fatigue, are of essential importance in determining their perceived QoE of watching 360-
degree videos, in addition to the well-recognized factors such as video quality. Hence, a QoE model that effectively
harnesses all the above factors is in dire need for service management of 360-degree video streaming.

Recently, ocular behaviors, such as eye gaze, fixations, saccades, pupillometry, and blinks, have emerged as a
new sensing modality to measure human perceptions. For example, eye blinking rates are reported to increase
as the evolvement of visual fatigue [37, 72]. Strong correlations are also observed between visual fatigue and
saccade peak velocity, saccade duration, and fixation duration [82]. Eye-based sensing has extended the current
multimedia applications and services with an additional perceptive dimension and opened up grand opportunities
to enhance service provisioning. For instance, Tesla is starting to use the camera above the rear-view mirror in
some car models to help make sure people pay attention to the road while using Autopilot [52]. In the meantime,
eye trackers have been embedded into many prevalent commercial VR headsets [2–6] to assist in simulating
depth of field and focus, providing a more realistic and natural visual experience. It is widely accepted that
incorporating eye-tracking technology is a trend of VR headsets [18].
Our approach. Based on these observations, we propose to leverage ocular behaviors captured by eye trackers

in VR headsets to model and predict viewer’s perceived QoE in watching 360-degree videos. We call the novel
prediction model EyeQoE. As presented in our measurement study (Section 4), strong correlations are broadly
found between eye-based cues and various impact factors of QoE for 360-degree videos, including the objective
ones (e.g., video quality) and subjective ones (e.g., cybersickness, immersiveness, and fatigue). EyeQoE treats the
cues as indicators of the viewer’s perceived experience and aims to bridge these two. It takes the observed cues
as inputs and produces a corresponding QoE score. In a holistic view, our model is superior to the state-of-the-art
approaches from two aspects. First, it takes into account human feelings during QoE assessment, which are
largely overlooked by prior works. Second, most prior works endeavor to exhaustively enumerate and include
all impact factors in QoE modeling, which are impractical to implement in real-world scenarios. Alternatively,
EyeQoE merely utilizes eye-based cues to reflect the viewer’s perceived QoE as a whole. Extensive experiment
results show that it outperforms representative prior works in terms of prediction accuracy.
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Despite the attractive sense of exploiting ocular behaviors for 360-degree video QoE assessment, enabling it
involves several non-trivial challenges. First, ocular behaviors are affected by external visual stimuli [9, 33, 60]
and biologically distinct across human subjects [28, 65]. For instance, a subject’s gazing patterns tend to be more
static when focusing on a tree than tracking a flying bird in a scene [10, 42, 47]. As human eyes have unique
physical characteristics (e.g., sizes, biophysical structures, etc.), ocular behaviors may vary among individuals even
watching the same video. Thus, EyeQoE needs to cope with variations introduced by subjects and visual stimuli
heterogeneity. Second, because of the intrinsic diversity of visual stimuli, i.e., video clips, the QoE assessment
model, once trained over existing videos, may be hard to generalize to unseen videos. To deal with this challenge,
a naive approach is to gather as many annotated training samples as possible. It means to cover videos of all
kinds, which would lead to considerable overhead.
The proposed EyeQoE is inspired by some advanced techniques in deep neural networks. We first organize

observed eye-based cues into a basic graph, where fixations and saccades are its nodes and edges, respectively.
They are connected in chronological order. The constructed graph preserves the visual patterns of the raw data
in the temporal domain through modeling the local pairwise relation between adjacent fixations and saccades.
We notice that high correlations also exist among fixations associated with the same object of interest in the
scene, though they may be separated in the timeline. We thus extend the basic graph by adding additional
edges between nodes of high similarity to preserve the content-dependent features. To facilitate learning over
graph-structured data, the core of EyeQoE adopts a graph convolution network (GCN) based classifier. GCN is a
superior network to produce useful feature representations of nodes and edges from graphs. In this work, it runs
over every fixation and saccade and aggregates their layer-wise representation with those of its neighbors. The
useful features accumulate and propagate throughout the entire graph as the convolution evolves. The output of
the GCN classifier is a QoE score of the given video clip.

To tackle the challenge of subjects and visual stimuli heterogeneity, we enhance the GCN classifier by applying
a Siamese network framework with devised training sample selection strategies. The idea of the Siamese network
is to employ a pair of substructures with the same GCN and weights. The selected pair of samples are passed
through the two substructures separately. The distance metric between two outputs is computed and guides the
updates of both substructures. The designed structure, together with the training process, allow the model to
tolerate inconsistency in ocular behaviors caused by heterogeneous subjects and visual stimuli. To accommodate
unseen videos, we formulate our problem as domain adaption. We first categorize all 360-degree videos into
various types according to their colorfulness, luminance, and motion. Datasets associated with existing and unseen
videos are treated as the source domain and the target domain, respectively. Hence, our problem involves multiple
source domains. We then propose a multi-source adversarial domain adaptation (MADA) network based on the
classic domain adaptation network [29] that is originally designed for single-source-domain scenarios.

The discussion of this work pertains to PC-tethered VR1 (e.g., HTC VIVE, Oculus Rift, MS MR) and powerful
standalone VR, both with the necessary computing capacity to carry out online inference and domain adaption.
The QoE model is first trained offline, say, at servers or cloud, and then transferred to VR devices, while the
prediction is carried out in an online manner.
We highlight our contributions of this paper as follows:
• We introduce EyeQoE, a novel QoE assessment model for 360-degree videos using eye-based cues. We
then construct the cues into a graph that preserves both features in the temporal domain and content
dependency.

• We develop a GCN-based classifier to facilitate learning over graphs. The classifier is then combined with
a Siamese network to deal with subjects and visual stimuli heterogeneity. MADA is further proposed to
easily adapt our model to unseen videos.

1Tethered VR means that the headset is physically connected to a computer by cables, such as HDMI and/or USB.
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• We build our own dataset via a three-month data collection campaign. 50 volunteers and 5 student workers
get involved. To our knowledge, it would be the first data source of annotated ocular behaviors for 360-degree
video QoE assessment.

• We carry out extensive tests to evaluate EyeQoE based on our dataset. Results indicate that EyeQoE achieves
the best prediction accuracy of 92.9%.

The rest of this paper is organized as follows. Section 2 reviews prior works related to our topic. Section 3
introduces some necessary background of using ocular behaviors for QoE assessment. A measurement study
that validates the feasibility of our idea is presented in Section 4. The novel graph modeling of eye-based cues is
introduced in Section 5 followed by Section 6 that provides design details of EyeQoE. We evaluate EyeQoE in
Section 7. A discussion over the limitations of EyeQoE is provided in Section 8. We conclude the paper in Section
9.

2 RELATED WORK
Video-centric Models. Like conventional videos, some existing QoE assessment models for 360-degree videos
directly analyze the displayed videos. QoE is derived by comparing distortions of the displayed video with its
original version. This kind of approach is called video quality assessment (VQA). For 360-degree videos, new
VQA metrics have been investigated [14, 67, 74, 80, 81, 85]. For example, built upon peak-signal-to-noise ratio
(PSNR), a commonly adopted VQA metric for traditional videos, Yu et al. [80] modified it into sphere PSNR
(S-PSNR) by further considering the impact of the so-called sphere-to-plane mappings. Basically, pixels would be
distorted when projected from a two-dimensional plane to spherical surface. Sun et al. [67] took into account
the projection distortion in their VQA metric by multiplying a weight to each pixel that reflects the relation
between the sphere and the plane. In the above works, the calculation of VQA metrics is in need of the reference
360-degree videos, i.e., the original version without distortion. Unfortunately, this assumption is impractical in
most real-world video streaming scenarios. To overcome the limitation, QoE assessment models with no reference
videos have been developed [20, 26, 64, 66]. VQA metrics are directly derived from the features of impaired
videos or network parameters, e.g., bandwidth, packet loss, and latency. Nonetheless, video-centric models are
criticized for overlooking viewer’s perceptive feelings during QoE assessment, such as immersiveness [30, 86]
and cybersickness [35, 38]. As validated through many prior works [7, 32, 50], viewer’s subjective experience of
watching videos does not necessarily comply with their displayed qualities in many cases.

