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ABSTRACT
This study presents Periscope, a novel side-channel attack that
exploits human-coupled electromagnetic (EM) emanations from
touchscreens to infer sensitive inputs on a mobile device. Periscope
is motivated by the observation that finger movement over the
touchscreen leads to time-varying coupling between these two.
Consequently, it impacts the screen’s EM emanations that can be
picked up by a remote sensory device. We intend to map between
EM measurements and finger movements to recover the inputs.
As the significant technical contribution of this work, we build an
analytic model that outputs finger movement trajectories based on
given EM readings. Our approach does not need a large amount of
labeled dataset for offline model training, but instead a couple of
samples to parameterize the user-specific analytic model. We imple-
ment Periscope with simple electronic components and conduct a
suite of experiments to validate this attack’s impact. Experimental
results show that Periscope achieves a recovery rate over 6-digit
PINs of 56.2% from a distance of 90 cm. Periscope is robust against
environment dynamics and can well adapt to different device mod-
els and setting contexts.
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1 INTRODUCTION
Mobile devices, such as smartphones and tablets, have penetrated
into everyday life. People typically enter sensitive inputs to mo-
bile devices with virtual keyboards, including bank card num-
ber, security code, and digit PIN. Prior research has shown that
these keystrokes can be inferred from onboard motion sensor
readings [9, 30, 33, 36, 39, 57], acoustic signals at microphones
[7, 18, 29, 32, 46, 62], video recordings [5, 6, 11, 42, 45, 54–56],
and radio signals captured by surrounding wireless infrastructures
[1, 16, 27, 28, 61]. To access these side channels, most existing works
have to impose strong assumptions over attacker’s capabilities or
attacking scenarios. For example, motion sensor based attacks re-
quire the pre-installation of certain malware to victim’s device
to access sensor readings. Video based attacks rely on the line-
of-sight (LoS) view of the typing process or object of interest that
reflects typing motions. Radio signal based attacks analyze reflected
signals to characterize environment disturbance caused by finger
movements to learn which key is pressed. It cannot tolerate any
background context changes, as otherwise, the subtle signal fluc-
tuations introduced by finger movements are easily buried under
larger-scale signal variations caused by environment dynamics. All
the above restrictions render many existing keystroke inference
attacks impractical in real-world scenarios.

In this work, we present an attack that leverages electromag-
netic (EM) emanations leaked from device’s touchscreens to snoop
keystrokes. While the EM emanations have been explored for key-
stroke inference attacks [14, 51, 53], previous efforts have been
focused on physical keyboards. When a key is pressed, the key-
board sends a packet of information known as a scan code to the
computer. The scan code is bound to a physical button on the key-
board. The information leakage threat exists because part of the
internal circuit acts as an antenna and radiates unintentional en-
coded information in EM waves. The attacker can easily reproduce
each keystroke by relating it to its unique EM wave pattern. For
virtual keyboards on mobile devices, their working principle is
quite different. The way to recognize a keystroke does not rely on
the scan code, but rather the current changes in the electrode grid.
(Details will be covered in Section 4.1.) Thus, the fingerprinting EM
leakage from a specific physical button no longer exists.

For the first time, our attack analyzes touchscreen’s EM emana-
tions under the human coupling effect. As suggested by [43, 58], a
human body can be treated as a conductor with low impedance (a
few 𝑘Ω). When a user’s finger approaches the screen, it generates
a radiative coupling with the touchscreen’s circuit. A portion of
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electric charges are extracted from the electrode grid to the finger
through the coupling capacitance. As the finger moves over a screen
to enter inputs, it changes the coupling capacitance. Consequently,
it influences the touchscreen’s EM emanations, which can be de-
tected by a remotely located eavesdropper. Our attack is built on
this phenomenon to map EM emanation fluctuations with finger
movements for performing keystrokes. Compared with state-of-
the-art inference attacks, our scheme is more practical to execute
from the following aspects. First, it eavesdrops keystrokes in a non-
invasive way. Hence, it avoids the requirement to infect the victim
device in advance of the attack. Second, as EM emanations can
easily penetrate through obstacles, no LoS view is needed to launch
the attack. Third, since our attack relies on direct EM radiations
from touchscreens rather than reflected signals, it is robust against
environment dynamics. We name our proposed attack as Periscope
as it can observe and disclose victim’s keystrokes covertly without
a LoS view.

Despite these promising features, harnessing EM emanations
for keystroke inference still faces a significant challenge, that is, to
establish a relationship between observed EM emanations and a
specific key press. A straightforward solution is to build a machine
learning model that maps between these two. For this purpose, the
attacker first needs collect labeled dataset of a reasonable size and
train the model properly. During the attack phase, unknown EM
emanations are fed into the trained model as inputs, with the out-
put as which key was most likely pressed. In fact, this approach is
adopted in most existing acoustic and radio signal based inference
attacks [1, 18, 27, 28, 61]. However, training significantly hinders
the attack deployment. As users’ typing behaviors are distinct, user-
dependent inference models are preferred to capture this unique-
ness. It requires either access to the victim’s device for some time
or possession of her labeled dataset.

To avoid the training hurdle, we aim to develop an analytic
model that characterizes the relation between EM emanations and
keystrokes. To facilitate the analysis, we divide the continuous EM
readings of entering the entire PIN into several segments, each
associated with one key pair. By looking into the equivalent cir-
cuits of the touchscreen with finger coupling, we first derive the
closed-from expression between realtime EM readings and instant
finger-screen distances. Nonetheless, the latter may not directly
reflect specific keystrokes. To fill the gap, we further estimate the
finger movement speed and direction of entering one key pair. With
these parameters, time-dependent finger-screen distances are equiv-
alently transformed to a 3D finger movement trajectory, which are
further cast to two 2D planes. The projected trajectories reveal fin-
ger movement lengths for entering one key pair in both horizontal
and vertical directions on the screen. After such projection and
transformation, we establish an explicit relation between EM read-
ings and finger movements. Meanwhile, we notice that different key
pairs may share an identical finger movement trace. To alleviate the
inference ambiguity, we propose to explore the inter-dependency
between consecutive key pairs to narrow down possible keystrokes.
We model the entire PIN entering process as a Hidden Markov
Model (HMM), with the recovered finger movement traces as ob-
servations, whereas the exact key pairs as hidden states. Finally,
HMM outputs a list of PINs ranked based on their probability of
being the target PIN.

To evaluate the proposed Periscope, we build a prototype with an
Arduino board [3] and a conductive wire, with the total cost around
$10. Extensive experiments show that our Periscope achieves a
recovery rate over 6-digit PINs of 56.2% at a distance of 90 cm. Tests
also show that Periscope is robust against environment dynamics
and transparent to attacker displacement. Besides, it stays effective
for a diverse set of devices and environment context. We summarize
the contributions of this paper as follows.

• We investigate a novel side-channel attack to eavesdrop
user’s digit inputs on mobile devices by analyzing human-
coupled EM emanations from touchscreens. While EM ema-
nation based inference attacks have been studied on physical
keyboards before, they are inapplicable to virtual keyboards
due to their distinctive working principles.

• By analyzing touchscreen circuits under the human coupling
effect, a closed-form expression is derived to characterize
the relation between EM readings and finger movements.
With the analytic model, keystrokes can be easily recovered
from EM readings without training hurdles.

• We develop a prototype and demonstrate the severity of the
threat. It outperforms state-of-the-art inference attacks in
terms of setup practicability with much fewer deployment
restrictions. Besides, the total cost of the prototype is as low
as $10.