Visual attention enhanced models. Recently, some works start introducing human factors to QoE assess-
ment of 360-degree videos. In an immersive environment, people cannot see the whole scene from a single
viewpoint. Instead, they usually look around and focus on what attracts them. Hence, distortions on different
parts of the projection sphere impose a nonuniform impact on QoE. With the basis of the traditional PSNR metric,
Xu et al. [75] assigned weights on the pixel-wise distortion in calculating the PSNR according to the distribution
of the viewer’s visual attention. A similar idea is adopted by VQA-OV [43]. Visual attention is generated by
tracking the viewer’s head and eye movements via the embedded inertial sensors and eye tracker in a VR headset.
In [44], they further constructed the subject’s field of view (FoV) and saliency map to guide VQA assessment.
The strategy of using visual attention or saliency map to boost the video-centric QoE models has also been
adopted in the context of conventional videos [25, 41, 46, 75]. As a note, all the above works are still in need
of reference videos to calculate pixel-wise distortions. Although these works utilize visual information in their
models, it is essentially subject’s visual attention. Instead, our work exploits physiological features in viewer’s
ocular behaviors to infer her satisfaction in watching 360-degree videos. Therefore, our problem formulation and
the corresponding inference technique are totally different.
Among the prior works, [57] is the closest to ours. It combines facial expression and gaze direction for

traditional video QoE assessment. Our work differs in two main aspects. First, we target 360-degree videos in VR
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Figure 1. Relations of gazes, fixations, and saccades when a viewer is watching a 360-degree video.

environments while they are for traditional videos. Second, our work addresses critical challenges in data-driven
QoE modeling, such as subjects and visual stimuli heterogeneity and adaption to unseen videos. These issues are
overlooked in [57].
Some other works investigate the feasibility of leveraging human behavior related data, such as heart rate,

facial expression, electrodermal activity (EDA), and electroencephalogram (EEG), to evaluate QoE on various VR
applications, including assistive technique systems [61], speech and language assessment applications [36], and
general-purpose applications [12, 24]. None of them is designed for 360-degree videos. Besides, to our knowledge,
no existing commercial VR headset nowadays is equipped with necessary sensors to acquire these human behavior
data.

3 BACKGROUND
Eye-based cues as indicators of human perceptions. A connection between the eye-based cues and human
perceptions has been accepted for a decade [27, 51, 82]. Such cues include eye gaze, fixations, saccades, pupillom-
etry, and various forms of eye opening and closure events. In neurophysiological literature, it is demonstrated
that pupils are unconsciously regulated by autonomic nervous system stimulation, which is known to produce
responsive output under numerous emotional states. Hess [31] reported behavior changes in subjects who view
image stimuli that cause different pupil sizes; images with dilated pupils are deemed more attractive than those
with constricted pupils. Eye blinks and gaze behaviors are treated as crucial indicators for visual fatigue, defined
as eyestrain or asthenopia, which can be caused by both two-dimensional and stereoscopic moving images [27].
Studies show that eye blinking rates increase due to a prolonged period of time working in front of video display
terminals. The exacerbated drying of the ocular surface causes subjects to blink more frequently to lubricate the
surface of the cornea and conjunctiva [37, 72]. Prior works also demonstrate strong correlations in visual fatigue
versus saccade peak velocity, saccade duration, and fixation duration [82]. Specifically, saccadic oculometrics,
saccade peak velocity, and saccade duration significantly decrease as working time progresses, whereas the
duration of medium-length fixations increases with fatigue development. All these findings motivate us to exploit
eye-based cues to infer human perceived QoE toward 360-degree videos.
Gazes, fixations, and saccades. Saccades are rapid stepwise movements of both eyes in the same direction

that typically last 10-100 ms, depending on the distance covered [23]. They are used to shift the gaze to another
location. In contrast to saccades, fixations are relatively focused, low-velocity eye movements with a typical
duration of 100-400 ms and are used to stabilize the retina over a stationary object of interest. A visual gaze is the
instantaneous visual point landing on the stimulus. A fixation consists of multiple time-series gazes concentrated
around the same viewpoint. As shown in Figure 1, as a subject watches a 360-degree video, her fixations move
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Figure 2. (a)-(d): 360-degree videos in resolutions of 4K, 1080p, 720p, and 4K (same subject in a second trial). (e)-(h): Normalized
coordinates of gazes in one fixation. (i)-(l): Distribution of GDC. (m)-(p): Distribution of gaze velocity.

over the projection sphere in accordance with the object of interest. Each fixation is associated with a series of
frames that typically display a similar scene, in which the location of objects of interest is basically unchanged.

4 MEASUREMENT STUDY
While the correlation between eye-based cues and human perceptions is well recognized, whether the former
can serve as an indicator for 360-degree video QoE is unclear. Our measurement study intends to answer this
question by carrying out extensive experiments. A total number of 10 subjects are invited to watch 360-degree
videos of different qualities via the HTC Vive headset. Each video is of 25 seconds duration. Subjects’ ocular
behaviors are captured by a Pupil Labs eye tracker that is integrated into the headset. We then examine how
they are influenced by various well- recognized impact factors of 360-degree video QoE, including video quality,
cybersickness, immersiveness, and fatigue.
Observation 1: Eye-based cues are impacted by video quality. Figure 2 exhibits the impact of video res-

olutions to ocular behaviors. Figure 2e-2g show coordinates of time-series gazes from one fixation with the
image resolution of 4K, 1080p, and 720p, respectively. In these figures, the origin is the fixation center and the
x-/y-coordinate of each gaze is its horizontal/vertical distance to the center. For fair comparison, we extract the
fixations on the same object across the three videos. We find that gazes are more focused when the video is in a
higher resolution. This phenomenon is further validated through Figure 2i-2l where the probabilistic distribution
of gaze distance-to-center (GDC) is displayed. GDC mainly concentrates on the lower end of the x-axis, mostly
lower than 0.03 for 4K videos. It becomes scattered as the resolution decreases. We have a similar observation
over the gaze velocity in Figure 2m-2p; eye movements within a fixation tend to slow down when watching a
high-quality video, whereas they become faster as the quality is degraded.
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Figure 3. (a) The impact of video stalling on viewer’s GDC. (b) The impact of video stalling on viewer’s gaze velocity.
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Figure 4. Impact of cybersickness. (a) Number of blinks ob-
served in 25 seconds (sample video duration) under various
cybersickness levels. (b) The CDF of ECD under various
cybersickness levels.

0 4 8 12

Pupil size (mm)

0

0.5

1

C
D

F

Low

Med.

High

(a)

0 200 400 600

Fixation duration (ms)

0

0.5

1

C
D

F

Low

Med.

High

(b)

Figure 5. Impact of fatigue. (a) The CDF of pupil sizes. (b)
The CDF of fixation duration.