2 RELATEDWORK
Existing keystroke inference attacks that exploit side-channel in-
formation can be broadly classified into the following categories.

Motion sensor based attacks. Efforts have been made on in-
ferring user’s keystrokes from data generated by on-board motion
sensors. Early works [9] and [39] utilize mobile device’s accelerom-
eter readings to infer victim’s passwords. By further involving
gyroscope, [36] and [57] are able to increase the attack success rate.
In this line of research, some recent works [30, 33] show that the
similar idea can be applied to wearables to snoop victim’s inputs.
However, these attacks cannot succeed unless the victim device is
pre-installed with certain malware to acquire motion sensor data,
which limits their applicability.

Acoustic signal based attacks. Genkin et al. [20, 21] are among
the first to study acoustic cryptanalysis that exploits sounds emitted
by computers or other devices to reveal sensitive information. Some
keypads such as ATM inputs and door keypads provide an audio
feedback to the user for each button pressed. Such audio feedback
is observable from a fair distance. Prior works [7, 18] quantify the
delays between feedback pulses to reconstruct the keystrokes. This
type of attack is susceptible to acoustic background noise. Besides,
not all keypads emit audio feedback. Another line of research infers
user inputs by employing acoustic ranging techniques. They uti-
lize microphones to locate finger taps and thus the corresponding
buttons on a screen [29, 46, 62]. It is not easy to derive an ana-
lytic model that characterizes finger movement trajectory with
respect to audio sound. Researchers [4, 52, 63] have to resort to
machine learning techniques and train classifiers to reconstruct
the keystrokes so far. Tedious data sample collection and offline
training process are unavoidable.
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Video based attacks. Empowered by advanced computer vision
techniques, video based attacks have been investigated for a while.
Its idea is to use cameras to record the typing process or an object
that reflects typing motion and then identify inputs by analyzing
the recorded video. Prior works have demonstrated the feasibility of
launching inference attacks by recording hand movement [45, 56],
eye movement [11, 54, 55], tablet backside motion [47], reflections
from nearby objects (e.g., glasses and plastic bottle) [5, 6, 42]. In
these attacks, cameras should have a LoS view for object of interest;
otherwise, keystroke activities cannot be detected. Besides, this
type of attack does not work under poor lighting conditions.

Radio signal based attacks. Emerging research efforts have
been made on eavesdropping keystrokes from radio signals due to
the wide deployment of wireless infrastructures (e.g., WiFi and cel-
lular towers). In particular, prior works [1, 16, 27, 61] reveal victim’s
keystrokes via the WiFi channel state information (CSI). Ling et al.
[28] recovered the typed PIN on an ATM by analyzing the reflected
cellular signals. As they rely on wireless infrastructures to launch
the attack, the signal strength is relatively strong. Hence, the at-
tacking distance is up to several meters. On the other hand, as radio
signals are highly susceptible to environmental dynamics, these
attacks cannot tolerate any changes in the environment other than
the victim’s hand or finger movement. As Periscope utilizes direct
EM radiations from the device’s touchscreen rather than reflected
signals from the target, it is robust against environment dynamics.
Besides, no extra wireless infrastructure is needed to launch the
attack. Like acoustic signal based attacks, due to the complexity
of formulating the relationship between observed wireless distur-
bances and specific key presses, radio signal based attacks typically
resort to machine learning techniques too. Recently, Fang et al. [16]
proposed a training-free keystroke inference attack by leveraging
structures of dictionary words. They built a prototype with USRP,
with a total cost around several thousand dollars.

EM emanation based attacks. EM radiations unintentionally
leak from electronic devices. It has been investigated as a side
channel to and victim’s keystrokes on physical keyboards [14, 51,
53]. Notably, each key is associated with a unique scan code. Once
it is pressed, the PC recognizes the key by reading the imported
information through the data cable. The attack is based on the
observation that the encoded keystroke information is radiated to
the open air the form of EM emanations as it is transmitted over
the cable. The working principle of soft keyboards is different. A
keystroke is recognized by locating the touched position on a screen
surface from current changes. Therefore, the existing eavesdropping
method toward physical keyboards is inapplicable here. For the
first time, Periscope examines the EM radiation changes caused
by human coupling effects when a finger performs keystrokes. We
then build a mapping relation between EM emanations and finger
movement trajectory which serves as the foundation of our attack.

EM emanations have also been exploited to infer displayed in-
formation on a device’s screen [24, 31, 49], profile device memory
usages [12], and identify the model of LCD monitors [37], which
are parallel to what we study here.

A comprehensive comparison with related works is summarized
in Table 4 in the Appendix.

Attacker
prototype

Smartphone
(on the table)

Figure 1: Eavesdrop EM emanations using an attack device.

3 ADVERSARY MODEL
Attack scenario. The attack scenario is considered as that an ad-
versary seeks to infer a victim’s secret PIN by eavesdropping her
keystrokes on a mobile device. As shown in Figure 1, the victim
places her device on a table and types on a soft numeric keyboard
on the screen. Such scenarios are prevalent in daily life, such as in a
library or a cafe where users unlock their smartphones by entering
digit PINs. A similar setting is considered in prior works [27, 34, 47].
We plan to investigate in our future work a more complicated sce-
nario that an attack is launched when a victim user holds the mobile
device. The attacker is assumed in physical proximity to the victim.
It is well concealed, e.g., placed underneath a table or in a bush
nearby [34]. We focus on soft numeric keyboards with a classic
layout, though the attack can target other layouts just as easily.

What an attacker cannot do. Unlike many prior keystroke
inference attacks, the attacker does not necessarily have a LoS view
of victim’s keyboard or any other object of interest, such as hand
movement, eye movement, and tablet backside motion. We do not
assume the existence of any covert channel that reveals victim’s
onboard sensor readings to the attacker either. Also, there is no
ideal environment, static or quiet, to launch attacks. The victim can
make free body movements during the typing process; other people
may walk by or talk in the background. Besides, it is unlikely for
an attacker to collect large amounts of data samples from a specific
victim to train an individual keystroke inference model properly
before the attack. The above settings render most of the existing
keystroke inference attacks infeasible.

What an attacker can do. The attack is able to figure out which
mobile device a victim is using and thus its numeric keyboard layout.
In practice, the attacker can investigate the MAC address of the
victim’s WiFi traffics to obtain the device manufacturer information
by looking up prefixes of MAC addresses [13]. As mentioned in [22,
38, 64], the victim’s DNS responses contain its device name. With
the information above, many mobile devices can be fingerprinted.
Prior work [22, 38] provide technique details on setting up a free
WiFi access point to access the victim’s MAC address and DNS
responses for device fingerprinting unnoticeably.

4 PRELIMINARIES
4.1 How Do Touchscreens Work?
The majority of current mobile devices, such as smartphones and
tablets, are equipped with touchscreens. While there are various
sensing touch technologies, mutual capacitive sensing has been
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the most prominent due to its high sensitivity, energy efficiency,
and low manufacturing cost [40]. We thus focus on this type of
touch-sensing devices here.

Finger

Body capacitance
~100 pF

Body resistance
~1.5k Ohm Device case

Electrode
grid

Glass screen
Coupling capacitance

Figure 2: The composition of a mutual capacitive touch-
screen.

As shown in Figure 2, a capacitive touchscreen consists of a grid
of transmitter (TX) and receiver (RX) electrodes, which are mutually
coupled with a capacitance of 𝐶0. TX electrodes are driven by an
alternating voltage signal 𝑉𝑇𝑋 (𝑡), which creates an alternating
current flow from TX to RX electrodes. When a finger touches
the screen, it extracts some electric charges from the electrode
grid to the human body through a coupling capacitance 𝐶𝑓 . The
touchscreen controller monitors the changes in the current that
flows into RX electrodes and reports the change as a touch event
to the system OS. Meanwhile, it locates the current change in the
electrode grid as the touched position on the screen. The input is
then recognized accordingly.

4.2 Touchscreen EM Emanations and
Measurements

The alternating currents between touchscreen’s TX and RX elec-
trodes generate time-variant EM fields that continuously emit EM
radiations to the open space. Periscope intends to map the radiation
to user’s typing inputs.

Filter

EPSTouchscreen

Impluse response funciton:

Figure 3: The circuit for touchscreen’s EM emanation mea-
surement.

Figure 3 depicts an equivalent circuit of using an electric po-
tential sensor (EPS) to measure touchscreen’s EM emanations. An
EPS typically consists of a capacitor 𝐶𝑚 , a resistance 𝑅𝑚 , a voltage
amplifier, and a low-pass filter. By placing the eavesdropper, i.e.,
EPS, within the EM field of victim’s touchscreen, these two will be
remotely coupled via a small capacitance 𝐶𝑟 . Denote by 𝑉𝑠 (𝑡) the
time-variant voltage that drives EM emanations from the touch-
screen. The captured EM emanation at EPS, measured in electric

potential changes 𝑉𝑚 (𝑡), is expressed as

𝑉𝑚 (𝑡) = 𝑉𝑠 (𝑡) ·
1/( 1

𝑅𝑚
+ 𝑗2𝜋 𝑓𝐶𝑚)

1
𝑗2𝜋 𝑓𝐶𝑟

+ 1/( 1
𝑅𝑚

+ 𝑗2𝜋 𝑓𝐶𝑚)
· ℎ(𝑡). (1)

Here ℎ(𝑡) denotes the joint impulse response of the amplifier and
the low-pass filter. 𝑓 stands for the frequency of the driving volt-
age 𝑉𝑇𝑋 (𝑡). Among the parameters in (1), 𝐶𝑚 , 𝑅𝑚 , and ℎ(𝑡) are
fixed values. 𝐶𝑟 depends on the attacker-victim distance. It can be
treated as a fixed value too under a specific eavesdropping event.
Now 𝑉𝑚 (𝑡) is determined by 𝑉𝑠 (𝑡). As demonstrated next, 𝑉𝑠 (𝑡) is
impacted by finger movement. Hence, we establish a connection
between EM readings and finger movement. To validate this claim,
we show in Figure 4 the spectrogram of EM readings𝑉𝑚 (𝑡) when a
user enters a 6-digit PIN. There are 6 bars with intense magnitude,
each representing the tap of one key. We also notice that the ma-
jority frequency components are scattered at the lower end of the
spectrum band, below 60 Hz. It indicates that EM emanations can
be easily captured by cheap EPS with a fair sampling rate.
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Figure 4: Spectrogramof EMemanationmeasurement𝑉𝑚 (𝑡).

4.3 Impact of Finger Coupling
The driving voltage of touchscreen EM emanation 𝑉𝑠 (𝑡) is influ-
enced by finger coupling that is modeled next.

Figure 5(a) is an equivalent circuit for a mutual capacitive touch-
screen when no touching. 𝑅𝑇𝑋 (𝑅𝑅𝑋 ) represents the resistor at the
TX (RX) electrode. Recall that𝐶0 is the TX-RX coupling capacitance.
The equivalent circuit is transformed to Figure 5(b) when touch-
ing. As a finger moves close to the screen, they become remotely
coupled via capacitance 𝐶𝑓 . As shown in Figure 5(c), the finger
extracts some electric charges through coupling to the human body
(characterized in 𝐶𝐵 and 𝑅𝐵 ). We call the above phenomenon as
finger/human coupling effect. When a finger is coupled to the screen,
𝑉𝑠 (𝑡) is expressed as

𝑉𝑠 (𝑡) = 𝑉𝑇𝑋 (𝑡) · 𝑅𝑇𝑋

𝑅𝑇𝑋 + 1/ 𝑗4𝜋 𝑓𝐶0 + 𝑍 (𝑡)
(2)

where 𝑍 (𝑡) denotes the equivalent time-variant impedance of the
right-half circuit of Figure 5(b)

𝑍 (𝑡) = 1/( 1
1/ 𝑗2𝜋 𝑓𝐶𝑓 (𝑡) + 1/( 𝑗2𝜋 𝑓𝐶𝐵 + 1/𝑅𝐵)

+ 1
1/ 𝑗4𝜋 𝑓𝐶0 + 𝑅𝑅𝑋

) .

(3)
Let 𝑧 (𝑡) be the instant finger-screen distance. According to [10],
𝐶𝑓 (𝑡) can be expressed as

𝐶𝑓 (𝑡) =
𝜖0𝜖𝑟𝐴

𝑧 (𝑡) , (4)
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(a)

Impedance:

(b)

A

(c)

Figure 5: Illustration of finger coupling effect. (a) Equivalent
circuit without finger touches. (b) Equivalent circuit with
finger touches. (c) Screen-finger coupling.

where 𝜖0 and 𝜖𝑟 are dielectric permeability coefficients. 𝐴 is the
overlap area between the fingertip and the screen. As 𝜖0, 𝜖𝑟 and
𝐴 are fixed values in one keystroke, 𝐶𝑓 (𝑡) is negatively correlated
with 𝑧 (𝑡). Together with (2) and (3), we have the following relation
𝑧 ↓,𝐶𝑓 ↑, 𝑍 ↓,𝑉𝑠 ↑. In short, the touchscreen emits stronger EM
emanations when the finger moves closer to it and vice versa. Ac-
cording to (1), 𝑉𝑚 has a positive correlation with 𝑉𝑠 . We thus have
𝑧 ↓,𝐶𝑓 ↑, 𝑍 ↓,𝑉𝑠 ↑,𝑉𝑚 ↑. This relationship chain indicates that the
finger coupling effect reveals a side channel to monitor finger move-
ments: remote EM emanation measurements 𝑉𝑚 (𝑡) reflect finger’s
realtime distance to the screen 𝑧 (𝑡) when performing keystrokes.

4.4 How to Calculate 𝑧 (𝑡) from 𝑉𝑚 (𝑡)?
While the above analysis exhibits a negative correlation between
𝑧 (𝑡) and 𝑉𝑚 (𝑡), we seek to further quantify this relationship, i.e.,
how to calculate 𝑧 (𝑡) from 𝑉𝑚 (𝑡) exactly? Essentially, our goal is
to derive a closed-form expression of 𝑧 (𝑡) as a function of 𝑉𝑚 (𝑡)
via (1)-(4). Nonetheless, this task is nontrivial.

Some parameters in (1)-(4), such as 𝑅𝑚 ,𝐶𝑚 ,𝐶𝑟 , and ℎ(𝑡), are not
readily available. For example, 𝐶𝑟 is determined by the placement
of the victim device and EPS. To resolve this issue, our trick here is
to utilize multiple measurements that can cancel out the unknown
parameters during the calculation.