Apart from the spatial distortion, we also explore the impact of the video’s temporal distortion with stalling
events in the video. Figure 3a shows the GDC of each observed gaze as time proceeds. There are three surges in
GDC at the 5th, 12th, and 19th second, which are exactly time instances of the stalling events. It implies that
visual attention becomes less focused as stalling occurs. As indicated in Figure 3b, gaze velocity also experiences
significant increases as the video freezes.
Observation 2: Eye-based cues are impacted by subjective factors. As verified in prior studies [30, 38,

71, 86], aside from the video quality, 360-degree video QoE is also influenced by subjective factors, namely
cybersickness, fatigue, and immersiveness. Cybersickness, or motion sickness, refers to the subject’s feeling of
sickness, dizziness, nausea, etc., caused by, for example, the physical device, the VR environment, video contents,
and the subject’s physical status. Fatigue describes the subject’s tiresome and is mainly impacted by the time
duration of watching videos. Immersiveness reflects the subject’s perception of being physically present in the VR
environment. In the measurement study, subjects are asked to rate their feelings towards cybersickness, fatigue,
and immersiveness on a 3-point scale indicating low, medium, and high, respectively, after watching each video.

A correlation is observed between cybersickness and the subject’s blink events. Figure 4a shows the number of
blinks that a subject performs in watching a 360-degree video of 25 seconds under three cybersickness levels.
Subjects tend to exhibit a higher blink rate when experiencing cybersickness. It may be due to more intense
eye-strain symptoms, which leads to higher frequent blinks. Meanwhile, the eye closure duration (ECD) in each
blink increases with higher perceived cybersickness, as presented in Figure 4b. Our measurement study also
reveals viewer’s oculomotor and pupillary behaviors as potential indicators of her fatigue. As shown in Figure 5,
higher perceived fatigue is associated with shrunk pupil sizes and longer fixation durations. A similar finding in
contexts other than VR is reported in prior studies [48, 83].
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(a) (b) (c)

Figure 6. Impact of immersiveness on viewer’s GVD. (a) Low. (b) Medium. (c) High.

Lastly, we present the impact of immersiveness. Figure 6 shows the probabilistic distribution of gaze vergence
distance (GVD) subject to various immersiveness levels. Specifically, GVD is defined as the distance between the
viewer’s eyes and the focused object on display. For low immersiveness, the GVD is more concentrated, while it
becomes scattered under higher perceived immersion. It indicates that a viewer’s visual attention follows objects
of interest that may cover a wide range on the sphere under good immersiveness; it tends to stay in the center of
the scene as the perception becomes less satisfactory.
Observation 3: Eye-based patterns are consistent in multiple trials. In the measurement study, we play

the same video of the same quality a couple of times to the same subjects and analyze changes in their ocular
behaviors. Two trials, as indicated in the first and fourth column of Figure 2, are randomly selected. It is observed
that ocular patterns, including but not limited to, the spatial distribution of gazes, GDC, and gaze velocity, are
quite similar to each other. This observation implies that our QoE assessment model, once well trained on existing
eye-based cues, can be reused over time.
Summary. Our measurement study lays the necessary foundation for the idea of leveraging eye-based cues to

infer the subject’s QoE in watching 360-degree videos. The findings are encouraging. First of all, we verify the
hypothesis that there are strong correlations between viewers’ eye-based cues and their perceived experience in
watching 360-degree videos. Second, eye-based cues can effectively reflect both objective (e.g., video quality) and
subjective (e.g., cybersickness, immersiveness, and fatigue) impact factors of perceived QoE in VR. This property
can be achieved neither by the existing video-centric models [14, 26, 67, 74, 80, 81, 85] nor the visual attention
enhanced models [43, 44, 75]. Nonetheless, how to perform an accurate QoE assessment based on collected ocular
cues is a non-trivial task, which is also the focus of Section 5 and 6 next.

5 MODELING OCULAR BEHAVIORS INTO GRAPHS
The “node-edge” structure of subject’s ocular behavior data shown in Figure 1 motivates us to transform them
into graphs. In the following, we first introduce a basic version that only captures the temporal structure of
eye-based cues, followed by a comprehensive version that further explores content dependencies out of the cues.

A basic version. Consider a time series of gazes captured by a VR headset. They form 𝑁 fixations (𝑵 ) and
thus 𝑁 − 1 saccades (𝑬 ). The corresponding basic graph is of 𝑁 nodes and 𝑁 − 1 edges. We denote the graph as
𝐺 = {𝑵 , 𝑬}, where 𝑵 = {𝑛1, ..., 𝑛𝑁 } and 𝑬 = {𝑒1, ..., 𝑒𝑁−1}. Each saccade 𝑒𝑘 ∈ 𝑬 links two fixations 𝑛𝑘 , 𝑛𝑘+1 ∈ 𝑵 .
Saccades are directional as they present the chronological order from a fixation to its successor in the temporal
domain. As depicted in Figure 1, inside each fixation, there are many gazes. Typically, these gazes reflect the
subject’s visual attention to the same object of interest in the same scene. Their time-stamped coordinates then
serve as part of attributes of the fixation (i.e., node). Additionally, correlations are observed between the subject’s
pupillary and oculomotor behaviors and perceived video quality as elaborated in Section 4. Hence, time-series
pupil sizes and time instances of eyelids open/close events (i.e., blink onsets/offsets) are also treated as part of
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(a) (b) (c)

Figure 7. (a) An illustration of a basic graph, where circles and arrows denote fixations and saccades, respectively. (b) An
illustration of a comprehensive graph. Dashed lines represent newly added edges. (c) The adjacency matrix corresponding to
the comprehensive graph.

fixation’s attributes. For a saccade, its attributes are similar to those of fixations, including coordinates of gazes of
that saccade and time-series pupillary and oculomotor features described above.
A comprehensive version. The basic graph only captures local pairwise relationships between the temporally

adjacent fixations and saccades; a fixation (saccade) is connected to two adjacent saccades (fixations). Relationships
in other domains remain unexplored. In practice, two fixations, even not directly connected by a saccade, may
share high similarities in their attributes. We find in our measurement studies that these similar fixations are
typically associated with the same object in a video. For example, ocular behaviors when a viewer focusing on a
tree are distinct from tracking a flying bird [10, 42, 47]. Thus, we develop a comprehensive graph that preserves
both the temporal and content-dependent information in the collected raw data. The comprehensive version
creates additional edges between fixations of high similarities on the basic graph. As shown in Figure 7b, 3 new
edges (indicated by bidirectional dashed lines) are added. Note that new edges do not have any attribute.
Now the remaining question is how to determine the “similarity” of two given fixations. In this work, we

employ the cosine similarity, a common measure of similarity between two non-zero vectors. Specifically, the
similarity score between two fixations 𝑛𝑖 and 𝑛 𝑗 is calculated as 𝜃 (𝑛𝑖 , 𝑛 𝑗 ) = (𝑛𝑖 · 𝑛 𝑗 )/(| |𝑛𝑖 | | | |𝑛 𝑗 | |). For expression
simplicity, here we use the node index 𝑛𝑖 to represent its attribute vector. Given a pre-defined threshold 𝜃0, an
edge is added between 𝑛𝑖 and 𝑛 𝑗 if 𝜃 (𝑛𝑖 , 𝑛 𝑗 ) > 𝜃0. 𝜃 (𝑛𝑖 , 𝑛 𝑗 ) is then treated as the weight of the new edge. The
comprehensive graph is thus a weighted graph. It is possible that attributes of fixations and saccades are of
unequal size. To facilitate the learning graphs with unequal attribute size, we employ an encoding process that
transforms arbitrary-length attributes into fixed-length vectors before passing them into the learning model [68].

6 EYEQOE
In the following, we first present a basic QoE assessment model that learns from the graph-structured ocular
behaviors. We realize that the intrinsic heterogeneity of human visual behaviors and the impact of diverse video
contents introduce variations to the learning process. In addition, the assessment model, trained on existing
video samples, may not be readily applicable to new unseen videos. Thus, the basic model is further extended to
deal with these issues.

6.1 A Basic GCN-based QoE Assessment Model
We propose to use GCN neural networks to solve our learning-on-graph problem. GCN is capable of extracting
the representation of non-Euclidean graphs using a “convolutional” (neighbor-weight-sharing) kernel [84]. Like
other neural networks, a GCN model consists of several layers of neurons; in each layer, higher-level features
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are extracted from the input and passed onto the next layer. A GCN model can be designed to classify nodes,
subgraphs, or even entire graphs. Aside from GCN, graph neural network (GNN) [21, 45, 62] is another feasible
model in handling non-Euclidean characteristics of the complex structure of graphs. We pick the former over the
latter due to its efficiency in running backpropagation over time.
Construction of adjacency matrix. We formulate our problem as a graph classification problem, where the

classifier takes the comprehensive graph (generated in Section 5) as the input and outputs a QoE score on the
scale of 1-5. The input consists of an attribute matrix and an adjacency matrix. Specifically, an attribute matrix is
denoted as 𝑋 ∈ R(2𝑁−1)×𝐷 , where 2𝑁 − 1 comes from 𝑁 fixations and 𝑁 − 1 saccades, and 𝐷 is the dimension
of their attributes after encoding. Each row is the encoded attributes from a fixation/saccade. An adjacency
matrix is denoted as 𝐴 ∈ R(2𝑁−1)×(2𝑁−1) , where each row and column corresponds to a fixation or a saccade.
The entries of the matrix indicate whether pairs of elements are adjacent or not in the graph. Take Figure 7
as an illustration. Since 𝑛1 is linked to 𝑒1, then 𝐴1,2 = 1. On the other hand, 𝐴2,1 = 0 as 𝑒1 is a directional edge.
Assume 𝜃0 = 0.5. For two fixations 𝑛2 and 𝑛4, their corresponding matrix entries are given by their similarity
score: 𝐴3,7 = 𝐴7,3 = 𝜃 (𝑛2, 𝑛4) = 0.67 as 𝜃 (𝑛2, 𝑛4) > 𝜃0. Denote by 𝑣𝑖 a node or an edge, the instantiation rule of
the adjacency matrix is summarized as

𝐴𝑖, 𝑗 ∈ 𝐴 =


1 if 𝑣 𝑗 is the successor of 𝑣𝑖 in the basic graph,
𝜃 (𝑣𝑖 , 𝑣 𝑗 ) if 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑵 and 𝜃 (𝑣𝑖 , 𝑣 𝑗 ) > 𝜃0,
0 otherwise.

GCN-based model. Our GCN classifier consists of four convolutional layers followed by a max pooling layer
[40]; each layer in this classifier can be written as a non-linear function

𝐻 𝑙+1 = 𝑓 (𝐻 𝑙 , 𝐴)

where 𝐻 𝑙 ∈ R(2𝑁−1)×𝐷 is the matrix of activations in the 𝑙th layer with 𝐻 0 = 𝑋 . The model is specified by the
𝑓 (·, ·) function of each layer. We adopt the propagation rule introduced in [40]

𝑓 (𝐻 𝑙 , 𝐴) = 𝜌 (∆̂−1𝐴𝐻 𝑙𝑊 𝑙 ) (1)

where𝐴 = 𝐴+𝐼 with 𝐼 being the identitymatrix. ∆̂ is the diagonal node dimensionmatrix of𝐴, and𝑊 𝑙 ∈ R(2𝑁−1)×𝐷

is the weight matrix for the 𝑙-th layer. 𝜌 is an activation function, e.g., a ReLU 𝜌 (𝑥) = max(0, 𝑥).
The “convolution” operation in Equation (1) is designed in a way such that a “one-hop” filter runs over

every fixation and saccade and aggregates its layer-wise representation with those of its neighbors. Specifically,
for each fixation, the filter adds to it the representations of all other fixations, weighted by their similarity
scores, and the representation of its neighboring saccade. For each saccade, since it only has one predecessor
fixation as its neighbor, it is only updated by taking the representation of that fixation. Then, the aggregated
representation is normalized by dividing with the dimension of the representations. One can incorporate higher-
order neighborhoods information by stacking multiple GCN layers. Then features are aggregated and propagated
iteratively along with the graph. In the final step, the output from the last layer is passed through a max-pooling
layer to generate the classification result 𝑧 as the estimated QoE score for the given 360-degree video.
We adopt the mean squared error as the loss function:

L𝐺 =
1
𝑁

𝑁∑
𝑖=0

(𝑦𝑖 − 𝑧𝑖 )2 (2)

where 𝑦𝑖 and 𝑧𝑖 denote the ground-truth label and the model prediction of the 𝑖th sample, respectively, and 𝑁
stands for the number of training samples.
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Table 1. Training sample selection rule. ✓ means the pair is selected and ✗ means the pair is not.

Same subject Diff. subjects

Same label Same video ✗ ✓
Diff. videos ✓ ✓

Diff. labels Same video ✓ ✗
Diff. videos ✗ ✗

Figure 8. Top: the architecture of the Siamese network. Bottom: the GCN classifier model.

6.2 Dealing with Subjects and Visual Stimuli Heterogeneity
In practice, the training dataset, i.e., labeled eye-based cues, is obtained from a group of subjects for watching
various 360-degree videos. In addition to objective and subjective impact factors of perceived QoE (as discussed
in Section 4), the subjects and visual stimuli heterogeneity also affects ocular behaviors. As a result, it introduces
an additional dimension of uncertainty to the learning process.
Compared with video quality, QoE should be much less relevant to the video content. It means that two

videos are expected to produce similar QoE scores given the same quality and other subjective impact factors
(e.g., cybersickness, fatigue, immersiveness, etc.), regardless of the contents displayed. In the meantime, video
contents highly affect ocular behaviors, the features considered by EyeQoE for QoE assessment. For example,
eyes move faster when watching high-motion scenes than the stationary ones. As one of our contributions, this
work aims to eliminate the impact of video contents to QoE assessment, as called visual stimuli heterogeneity.
To alleviate impacts from both subjects and visual stimuli heterogeneity, we modify the basic GCN-based QoE
assessment model by applying the Siamese network [17]. Its idea is to employ a pair of substructures with the
same architecture and weights. It passes a pair of input data through the two substructures separately, computes
the distance metric between the outputs, and updates both substructures simultaneously.