As a note, EPS measures 𝑉𝑚 (𝑡) in its amplitude, denoted as
|𝑉𝑚 (𝑡) |. Let |𝑉𝑚 (𝑡) |∗ be themaximumvalue of |𝑉𝑚 (𝑡) |. It is obtained
the moment that a finger touches the screen. |𝑉𝑠 (𝑡) | and |𝑉𝑠 (𝑡) |∗
are defined similarly. We have

|𝑉𝑚 (𝑡) |
|𝑉𝑚 (𝑡) |∗

1○
=

|𝑉𝑠 (𝑡) |
|𝑉𝑠 (𝑡) |∗

2○
=

|𝑅𝑇𝑋 + 1/ 𝑗4𝜋 𝑓𝐶0 + 𝑍 (𝑡) |∗
|𝑅𝑇𝑋 + 1/ 𝑗4𝜋 𝑓𝐶0 + 𝑍 (𝑡) |

(5)

where 1○ and 2○ are due to (1) and (2), respectively. As suggested by
[19, 26],𝐶𝑓 and𝐶0 are generally very small, around 2 pF (2× 10−12
F). Thus, their equivalent impedance is much larger than the body
resistance𝑅𝐵 (around 1.5𝑘Ω [50]), the body capacitance𝐶𝐵 (around
100 pF), as well as the resistance of electrodes 𝑅𝑇𝑋 and 𝑅𝑅𝑋 (around

160Ω [26]). Then, (5) is rewritten as1

|𝑉𝑚 (𝑡) |
|𝑉𝑚 (𝑡) |∗ ≃ |1/ 𝑗4𝜋 𝑓𝐶0 + 𝑍 (𝑡) |∗

|1/ 𝑗4𝜋 𝑓𝐶0 + 𝑍 (𝑡) |
, (6)

Similarly, 𝑍 (𝑡) is approximated as

𝑍 (𝑡) ≃ 1/( 1
1/ 𝑗2𝜋 𝑓𝐶𝑓 (𝑡)

+ 1
1/ 𝑗4𝜋 𝑓𝐶0

) = 1/( 𝑗2𝜋 𝑓𝐶𝑓 (𝑡) + 𝑗4𝜋 𝑓𝐶0).

(7)

Let the maximum finger coupling capacitance be 𝐶∗
𝑓
. In prac-

tice, manufacturers tend to set the TX-RX coupling capacitance 𝐶0
approximate to 𝐶∗

𝑓
[26]. We thus have 𝐶∗

𝑓
≃ 𝐶0, by which 𝐶∗

𝑓
is

achieved under the minimum finger-screen distance 𝑧min. From (4),
we have 𝐶𝑓 (𝑡 )

𝐶∗
𝑓

=
𝑧min
𝑧 (𝑡 ) which leads to

𝐶𝑓 (𝑡) = 𝐶∗
𝑓

𝑧min
𝑧 (𝑡) ≃ 𝐶0

𝑧min
𝑧 (𝑡) . (8)

Combining (6) - (8), we have

|𝑉𝑚 (𝑡) |
|𝑉𝑚 (𝑡) |∗≃

|1/ 𝑗4𝜋 𝑓𝐶0 + 𝑍 (𝑡) |∗
|1/ 𝑗4𝜋 𝑓𝐶0 + 𝑍 (𝑡) |

=

𝑧min
𝑧 (𝑡 ) + 2
𝑧min
𝑧 (𝑡 ) + 4

· 5
3
. (9)

and thus

𝑧 (𝑡) = 1/( 2𝛾1
1 − |𝑉𝑚 (𝑡 ) |

|𝑉𝑚 (𝑡 ) |∗
3
5

− 4 + 𝛾2) × 𝑧min . (10)

𝑧min is essentially the thickness of touchscreen’s covering glass.
It can be determined once the device manufacture information is
figured out. For example, 𝑧min equals to 0.6 mm for iPhone SE2 [23,
25, 48]. |𝑉𝑚 (𝑡) |∗ is the maximum measurement the EPS captured.
It can be treated as a known value. 𝛾1 and 𝛾2 are coefficients that
compensate the approximation errors of 𝑧 (𝑡) in (2)-(8). They can
be estimated via offline calibration.

So far, we are able to express 𝑧 (𝑡) into a function of𝑉𝑚 (𝑡). Given
an instant EM emanation measurement, the corresponding finger-
screen distance can be obtained following (10). More importantly,
no training phase is needed. Unlike many wireless signal based
inference attacks, our analytic model is transparent from under-
lying signal propagation channel conditions, as they have been
incorporated into |𝑉𝑚 (𝑡) | and |𝑉𝑚 (𝑡) |∗. Their impact is canceled
with each other during the calculation. Still, the attacker cannot
infer victim’s typing inputs from 𝑧 (𝑡) directly, unless it has the full
knowledge of the finger movement trajectory. We present how to
derive the latter from 𝑧 (𝑡) in Section 6.

5 MEASUREMENT STUDY
The objective of this section is to validate the analytic result of Sec-
tion 4 and investigate the feasibility of leveraging human-coupled
EM emanations to launch keystroke inference attacks.

We build our prototype using an Arduino nano board [3] as a
microcontroller unit (MCU) and a conductive wire as an antenna.
These two are connected via Arduino’s analog input pin shown in
Figure 6. The antenna senses the electric potential changes caused
by touchscreen EM emanations. The system samples received sig-
nals with an analog-to-digital (A/D) converter at a rate of 4000

1Given two complex values 𝑎 + 𝑗𝑏 and 𝑐 + 𝑗𝑑 , if 𝑏 >> 𝑎 then |𝑎 + 𝑗𝑏 + 𝑐 + 𝑗𝑑 | ≃
| 𝑗𝑏 + 𝑐 + 𝑗𝑑 | since

√
(𝑎 + 𝑐)2 + (𝑏 + 𝑑)2 ≃

√
(𝑐)2 + (𝑏 + 𝑑)2 .
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Figure 6: Prototype of Periscope.

samples/sec. Recall that the frequency of touchscreen EM ema-
nations is bounded within 60 Hz according to the spectrogram
analysis in Section 4.2. Therefore, the prototype’s sampling rate is
more than enough to capture signal variances in EM emanations.
The entire prototype costs less than $10, which renders the attack
easily accessible and widely deployable.

To validate the analytic model for 𝑧 (𝑡) derived in Section 4.4, Fig-
ure 7 compares it with the ground truth measurement. It is observed
that the former generally complies with the latter. Meanwhile, the
approximation operations involved in the derivation process do
introduce some marginal discrepancies between these two. We plan
to investigate its impact on the attack performance in experimental
evaluations.

0 0.5 1 1.5 2 2.5 3
0

2

4

6
Analytic result

Measurement result

Figure 7: Estimation of 𝑧 (𝑡) from |𝑉𝑚 (𝑡) |

Figure 8 shows EM measurements when entering a 6-digit PIN.
EM emanation variations reflect finger interactions with the screen.
We find that the signal experiences a sharp increase when the finger
moves towards the screen. It then decays quickly the moment a
physical contact takes place. This is because the finger draws some
electric charges from the screen. With reduced electric charges, the
EM radiation from the screen drops accordingly. Later on, as the
finger leaves the screen for the next key, the EM amplitude keeps
decreasing until the finger is de-coupled from the screen. This
observation coincides with the analytic result derived previously.