The modified model is shown in Figure 8. It is composed of two identical GCN classifiers introduced in Section
6.1.𝑋𝐴 and𝑋𝐵 stand for the pair of training samples for the two classifiers, respectively. Sample pairs are carefully
selected following a scheme as outlined in Table 1. Each pair of samples is classified into one of the four categories
based on their subjects, video contents, and labels. If their labels are the same, we select the pairs from different
subjects and/or video contents. In this way, the model can learn to tolerate differences in ocular behaviors caused
by heterogeneous subjects and video contents, i.e., visual stimuli. In contrast, if their labels are different, we select
the pairs from the same subjects and video contents; the model then learns to distinguish samples of similar
patterns associated with different labels (i.e., QoE scores). The selected sample pairs are passed through the two
twin models separately. We then calculate the distance between two outputs. The loss function of the Siamese
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network is defined as

L𝑆 =

𝑁∑
𝑖=1

(
𝛼
(
𝜂𝜖2𝑐 + (1 − 𝜂) (4 − 𝜖𝑐 )2

)
+ (1 − 𝛼)

(
𝜂𝜖2𝑠 + (1 − 𝜂) (4 − 𝜖𝑠 )2

) )
(3)

where 𝑁 is the number of sample pairs. 𝜖𝑐 and 𝜖𝑠 ∈ [0, 4] denote the distances between model outputs of a sample
pair concerning visual stimuli and subjects, respectively. 𝜂 is a binary value indicating whether labels of a sample
pair are the same (𝜂 = 1) or different (𝜂 = 0). 𝛼 is a factor to balance the weight between 𝜖𝑐 and 𝜖𝑠 .
Combining (2) and (3), the final loss function is expressed as

L = L𝐺 + L𝑆 + 𝜆 · | |𝑤 | |22 (4)

where 𝜆 · | |𝑤 | |22 serves as a regularization term. In the training process, the final loss L is fed back into the
network to update the weights.

6.3 Dealing with Unseen Videos
As discussed, the characteristics of the video scenery being displayed also impact the viewer’s ocular behaviors.
Hence, the QoE assessment model, trained over existing video clips, may not be readily scalable to an even
broader set of unseen videos, especially of different characteristics. A conventional approach is to gather as many
annotated samples as possible to train the model. In our case, it requires covering videos of all kinds, which
would incur prohibitively expensive overhead in data collection. Alternatively, we propose to employ domain
adaptation [58]. Under this framework, existing videos and new videos are treated as the source domain and the
target domain, respectively. The domain adaption technique aims to fine-tune parameters of models trained in the
source domain to adapt to new circumstances in the target domain. While this technique has been widely adopted
in the context of computer vision [19], sentiment analysis [55, 69], and action recognition [16, 49], whether it is
effective in 360-degree video QoE assessment is unexplored yet.
Video type categorization. To facilitate the employment of domain adaption, we first categorize all 360-

degree videos in various types2 according to their colorfulness, luminance, and motion. Existing methods are
available to obtain the above information by inspecting I-frames and P-frames in videos [1, 54, 63]. As these
computations do not involve any sophisticated operations, they can be accomplished within dozens of milliseconds
in a computer with moderate settings. Assume that the entire video space is divided into 𝜅 types. 𝜅 plays an
important role in the performance of EyeQoE. We will examine its value selection in Section 7.3.
Domain Adaptation Each video type is treated as a domain. Assume that the training videos cover 𝐾 (𝐾 < 𝜅)

domains D𝑆 = {D1
𝑆
, ...,D𝐾

𝑆
}. The target domain that an unseen video falls into is denoted as D𝑇 . We propose a

multi-source adversarial domain adaptation (MADA) network. It is inspired by the classic domain adaptation
network introduced in [29] but further extended to scenarios of multiple source domains as in this work. As a
note, the classic domain adaptation network is originally designed to deal with single-source-domain scenarios
and thus not readily applicable here.
The architecture of MADA is illustrated in Figure 9. To fine-tune the trained GCN classifier, MADA takes

as inputs the samples from a specific target domain D𝑇 and a set of samples from each source domain D𝑘
𝑆

(𝑘 ∈ [1, 𝐾]). MADA is constructed based on the GCN classifier with four main modules: feature extractor, label
predictor, domain predictor, and loss scaler. The feature extractor, together with the label predictor, assemble
the same components of the GCN classifier introduced above. Specifically, the feature extractor is comprised of
the first four convolutional layers of GCN. The label predictor is simply the output layer, i.e., the max-pooling
layer (Figure 8). Given any graph presentation 𝑋 and 𝐴, the above two modules generate a prediction label 𝑧. The
2In this work, we assume that each 360-degree video clip is of one type without significant scene changes. For longer videos in multiple
scenes, they can be divided into multiple segments, each in one scene. We then apply our model to each segment sequentially. The final QoE
can be calculated as the aggregated QoEs of all segments.
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Figure 9. The overall architecture of EyeQoE.

domain predictor works in an adversarial way. With the high-dimensional features as the input, it aims to decide
if the given graph presentation belongs to a source domain or a target domain. Ideally, the domain predictor,
once properly trained, cannot distinguish between them. It indicates that our model’s inference performances
over existing videos and unseen videos are almost the same. The loss scaler computes the loss of label prediction
and domain prediction and aggregates them into the final loss value L𝑡𝑜𝑡

L𝑡𝑜𝑡 =
𝐾∑
𝑘=1
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𝑘
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𝑖=1
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ª®¬ − 𝜆 ©«
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Here L𝑘,𝑖

𝑦 and L𝑘,𝑖

𝑑
(𝑘 ∈ [1, 𝐾]) stand for the label prediction loss and the domain prediction loss over a sample

from source domain D𝑘
𝑆
. L𝐾+1,𝑖

𝑑
stands for the domain prediction loss over a sample from the target domain

D𝑇 . 𝑛𝑘 and 𝑛𝐾+1 represent the number of samples of D𝑘
𝑆
and D𝑇 , respectively. 𝐾 is the total number of source

domains. 𝜆 is a parameter that controls the balance between label prediction loss and domain prediction loss. 𝛾𝑘
stands for the similarity between D𝑘

𝑆
and D𝑇 . It is calculated as the cosine similarity between content metrics of

videos from these two domains. The content metrics include colorfulness, luminance, and motion as mentioned
above. Basically, two domains that share a higher similarity in their videos tend to exhibit similar prediction
performance through a trained model. Hence, the prediction loss of each source domain contributes to the total
loss with a different weight determined by 𝛾𝑘 : A source domain of a larger 𝛾𝑘 has a more prominent impact.

In the MADA network, the GCN classifier is initiated with parameters derived from the offline training phase,
whereas parameters of the domain predictor are set as random values. MADA is triggered with the arrival of an
unseen video out of the source domains. The trained GCN classifier is then fine-tuned through multiple rounds
of iterations, where backpropagation is performed and all weights are updated through the gradient descent
algorithm. We will examine in Section 7.3 with details regarding the efficiency of the fine-tuning process.

6.4 Piecing All Together
Figure 9 outlines the overall architecture of EyeQoE. The core component is a GCN classifier designed to infer
the QoE score given the subject’s graph-structured eye-based cues. To handle the issue of subjects and visual
stimuli heterogeneity, we enhance our GCN classifier with a Siamese network which consists of two identical
GCN classifiers. Sample pairs are carefully selected and used to train the classifier. Almeida-Pineda algorithm
[53], a gradient-based optimization method, is adopted. In the testing stage, given a new sample, EyeQoE first
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Table 2. Summary of the video set.

Video Category Color. Lumin. Motion Projection Source

Bar PB High Low Med. ERP Vimeo
Boat FA High Med. Med. ERP Vimeo
Bunnies FA High Med. Low EAC YouTube
City TE High High Low ERP Vimeo
Dance En Med. High Med. EAC YouTube
Girl PB Med. Low High ERP Vimeo
Lions En High High Med. EAC YouTube
Ski S Low High Low ERP Vimeo
Snowmobile S Low High High ERP Vimeo
Waterfall En High Low Low ERP Vimeo

Table 3. Participant demographic information.

Gender # Age # Eye color # Eye wear # Experience #

Female 21 18-23 26 Brown 33 None 19 No 34
Male 28 24-29 13 Blue 6 Glasses 22 Yes 16
N/A 1 30-35 9 Hazel 3 Colorless contact 7

>35 2 Other 8 Colored contact 2

examines if it belongs to any of the source domains. If yes, it indicates that the corresponding video type has
been covered during training. Hence, the trained GCN classifier is applied directly for QoE inference. Otherwise,
the video is deemed from the target domain. Then our proposed MADA is applied to fine-tune the GCN classifier
with the new sample. Finally, the QoE is derived by feeding the sample into the updated classifier.

7 EVALUATION

7.1 Settings
Experiment setup. We implement EyeQoE on a PC running Windows 10 operating system. It is equipped with
an Intel Core i7-7820X processor and GeForce RTX 2080 graphic cards. An HTC Vive Pro VR headset is used to
provide the VR environment and render videos to subjects. A Pupil Labs eye tracker is embedded inside the VR
headset to capture subjects’ eye movements. The VR headset is connected to the PC via a USB cable. EyeQoE is
implemented using the Keras 2.3.0 library built on top of the TensorFlow 2.0 framework. The Adam optimizer
[39] is employed for optimizing the training process.
Dataset.All source videos are downloaded from twomajor platforms of 360-degree videos, YouTube and Vimeo.

The original version is of 4K resolution and 25 fps frame rate. The videos cover a wide range of genres, such as
nature, sports, and city view. To facilitate the experiment, each video is of a 25-second duration without significant
scene changes. Each source video is subject to two types of distortions, including resolution degradation and
stalling. For the former, we use the JM reference implementation of the H.264 scalable video codec (SVC) to
compress the 4K original videos into lower resolutions such as 2K, 1080p and 720p. For the latter, we add freeze
frames to simulate stalling in three different versions: 8 stalls each lasting 1 second, 4 stalls each lasting 2 seconds,
and 2 stalls each lasting 4 seconds.
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Figure 10. Overall performances of EyeQoE and the comparison with two existing QoE models. (a) Confusion matrix of
EyeQoE’s predictions. (b) ROC curves of different approaches.

A data collection campaign is conducted over three months. 50 subjects are recruited. They are from a university
in the United States, most of them are international students from multiple different countries and nations. Table
3 summarizes the demographic information of the participants. The diversity is observed in the gender, age,
eye color, eye wear, and VR experience. They are asked to wear a VR headset to watch 360-degree videos of
different qualities and give a score from 1 to 5 that best describes their experience after watching each video.
Original, uncompressed reference videos are randomly placed amongst the set of videos shown, although the
subjects are unaware of their presence. The score that subjects give these references is representative of the
bias that the subject carries. By subtracting the reference video scores from those for the distorted videos, the
biases are compensated for yielding differential scores for each distorted video. We divide the data collection
into two separate sessions, each lasting no more than one hour, to avoid the discomforts caused by watching the
immersive videos too long. The interval between two sessions is at least 24 hours. We further implement a UI via
Unity, the most widely used VR development platform, to facilitate the data collection.

We did a literature review over the existing open-sourced datasets. As none of them meets our need, we decided
to collect our own dataset. We have now publicized it on https://github.com/MobiSec-CSE-UTA/EyeQoE_Dataset.
git.

7.2 Overall Performance
Figure 10a exhibits the confusion matrix of EyeQoE’s prediction results. Rows represent the ground truth from
1 to 5, whereas columns represent the prediction results. Values on the diagonal are the success rate, i.e., the
percentage of predicted results that EyeQoE gets right. The result is promising as the success rate is above 90%
for all QoE values. Besides, we observe that EyeQoE achieves slightly better performance when predicting low
and high QoE scores (1 and 5). It may be attributed to the fact that users generally perform well in distinguishing
between the best- and worst-quality videos, while the boundaries for the medium ones tend to be vague in
labeling.
Comparison with state-of-the-art. We compare the performance of EyeQoE with two state-of-the-art

solutions for 360-video QoE assessment: S-PSNR [80] and VQA-OV [43]. S-PSNR is a video-centric model; it is
built upon the classic PSNR model but further takes into account the pixel distortion issue in projection. VQA-OV
belongs to the human factor incorporated model; its main idea is to assign weights on the pixel-wise distortion in
calculating the PSNR, where the weights reflect the subject’s visual attention on the video.
The ROC curve for each model is depicted in Figure 10b. It is a classic metric to see how a model balances

between true positives and false positives. Ideally, the model is expected to have a steep ROC curve to deliver an
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accurate inference. Clearly, EyeQoE outperforms the other two with the largest AUC (area under the curve) of
0.91. In comparison, those for S-PSNR and VQA-OV are merely 0.86 and 0.84, respectively. S-PSNR and VQA-OV
fail to counter critical factors, such as cybersickness, immersiveness, and fatigue, in QoE assessment. In contrast,
rather than exhaustively enumerating and considering all possible impact factors for QoE assessment, EyeQoE
leverages ocular behaviors as an indicator to reveal the subject’s perceived QoE.
Advantage of GCN-based model in QoE assessment. We further compare the accuracy performance

between the GCN + Siamese network and prior works, S-PSNR and VQA-OV. Particularly, the GCN + Siamese
network is an ablation version of EyeQoE by removing the domain adaption component. Since none of the above
models include domain adaption, the performance should demonstrate the superiority of our GCN-based design.
Figure 11 shows the confusion matrices produced by each approach. Apparently, GCN + Siamese yields the
best performance among the three. Its diagonal line has larger values, meaning more accurate assessments are
produced. For all QoE values, GCN + Siamese maintains a success rate above 91%, whereas the S-PSNR and
VQA-OV acquire much lower success rates, ranging from 80% to 88%.

The reasons that the proposed model outperforms S-PSNR and VQA-OV can be summarized as follows. First,
our method leverages ocular behaviors, which are neglected by state-of-the-art designs; these cues offer valuable
information of a user’s QoE as validated in Section 4. Second, by applying GCN on graphs formed by fixations
and saccades, we are able to exploit the temporal dependency and content dependency of the eye-based cues
by inspecting temporal adjacent and similar activities. The “node-link” structure of the irregular non-Euclidean
graphs implies that only graph learning techniques are suitable to explore these dependencies. Third, the Siamese
network used during training automatically extracts the most relevant features and eliminates subjects and visual
stimuli heterogeneity.
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Figure 11. Advantage of GCN-based model - confusion matrix.

Performance over videos of different distortions. We further investigate the efficacy of EyeQoE over
360-degree videos of various distortions in Figure 12. Two kinds of distortions are examined, resolution and stalls.
Figure 12a shows the assessment accuracy by varying the resolution from 720p to 2K. The accuracy of EyeQoE is
all above 0.928. Besides, the performance variance under different settings is almost unnoticeable. This is the
same case in Figure 12b-12d. Hence, EyeQoE delivers consistent performance for videos of various distortions.
EyeQoE outperforms the other two schemes in all cases, especially the stalling distortion. Recall that S-PSNR
and VQA-OV measure video QoE through pixel distortions and are thus incapable of reflecting video quality
degradation caused by stalling events.
Impact of subjective factors. Now we evaluate EyeQoE’s performance subject to cybersickness, fatigue, and

immersiveness. Results are illustrated in Figure 13. EyeQoE exhibits high accuracy across various conditions. It

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 1, Article 39. Publication date: March 2022.



EyeQoE: A Novel QoE Assessment Model for 360-degree Videos Using Ocular Behaviors • 39:17

720p 1080p 2K

Resolution

0.5

0.6

0.7

0.8

0.9

1

A
cc

u
ra

cy

S. V. E.

(a) Accuracy vs. resolutions.

1s×8 2s×4 4s×2

Stall

0.5

0.6

0.7

0.8

0.9

1

A
cc

u
ra

cy

S. V. E.

(b) Accuracy vs. stalls.