Figure 9 shows EM measurements by entering three different
key pairs “42”, “46”, and “43”. It is observed that their EM readings
are distinct to each other. For example, “42” is associated with the
shortest time duration between two consecutive EM amplitude
peaks, as a finger moves in the shortest path to enter this key
pair among the three. We further evaluate the similarity of EM
emanations among ten key pairs originated from “4” in Figure 10.
Normalized DTW distance is employed. A small value represents a
high similarity between two pairs, while a larger one means they
are barely correlated. We find that except for the diagonal, i.e., a
key pair and itself, DTW distances between EM readings from any
two different pairs are relatively large.

Figure 8: EM emanationmeasurements for entering a 6-digit
PIN.
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Figure 11: 3D finger movement trace and decomposition.

Based on the above observation, we propose to recognize indi-
vidual key pairs from their EM measurements first and then the
whole PIN.

6 DESIGN RATIONALE
Our design first separates the received continuous EM emanations
into multiple segments, each representing signals from one key
pair. Recall that we are able to map an instant EM reading to the
associated finger-screen distance. Then we apply some transforma-
tions to convert time-dependent finger-screen distance to finger
movement traces, which finally recover key pairs and thus the PIN.

Decomposition of 3D finger movement trace. As shown in
Figure 11, the finger movement for entering one key pair can be
characterized by a 3D trace. By treating the first keystroke as
the origin point, we set up a 3D coordinate system, where the
x-y plane is where the screen resides and z-axis is vertical to the
screen. For any 3D finger movement trace, denoted as 𝑧 (𝑥,𝑦), let
its projection on the x-z plane and y-z plane be 𝑧 (𝑥) and 𝑧 (𝑦), re-
spectively. If we know the intersection between 𝑧 (𝑥) (𝑧 (𝑦)) and
x-direction (y-direction) of the keyboard, the key pair is recov-
ered. For this purpose, we further divide the x-direction, denoted
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Figure 12: Coordinate systems for finger movement traces
from arbitrary key pairs.

as 𝐿𝑥 , of the keyboard into 3 units; each represents one key. Sim-
ilarly, the y-direction, denoted as 𝐿𝑦 , is divided into 4 units. Un-
der this setting, key pair “16”, for example, can be represented as
𝐿𝑥 = 2 units, 𝐿𝑦 = 1 unit. Our task now becomes how to determine
𝐿𝑥 and 𝐿𝑦 of a specific key pair from its EM emanation readings.

Relation between 𝐿𝑥 (𝐿𝑦) and EM readings. Denote by 𝜃 the
angle between 3D trace 𝑧 (𝑥,𝑦) and 𝑧 (𝑥), its projection on the 𝑥 − 𝑧
plane. Let 𝑥 (𝑡) (𝑦 (𝑡)) be the finger’s instant position at time 𝑡 cast
on the x-axis (y-axis). Then we have

𝑥 (𝑡) = 𝑣𝑝𝑡 cos𝜃, 𝑦 (𝑡) = 𝑣𝑝𝑡 sin𝜃, (11)

where 𝑣𝑝 is the finger movement speed2. Besides, the time-series
finger-screen distance 𝑧 (𝑡) of one key pair can be approximated
with a high dimensional polynomial

𝑧 (𝑡) = 𝑎𝑛𝑡𝑛 + 𝑎𝑛−1𝑡𝑛−1 + · · · + 𝑎𝑖𝑡𝑖 + · · · + 𝑎0 . (12)

The 𝑛 + 1 coefficients 𝑎0, · · · , 𝑎𝑛 can be determined by solving a lin-
ear equation systemwith𝑛+1 samples: (𝑡1, 𝑧 (𝑡1)), · · · , (𝑡𝑛+1, 𝑧 (𝑡𝑛+1)),
where 𝑧 (𝑡) can be calculated from𝑉𝑚 (𝑡) following (10). Combining
(11) and (12), 𝑧 (𝑥) is expressed as

𝑧 (𝑥) = 𝑎𝑛

(𝑣𝑝 cos𝜃 )𝑛
𝑥𝑛 + 𝑎𝑛−1

(𝑣𝑝 cos𝜃 )𝑛−1
𝑥𝑛−1 + · · · + 𝑎0 . (13)

Similarly, 𝑧 (𝑦) can be expressed as

𝑧 (𝑦) = 𝑎𝑛

(𝑣𝑝 sin𝜃 )𝑛
𝑦𝑛 + 𝑎𝑛−1

(𝑣𝑝 sin𝜃 )𝑛−1
𝑦𝑛−1 + · · · + 𝑎0 . (14)

With 𝑧 (𝑥) (𝑧 (𝑦)), by examining its intersection with the x-axis (y-
axis), we can easily obtain 𝐿𝑥 (𝐿𝑦 ). To be specific, solve 𝑥 by setting
𝑧 (𝑥) = 0. 𝐿𝑥 is the unit that 𝑥 falls into. 𝐿𝑦 is obtained similarly.
The above calculation relies on the knowledge of 𝑣𝑝 and 𝜃 . We will
discuss in Section 7.2 how to derive these two critical parameters.

To sum up, for each key pair, the attacker collects at least 𝑛 + 1
samples of EM readings. Their corresponding finger-screen dis-
tances are calculated following (10). Then a polynomial of 𝑛-degree
that characterizes time-series finger-screen distance 𝑧 (𝑡) is con-
structed. With the knowledge of victim’s finger movement speed
𝑣𝑝 and direction 𝜃 , 𝑧 (𝑡) is converted to 𝑧 (𝑥) and 𝑧 (𝑦). Their inter-
sections with x-axis and y-axis are 𝐿𝑥 and 𝐿𝑦 , respectively. From
the above analysis, we can tell that time-series 𝑧 (𝑡) bears the infor-
mation of time interval for entering one key pair. To alleviate the
impact of EM variances to our analytic model, we resort to 𝑛 + 1
samples (𝑡1, 𝑧 (𝑡1)), · · · , (𝑡𝑛+1, 𝑧 (𝑡𝑛+1)) to derive 𝑧 (𝑡) first.

Discussions. Note that a given pair of 𝐿𝑥 and 𝐿𝑦 may not
uniquely identify a specific key pair, but a set of key pair candidates.

2Soft keyboards are generally small in size. For most users, the entry of a PIN can be
performed smoothly within a short time. Thus, it is practical to assume a constant
finger movement speed for each user. Speeds from different users are not necessarily
the same though.
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Figure 13: The system design of Periscope.

For example when 𝐿𝑥 = 2 units and 𝐿𝑦 = 1 units, satisfying key
pairs include "61", "16", "34", "43", "67", "76", "49", and "94". To alleviate
the inference ambiguity, we propose to model transitions between
key pairs into a HMM to eliminate impossible combinations of key
pairs. Details will be elaborated in Section 7.3.

In the above analysis, we use the key pair “16” to illustrate how
to model a finger movement trace shown in Figure 11. A coordinate
system, with “1” as the origin point, is set up. In fact, our method is
applicable to arbitrary key pairs. Figure 12 demonstrates the cases
of two other key pairs “59” and “92”. Their origin points become “5”
and “9”, separately. In either case, we have the trajectory exist in
the first quadrant of the coordinate system and thus 𝜃 ∈ [0, 𝜋/2]
to facilitate our analysis.

7 DESIGN DETAILS OF PERISCOPE
The system overview of Periscope is given in Figure 13. It consists
of three main components: preprocessing, key pair recovery, and PIN
recovery.