720p 1080p 2K

Resolution

0

0.2

0.4

0.6

0.8

1

R
M

S
E

S. V. E.

(c) RMSE vs. resolutions.

1s×8 2s×4 4s×2

Stall

0

0.2

0.4

0.6

0.8

1

R
M

S
E

S. V. E.

(d) RMSE vs. stalls.

Figure 12. Impact of distortion types on prediction performances. S: S-PSNR; V: VQA-OV; E: EyeQoE.
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Figure 13. Impact of cybersickness, fatigue, and immersiveness on prediction performances.

implies that eye-based cues serve as effective indicators of viewer’s perceived QoE. Besides, EyeQoE outperforms
the other two models, S-PSNR and VQA-OV, by a clear margin. As discussed, neither S-PSNR nor VQA-OV
considers the above subjective factors in QoE modeling. It also explains why their performances become even
worse under a high level of cybersickness, fatigue, and immersiveness.

Handling longer videos. EyeQoE is designed in the following way to accommodate longer videos. First, if a
video contains multiple scenes, it is divided into several segments, each having one scene. In this way, we obtain
𝑆 segments of the target video. Then, the subject’s eye-based cues during each segment are structured as one
graph and fed into the trained model. The QoE for that segment is thus derived. To aggregate the QoE’s from
𝑆 segments, previous works apply either uniform averaging (e.g., [70]) or weighted averaging (e.g., [22, 76]).
EyeQoE follows the latter one, where the overall QoE of the video is a weighted average of the QoE for each
segment as follows:

𝑄𝑡𝑜𝑡𝑎𝑙 =

∑𝑆
𝑖=1𝑤 (𝑖)𝑄𝑖∑𝑆
𝑖=1𝑤 (𝑖)

(5)

where 𝑄𝑖 is the QoE output for the 𝑖-th segment and 𝑤 (·) stands for the weight determined by the segment
duration and the subject’s memory factor. The rationale behind the second design is that a subject’s perceived
experience over segments rendered later contributes more to the overall QoE [8, 22]. In this way, the temporal
dependencies are preserved within each segment.
To further evaluate EyeQoE’s performance on longer videos with frequent scene changes, we use 5 long

360-degree videos from YouTube. Table 4 lists the duration and scene rate (number of scenes per minute) of these
videos as well as the corresponding performance of EyeQoE. We observe that the video duration does not affect
much on EyeQoE’s performance. However, as the scene rate increases, the overall performance experiences slight
degradation with lower accuracy and higher RMSE. Since a long video is divided into multiple segments each
with one scene, a higher scene rate thus leads to segments with shorter duration. Hence, the number of features
extracted would be reduced, which in turn affects the performance of EyeQoE.
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Table 4. Performance on long videos.

Video Duration (min) Scene rate Seg. count Accuracy RMSE

City view 4:00 10.00 8 0.88 0.77
Coaster 5:32 0.72 12 0.93 0.39
Crime scene 22:24 0.76 48 0.90 0.32
Haydee 2:01 2.98 6 0.90 0.79
Viking village 2:09 0.47 4 0.95 0.45

Table 5. EyeQoE’s performance on different video categories.

Domain HHL HML LHL ... LLH MLM HLH

Accuracy 0.94 0.93 0.93 ... 0.92 0.91 0.91
RMSE 0.49 0.50 0.50 ... 0.54 0.57 0.57
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Figure 14. Survey results (S. = S-PSNR, V. = VQA-OV, E. 1 = EyeQoE before the experiment. E. 2 = EyeQoE after the experiment).

7.3 Micro Benchmarks
Impact of the training ratio. The impact of the training ratio on the performances of EyeQoE is analyzed. As
presented in Table 6, the performance is enhanced steadily as the size of the training dataset increases. It indicates
that EyeQoE has robust data scalability. Meanwhile, the performance improvement becomes marginal as the
ratio surpasses 60%.
Impact of training epochs. To determine whether the model has been trained properly, we monitor the

training process in Figure 15. Figure 15a shows the accuracy with respect to the number of epochs. Note that
one epoch is when an entire training dataset is passed both forward and backward through the model once. The
accuracy quickly increases to 0.90 and becomes converged after around 80 epochs. Figure 15b plots the loss value,
another indicator of whether the model is properly trained. It is considered as the “price” paid for assessment
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Table 6. EyeQoE’s performance regarding the training ratio.

Training ratio (%) 10 20 30 40 50 60 70 80

Accuracy 0.71 0.83 0.85 0.86 0.89 0.93 0.93 0.93
RMSE 1.07 0.90 0.77 0.61 0.60 0.51 0.52 0.50
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Figure 15. Training and testing performance over different number of epochs.

inaccuracy. As shown, loss tends to be stable after 100 epochs. Combining the results above, it is sufficient to set
100 epochs for training in our case.

Impact of graph construction metrics. Now we evaluate the performance of EyeQoE given different graph
construction metrics. To construct a comprehensive graph, similarity is computed between any two fixations to
decide if an edge is added. We employ three different similarity metrics: Manhattan similarity, Euclidean similarity,
and cosine similarity. They are classic metrics widely adopted for graph modeling [11]. We also examine the
impact of threshold 𝜃0. Recall that an edge is added if 𝜃 > 𝜃0. A shown in Figure 16, cosine similarity leads to
the best overall performance among the three similarity metrics. We also find that EyeQoE achieves its best
performance with accuracy = 0.93 and RMSE = 0.50 at 𝜃0 = 0.6. Basically, a too-large value of 𝜃0 would fail to
exploit content-dependency between fixations, while a too-small value would introduce unnecessary noise to
learning.
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Figure 16. Impact of similarity metrics and 𝜃0’s on prediction performances.

Performance of domain adaption.Next we evaluate the performance of EyeQoE on domain adaptation. The
fine-tuning process is executed via the proposed MADAwith the arrival of an unseen video. The impact of domain
space 𝜅 is examined. Recall that 𝜅 represents the total number of domains, i.e., video types under consideration. In
the experiment, three values are adopted 𝜅 ∈ {8, 27, 64}. They are derived by dividing the space of video content
metrics, i.e., colorfulness/luminance/motion, into 2, 3, and 4 levels, respectively ({8, 27, 64} = {23, 33, 43}). In the
setting, 𝑛𝑇 is equal to 0, 5, 10, and 15. Particularly, 𝑛𝑇 = 0 means the trained model (over existing samples) is
directly applied to an unseen video, while 𝑛𝑇 = 5 means 5 samples in the target domain are used to fine-tune the
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Figure 18. Convergence of MADA with respect to train-
ing epochs.
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Figure 19. Computation latency of QoE prediction.

model. For each 𝑛𝑇 value, the same number of samples are randomly picked from each source domain to form
the inputs alongside the target domain samples. For comparison, we also test the prediction accuracy on source
domains, denoted as 𝐷𝑆 in Figure 17. This means that the new video belongs to a source domain, and the trained
GCN classifier is directly applied without using MADA.
As demonstrated in Figure 17, the best overall performance is achieved when 𝜅 = 27 among the three values.

In general, a too coarse categorization, i.e., small 𝜅 , would fail to capture the uniqueness of each domain. On the
other hand, too fine-grained categorization, i.e., a large 𝜅, would reduce the number of samples in each domain
and thus result in over-fitting. Both cases affect the test accuracy. We also investigate the impact of 𝑛𝑇 . A larger
𝑛𝑇 is found to produce higher accuracy, since more samples allow the model to fine-tune its parameters in more
rounds to better adapt to the target domain. Meanwhile, it also implies more videos from the same target domain
to collect. Fortunately, the accuracy already reaches 0.92 with 𝑛𝑇 = 10. We thus claim that EyeQoE can deliver
satisfactory prediction performance for unforeseen videos within 10 samples of the same type. Figure 18 shows
the fine-tuning process with respect to the number of epochs. Both the accuracy and the loss value become stable
after about 20 epochs. It indicates that the domain adaption can quickly converge.
Computation latency. We now examine the computation latency of QoE prediction over one video. All the

operations include the preprocessing of eye-based cues, graph generation, and testing (including MADA for
domain adaption). Figure 19a gives the stacked computation latency of each operation. Among the three, testing
incurs the largest overhead, about 1.51 s on average. It is due to the fine-tuning for domain adaption. The average
latency for preprocessing and graph generation is 0.11 s and 0.88 s, respectively. Figure 19b further illustrates the
CDF of the total computation latency of one QoE prediction. The average value is 2.5 s, with 90% of measurements
lower than 4.2 s. It indicates that a subject’s QoE score can be derived shortly, in a couple of seconds, after a
360-degree video is finished displaying. This duration is comparable to that from the prevalent QoE collection
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solution, in which users are asked to provide QoE scores manually; yet, EyeQoE is executed automatically without
human involvement.
Impact of subject-dependent features on QoE assessment. Different subjects may be impacted in various

ways. To investigate the significance and distinction of impact factors, we correlate several objective and subjective
factors with the QoE scores from the collected data. Specifically, objective factors such as video resolution
and stalling events are directly derived from the preprocessed videos, whereas subjective factors, including
cybersickness, fatigue, and immersiveness, are collected during the experiments by confirming with the subjects
about their corresponding subjective feelings. Figure 20 demonstrates the result, from which we make the
following observations. First, among all the listed impact factors, stalling events and cybersickness are the most
critical factors, as different cybersickness levels result in the most distinct QoE distributions, and that low QoE
scores are induced whenever stalling events occur. Second, QoE scores highly concentrate with different levels of
stalling events. For example, 88% of videos with 8 stalls are rated with QoE as 1; the variance of QoE scores is
𝜎2 = 0.10. Similarly, 64% and 76% of videos with 4 and 2 stalls are rated with QoE as 2 and 3 (𝜎2 = 0.34 and 0.25),
respectively. This means that with the same levels of stalling events, more subjects perceive similar QoE, which
indicates that this factor brings a common significance across various subjects. In contrast, immersiveness results
in a relatively even distribution of QoE scores, suggesting that this factor is distinct across different users.
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Figure 20. Correlation between impact factors and QoE.

8 DISCUSSION AND FUTURE WORK
In this section, we discuss several limitations of this work and present our future research directions.
Extra cost introduced by domain adaption. Domain adaption is activated only for unseen videos; that is,

the process will be bypassed when the type of videos that are covered in the training process. Hence, no extra
training cost is incurred. For unseen videos, domain adaption does cause certain training cost. To quantify it, we
have evaluated the time consumption for domain adaption in the experiment. Figure 19a presents the stacked
computation time of EyeQoE’s all major processes, including preprocessing of eye-based cues, graph generation,
and testing. Specifically, testing is conducted over both seen and unseen videos. The latter includes the domain
adaption operation. We observe that the testing time ranges between 0.1 s and 5.1 s, among which larger values
tend to associate with unseen videos due to the domain adaption.

In current multimedia services, user’s QoE is mainly obtained by asking people to rate their perceived quality
via surveys or self-reports. However, such procedures are inconvenient and may even be annoying for the users.
EyeQoE intends to automate the entire process by constructing a QoE assessment model. User’s perceived QoE
would be generated and collected automatically. In this sense, timing is not the main consideration of our design.
Still, according to the above result, QoE assessment for unseen videos (including domain adaption) can be done
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within 5.1 s, which is satisfactory for real-world implementation. Of course, it would be even more desirable if
the latency can be further shortened. We plan to investigate this possibility in our future work.
Enhancing the prediction accuracy of EyeQoE. This work demonstrates the feasibility of using eye-

based cues for QoE assessment. While the overall accuracy performance is satisfactory, there is still room for
improvement. To this end, we plan to pursue two potential directions. The first one is to combine EyeQoE with
traditional objective quality of service (QoS) metrics such as bandwidth, latency, video quality, etc. Specifically,
we will integrate the QoS metrics as new dimensions alongside the eye-based cues as the inputs of our QoE model.
The graph modeling will be revised accordingly with the introduction of additional inputs. The selection of QoS
metrics will be carefully determined. They should be practical to collect at VR terminals and play positively in
enhancing EyeQoE’s accuracy. In the other direction, we intend to combine EyeQoE with other existing QoE
models for 360-degree videos. The hypothesis is that QoE models capturing a greater diversity of potentially
informative features might improve the overall model robustness when included. We plan to apply ensemble
methods [56, 59] over multiple representative QoE models and EyeQoE to derive the aggregated prediction results.
Comparison will be made with each single model over the prediction accuracy.
Reducing QoE prediction latency for unseen videos. Under the current design, online QoE predictions

over unseen videos are executed at the level of seconds. The latency is mainly caused by the graph generation and
the domain adaption process, i.e., fine-tuning the trained QoE model. While this value is practically acceptable
for pure QoE collection, it would be too large to support real-time QoE-aware service management, which can
benefit applications such as adaptive 360-degree video streaming [77]. Essentially, service providers can timely
adjust streaming strategies, such as resolutions, rendering speed, and scheduling priority, in accordance with
the viewer’s QoE estimated in real-time. As our future work, we plan to investigate the feasibility of forecasting
viewer’s perceived QoE a short period ahead of time, which then better tolerates the prediction latency. There is
an important observation that viewer’s subjective feelings typically do not change suddenly. For instance, one’s
cybersickness and fatigue are gradually accumulated as prolonged exposure in a VR environment. Such temporal
dependencies can be exploited for QoE forecasting.
Other approaches for adaption to unseen videos. A critical challenge of this work is to adapt the QoE

model, trained by existing video clips, to unseen videos. Aside from domain adaption as adopted here, another
interesting future direction is to leverage few-shot learning [15, 73]. We frame the challenge as a few-shot
learning problem, that is: how to train the GCN classifier such that it can quickly adapt to an unseen video after
a few learning iterations with a small number of annotated samples from the same category (Section 6.3) that
the unseen video belongs to. Few-shot learning is promising in classifying new data when only a few training
samples with supervised information are available and has been successfully applied in language processing [78],
text classification [79], and image classification [13].

9 CONCLUSION
In this paper, we present EyeQoE, a novel QoE prediction model for 360-degree videos using subjects’ eye-based
cues. To extract useful features from the cues, we propose a novel method that models them into graphs and
then build a GCN-based classifier to learn over graphs. Our design also involves the Siamese network that deals
with learning uncertainty caused by subjects and visual stimuli heterogeneity. A domain adaptation scheme
named MADA is further proposed to ensure the efficacy of EyeQoE on unseen videos. A 3-month data collection
campaign is carried out to build our own visual-based QoE assessment dataset. Our comprehensive evaluation
shows that EyeQoE advances the literature by a suite of new capabilities. First, its best accuracy performance is
92.9% which beats other state-of-the-art models. Second, EyeQoE is capable of capturing various impact factors,
such as video stalls and viewer’s subjective feelings (e.g., cybersickness, immersiveness, and fatigue), in QoE
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prediction, while they are largely overlooked in prior models. Moreover, all the online operations of EyeQoE can
be efficiently performed with 90-percentile computation latency within 4.2 seconds.
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