7.1 Preprocessing
The goal is to extract clean signal segments for individual key pairs
from continuous raw EM emanation readings.

Envelope extraction. As shown in Figure 14, raw EM emana-
tion readings are mixed with oscillating signals, which add small-
scale variations to the envelope. Essentially, the envelop signal is
caused by finger coupling effect and thus contains useful informa-
tion regarding finger movements. The oscillating signals, on the
other hand, are produced by touchscreen’s alternating driving volt-
age and useless for the attack. To extract the envelope, the extrema
sampling based algorithm is employed [35, 59]. Specially, a sliding
time window Δ𝑡 is applied over the raw reading. The local maximal
value within this window, max𝑉𝑚 (𝑡 ′) (𝑡 ′ ∈ [𝑡, 𝑡 + Δ𝑡]), is deemed
as the filtered output for Δ𝑡 .

Waveform segmentation. The purpose of this step is to seg-
ment the signal for each key pair out of a continuous waveform.
We first identify critical time instances associated with finger re-
lease/touch events. For finger touch, it appears at EM reading peaks.
We thus apply the classic peak detection algorithm [8] over the
envelope signal to identify such events. Once the finger leaves the
screen, the discharging coupling capacitance causes a sudden drop
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in EM readings as shown in Figure 14. Hence, the finger release
event is identified by locating the maximum derivative along the
EM signal envelope between two consecutive peaks. Upon identi-
fying the above critical events, the EM signal of one key pair is the
waveform segment between the finger release (of the first key) and
the next finger touch (of the second key).

7.2 Key Pair Recovery
Section 6 presents how to recover a key pair, recognized via 𝐿𝑥 ,
𝐿𝑦 , from EM readings. As discussed, the attacker should be aware
of the victim’s finger movement speed 𝑣𝑝 and direction 𝜃 . In the
following, we focus on the estimation of these two parameters.

Estimation of 𝜃 . Let Θ be the set of possible directions of finger
movement for entering a key pair. To estimate 𝜃 , our idea is compare
among all the possible candidates in Θ and figure out the one that
produces the highest estimation confidence level.

As discussed in Section 6, we take the first press of a key pair
as the origin and set up a 3D coordinate system. Following the
steps, the coordinate of the second press (𝑥,𝑦) is derived by solving
𝑧 (𝑥) = 0 and 𝑧 (𝑦) = 0. 𝐿𝑥 and 𝐿𝑦 are obtained accordingly. Let
𝑜 be the geometry center of the key identified by 𝐿𝑥 and 𝐿𝑦 . A
user typically taps the center of a key to enter an input. If 𝜃 is the
correct direction, the derived (𝑥,𝑦) should be close to a key’s center.
Otherwise, (𝑥,𝑦) tends to deviate from the center, as illustrated in
Figure 15. We then define the confidence level under 𝜃 as

𝑙 = 1 − |(𝑥,𝑦) − 𝑜 |∑
𝜃 ∈Θ | (𝑥,𝑦) − 𝑜 | . (15)

𝑙 is a value between [0, 1]. It approximates 1 if (𝑥,𝑦) is close to a
key center. Finally, finger movement direction is deemed as the
one that produces the maximum confidence level among all the
candidates, 𝜃 = argmax𝜃 ∈Θ 𝑙 .

Generally speaking, most digit keyboards are asymmetric to
the diagonal, e.g., the inter-key spaces in the x-axis and y-axis
are distinct. Hence, multiple decomposition candidates are less
likely to share the same probability for a given key pair. Symmetric
keyboards, on the other hand, will impact the success inference
rate, as the attacker cannot distinguish between x-/y-movements.

Estimation of 𝑣𝑝 . As examined in prior works [2, 17], finger
movement speed for typing is deemed consistent for each individual.
We propose to estimate it by eliciting victims to enter some digits in
their devices and estimating the speed from the collected samples.
Specifically, the attacker can set up free WiFi. Once a victim is
connected, the access point requires user approval by displaying a

dialog box and asking the victim to enter designated numbers as
a confirmation message [1]. An alternative approach is to set up
a Text Captchas that asks the victim to input the chosen numbers
[27]. Following the same key pair segmentation approach, we first
separate victim entered number sequence into a series of key pairs.
Then the time duration for entering one key pair is known. Since
the exact key pair is known, so is the inter-key distance. The finger
movement speed is estimated by dividing the distance by the time
duration. We set 𝑣𝑝 as the median value of measured speeds of
all key pairs in one number sequence. To improve the estimation
accuracy, the attacker can have the victim enter more than one
sequence. According to our experiment result, three such digit
sequences are sufficient to deliver satisfactory estimation. Periscope
only needs a couple of user-specific samples to determine victim’s
typing speed. Some prior works apply user-agnostic models for
typing inference. They typically employ sophisticated deep learning
models that require large amounts of labeled training samples from
various users to avoid overfitting.

7.3 PIN Recovery
So far, the attacker is able to infer 𝐿𝑥 and 𝐿𝑦 of a given EM wave-
form segment. As discussed, a pair of 𝐿𝑥 and 𝐿𝑦 can be mapped to
multiple key pairs. We propose to leverage the interdependence
of consecutive key pairs to resolve the inference ambiguity. For
example, given 𝐿𝑥 = 2 units and 𝐿𝑦 = 1 units for the first waveform
segment, satisfying key pairs include "61", "16", "34", "43", "67", "76",
"49", and "94". Given 𝐿𝑥 = 2 units and 𝐿𝑦 = 2 units for the second
waveform segment, satisfying key pairs include "19", "91", "37", and
"73". Considering interdependence, the existing candidates for the
first key pair "16", "34", "76", and "94" can be eliminated immedi-
ately, as none of them ends with "1", "9", "3", or "7", the first digit of
the second key pair. Hence, viable candidates for the first key pair
are narrowed down to "61", "43", "67", and "49", by 50%. As more
key pairs are considered, this side information can be propagated
back-and-forth to further reduce the ambiguity. We propose to
model such interdependence between consecutive key pairs for PIN
recovery using HMM.

We model the keystroke process as HMM characterized by 𝜆 =

(𝑁,𝑀,𝐴, 𝐵, 𝜋). In the HMM, 𝑁 is the number of hidden states.
We treat key pairs as hidden states. As there are 100 possible key
pairs, i.e., from “00” to “99”, we have 𝑁 = 100. The parameter 𝑀
represents the number of possible observations for hidden states,
i.e., 𝐿𝑥 and 𝐿𝑦 . As there are three and four possible values of 𝐿𝑥
and 𝐿𝑦 , respectively, we have𝑀 = 3 × 4 − 1 = 11. 𝐴, with the size
of 𝑁 × 𝑁 , stands for the transition probability matrix, with each
element denoting the transition probability from one hidden state
to another. The observation probability matrix 𝐵, of the size 𝑁 ×𝑀 ,
gives the possibility that a given observation can be observed in a
hidden state. The initial state distribution vector 𝜋 represents the
belief about which state the HMM is in when our scheme is called
for the first time.

To build the HMM, we need to determine parameters 𝐴, 𝐵, and
𝜋 . The transition probability matrix 𝐴 can be predefined by the
natural continuity of the typing process. For example, if we assume
equal probability of typing any keys, the hidden state “61” has a
chance of 0.1 to transfer to each hidden state “1x”, while the chance
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Figure 16: The state and transitions of HMM.

to other states is 0. 𝐵 is obtained by evaluating the probability of
a given key pair that generates certain observations. It actually
reflects the accuracy of our proposed key recovery scheme. Due
to random errors occurred in EM measurements, our scheme may
generate false observations other than the ground truth at a certain
probability. We propose to run our scheme offline ahead of the
attack to derive 𝐵. In our design, we employ a uniform distribution
for the initial state distribution 𝜋 .

Given the observation sequence of key pairs 𝑂 = 𝑂1𝑂2 · · ·𝑂𝑆 ,
the PIN recovery problem is to find optimal hidden sequence 𝑄 =

𝑄1𝑄2 · · ·𝑄𝑆 ] to maximize 𝑃 (𝑄 |𝑂, 𝜆). This problem can be solved
by the Viterbi algorithm [41], a commonly adopted approach for
HMM. In addition to search the most likely PIN, we also calculate
the probability of all possible PINs generated by the HMM. The
attacker can thus sort them according to their probabilities and
form a list of candidates to infer the target PIN with multiple trials.

8 EXPERIMENTAL EVALUATIONS
The experiments are conducted using our prototype described in
Section 5. It is built on a commercialized Arduino board that fol-
lows the FCC regulations and passively collects EM emanations.
Hence, no risk is posed to human health. The collected data are
anonymized and properly stored locally from potential leakage.
The entire research has been approved by IRB.

The goal is to evaluate the performance of our proposed attack
Periscope under different settings. A wide spectrum of impact fac-
tors are examined, such as system parameters, attack distances,
environmental contexts, devices, and keyboard layouts. A compre-
hensive comparison is also made with existing schemes. A total of
20 volunteers, 12 males and 8 females between 22 to 28 years old,
are recruited for the experiments. Before each experiment, detailed
instructions regarding experimental procedures are provided. We
design an App that mimics the UI that allows users to unlock the
screen via digit PINs. During the experiment, each volunteer is
asked to enter 60 randomly generated PINs into smartphones.

8.1 Key Pair Recovery Accuracy
As the basis of our attack, we first examine the accuracy of key
pair recovery. Figure 17 shows the success rate over all the 100
possible key pairs from “00” to “99”. Each row represents the first
key, whereas each column represents the second key. It is observed
that key pairs with longer inter-key distances tend to have better
recovery accuracy. For example, the recovery rate of “01” is 94%;
it becomes 89.5% for “08”. Besides, we find that the success rate is
not perfectly symmetric with respect to key pairs. In other words,
the success rates of “ab” and “ba” are not exactly the same. This is
because users may exhibit different typing behaviors when entering
the same pair of keys but with reverse orders.
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Impact of degree of polynomials. To establish the relation
between EM readings and 𝐿𝑥 (𝐿𝑦 ), we employ an 𝑛-degree polyno-
mial to characterize the time-dependent finger-screen distance 𝑧 (𝑡).
Figure 18 shows key pair recovery accuracy with respect to the
degree 𝑛. The success rate experiences a slight increase by adopting
a higher degree polynomial. For example, the success rate is 89.6%
when 𝑛 = 6 and then raised to 91.2% when 𝑛 = 12. It indicates
that a polynomial with a higher degree can nicely tract the finger
movement trace. Once 𝑛 surpasses 17, such benefit becomes negli-
gible. At the same time, a polynomial of higher degree incurs larger
computation overhead in solving 𝑧 (𝑥) = 0 and 𝑧 (𝑦) = 0. To strike a
balance between accuracy and efficiency, we set 𝑛 = 17 by default.
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Figure 19: Recovery accuracy of 𝜃 . (a) Confusion matrix. (b)
Recovery success rate of key pairs with different 𝜃 ’s.

Estimation of 𝜃 . The estimation of finger movement direction
𝜃 is critical to key pair recovery. Figure 19(a) shows the confusion
matrix of 𝜃 estimation. A Google Pixel phone is adopted in the
experiment. The rows represent all possible finger movement di-
rections as the ground truth, whereas columns represent estimated
results. As discussed in Section 6, 𝜃 ∈ [0, 𝜋/2]. The figure easily
tells whether our scheme causes any confusion between classes.
The average recognition accuracy is 93.3%. We observe that most
of the errors come from adjacent directions. For example, when the
ground truth is 71◦, the chance it recognized as 62◦ is 8.5%, which
is the highest among all the cases. We also notice in Figure 19(b)
that 62◦ and 71◦ are associated with relatively lower success rate,
at 91.4% and 90.6% respectively, compared with other directions.
This is because they are separated by a small margin of 9◦.

Estimation of 𝑣𝑝 . It is difficult to measure user’s finger move-
ment speed directly. To approximate the ground truth, we divide
the distance between two touch points for entering a key pair by its
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time duration. The distance can be readily computed from coordi-
nates of the two touches, accessible from smartphone API. Table 1
exhibits the estimation error over 𝑣𝑝 from three randomly selected
volunteers. We find that the error decreases as the user is asked to
enter more digit sequences in advance of the attack. Take volunteer
1 as an example, the estimation error is 5.12 cm/s with one digit
sequence and drops to 1.39 cm/s under five digit sequences. It meets
our expectation; the estimation becomes more robust to variations
introduced by an individual sample. We further evaluate in Figure
20 the impact of number of digit sequences to key pair recovery.
The recovery success rate quickly increases to 85% under three digit
sequences. Beyond that, the growth becomes incremental. To trade
between practicality and accuracy, we suggest having victims enter
three digit sequences in advance of the attack.

No. of Seq. V 1 V 2 V 3
1 5.12 4.43 3.24
2 2.72 3.0 2.16
3 1.96 2.46 1.74
4 1.49 2.27 1.25
5 1.39 1.97 0.82

Table 1: Estimation error of 𝑣𝑝
(cm/s).
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Figure 20: Key pair
recovery perfor-
mance.

8.2 PIN Recovery Accuracy
We now examine the recovery performance over an entire PIN that
consists of multiple key pairs.

Table 2: PIN recovery success rate with top-10 candidates.

PIN length 3-digit 4-digit 6-digit 8-digit
Success rate 71.7% 61.7% 43.3% 35%

Impact of PIN length. In this experiment, volunteers are asked
to input PINs with lengths varying from 3 to 8 digits. Table 2 shows
the recovery success rate with top-10 candidates. As a note, our
scheme can produce a list of candidate PINs. If the list of𝐾 candidate
PINs contain the target PIN entered by the victim, then the correct
PIN is deemed among the top-𝐾 candidates. This metric reflects the
recovery accuracy and has been widely adopted in prior works. We
find that the highest success rate 71.7% is achieved for 3-digit PINs.
It decreases as PIN length grows, since successive correct inferences
of all key pairs are needed to recover the entire PIN. We find the
success rate is 43.3% with 6-digit PINs, the mostly commonly PIN
length adopted by mobile devices nowadays. Our attack does pose
a real threat to these devices.

Impact of the number of candidates. We further study how
many candidates are needed to succeed in inferring the target PIN.
In the experiments, we sort candidates generated by the HMM
model according to their probability of being the target PIN in a
descending order and select the top-𝐾 candidates to evaluate the
recovery accuracy. In Figure 21, we give the PIN inference success
rate under top-𝐾 candidates, where 𝐾 ranges from 1 to 100. The
result is encouraging. It is shown that, given top-1 candidate, the
recovery accuracy is 18.3% for 6-digit PINs. That is, our attack
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Figure 21: PIN recovery success rate with top-𝐾 candidates.

can correctly hit a victim’s 6-digit PIN at a probability of 18.3%
in one shot. The rate can be significantly improved if given top-
10 candidates or top-20 candidates, which corresponds to 43.3%
and 51.7%, respectively. As shown in the figure, if given top-40
candidates, the success rate reaches almost 70% for 6-digit PINs.
As a comparison, WindTalker [27], a well-cited radio signal based
inference attack, delivers a similar performance with more than 60
candidates, not to mention that WindTalker needs a large number
of labeled training data samples.

8.3 Performance Under Different Settings
Impact of victim-attacker distances. In practice, a victim device
may be placed at different distances away from the attacker. It is
thus necessary to examine the impact of this factor to the attack
accuracy. In the experiments, we set the distance from 20 cm to
95 cm. All are carried out with 6-digit PINs. As shown in Figure
22, the recovery success rate exhibits negative correlation with
the distance. This is because a longer distance leads to weaker
EM emanation receptions at the attacker. As a result, it becomes
challenging to precisely recover finger movement traces from the
EM readings. Still, the attacker can successfully disclose a target
PIN at a probability of 20% even 90 cm away from the victim with
top-10 candidates. It is worth mentioning that the victim and the
attacker reside at two sides of a wood table, a non-LoS scenario
shown in Figure 22(a). We anticipate an even higher success rate
under a LoS scenario. Besides, we only deploy one prototype in the
experiment. In practice, many of them can be used. Such settings
can potentially further enhance the performance.
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Figure 22: Impact of victim-attacker distance. (a) Positions
of the victim and the attacker. (b) PIN recovery success rate.

Impact of victim-attacker relative direction.We also exam-
ine if the relative direction between the victim and the attacker
impacts the recovery accuracy. In the first set of experiments, we fix
their distance at 20 cm and place the attacker at different directions
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to the victim as shown in Figure 23(a). Figure 23(b) shows the PIN
recovery success rate at these positions. We find that the accuracy
is almost the same for all the cases. In the second set of experiments,
the attacker’s and victim’s positions are fixed while varying the
smartphone orientation. Again, no apparent difference in recov-
ery accuracy is observed. Hence, the performance of Periscope is
independent of victim-attacker relative direction. This is not the
case for radio signal based attacks. Essentially, the attacker needs a
LoS view over the victim; otherwise, the signal variance caused by
multi-path propagation renders the signal hard to tract. In addition,
the video-based attack also imposes stringent requirement over the
recording angle. For example, Eyetell [11] experiences about 70%
accuracy degradation when the two parties have a 10◦ displacement
angle.

20 cm

Attacker

Attacker

Attacker

Attacker

1 3
4
7 8

2
5

0

6
9

(a)

0

30

60

90

120

150

180
0% 20% 40% 60% 80%

Top-10

Top-20

Top-40

(b)

20cm
Attacker

1 3
4
7 8

2
5

0

6
9

(c)

-20

-15

-10

-5

0

5

10

15

20

0

20%

40%

60%

80%

Top-10

Top-20

Top-40

(d)

Figure 23: Impact of victim-attacker relative direction. (a)
Test scenarios for the first set of experiments. (b) PIN re-
covery success rate. (c) Test scenarios for the second set of
experiments. (d) PIN recovery success rate.

Impact of keyboard layouts. This part evaluates the impact of
keyboard layouts on the attack performance. Two layouts, denoted
as L1 and L2, are illustrated in Figure 24(b) and 24(c). Their key size
is the same, whereas the inter-key distance is different. Figure 24(a)
compares their PIN recovery accuracy. We notice that L1 exhibits a
higher success rate than L2. This is partly because a larger keyboard
leads to more distinct 𝜃 ’s. As a result, finger movement direction
can be recognized at higher accuracy which leads to higher overall
inference accuracy.

Impact of target diversity. People may have distinct typing
behaviors during PIN inputs. Hence, it is critical to find out if
Periscope is susceptible to this factor. Table 3 shows the PIN re-
covery accuracy across seven volunteers. While each individual
exhibits a slightly different success rate, the overall performance is
relatively consistent, with the average success rate all above 40%
with top-10 candidates. It means our analytic model is capable of
handling target diversity. As discussed, most acoustic and radio
signal based attacks need to train user-specific models to accommo-
date diverse typing behaviors and is thus less practical for broad
deployment.
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Figure 24: Impact of keyboard layouts. (a) PIN recovery suc-
cess rate. (b) Layout 1. (c) Layout 2.

Table 3: PIN recovery success rate over different victims.

Index 1 2 3 4 5 6 7
Top-10 52.7% 46.7% 42.5% 50.1% 40.2% 40.6% 45.6%
Top-40 68.9% 72.1% 69.5% 74.1% 63.4% 67.8% 62.2%
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Figure 25: Impact of envi-
ronmental context.
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Figure 26: Impact of device
diversity.

Impact of environmental context. We further evaluate the
attack performance in four different environments, including lab,
office, coffee shop, and university center. Figure 25 exhibits a promis-
ing performance in all the environments, no matter whether it is
quiet or noisy, static or dynamic. In contrast, most acoustic based
attacks can only succeed in quiet places, whereas radio signal based
attacks do not work with dynamic backgrounds. In fact, public
places tend to be noisy and dynamic.

Impact of different devices. To demonstrate the usability of
Periscope, we also experimented on two smartphones, an iPhone
SE2 with a 4.7-inch touchscreen and a Google Pixel phone with a 6-
inch touchscreen. Figure 26 compares their PIN recovery accuracy.
The performance is similar for both devices. It means our attack
works for a diverse set of devices as long as they are equipped with
a multi-capacitance touchscreen. We also notice that the success
rate on Google pixel is slightly higher than that on iPhone SE2.
This is attributed to the larger screen size of the former. Finger
movement traces are more distinct on a larger screen.

We choose iPhoneSE2 and GooglePixel to represent iOS and An-
droid smartphones, respectively. Periscope is effective for devices
with capacitive touchscreens regardless of their materials/types.
The screenmaterials/types could contribute to the finger-touchscreen
capacitance (𝐶𝑓 ). As discussed in Section 4.4, such a factor does not
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impact the analytic model of 𝑧 (𝑡). Hence, screen size dominants
the influence from different screens—finger movement traces are
more distinct on a larger screen.

8.4 Comparison with Other Schemes
In this part, we present the performance comparison with prior
keystroke inference attacks on digit PINs. For the sake of fairness,
we directly utilize the experimental results from these works. Three
schemes WindTalker [27], SpiderMon [28], and the attack proposed
by Liu et al. [30] are considered. Specifically, WindTalker measures
the fluctuations of WiFi channels caused by victim’s typing mo-
tions. SpiderMon utilizes variations of multi-path LTE signals to
infer victim’s inputs. Liu et al. [30] analyzed the motion status of
smartwatches to launch the attack.

Figure 27(a) compares their success rates of recovering 6-digit
PINs. It is observed that the performance of Periscope is similar to
WindTalker and Liu et al. with top-10 candidates, while SpiderMon
is the best. All their success rates reach 80%with top-100 candidates.
Note that all other three schemes need a training phase. Large
amounts of training samples should be collected from the target
victim in advance of the attack. To do this, Liu et al. even require the
pre-installation of malware on the victim’s smartwatch for sample
collection. These restrictions make them hardly practical in real-
world scenarios. In contrast, Periscope only requires a couple of
samples to parameterize its analytic model and is non-intrusive.
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Figure 27: Performance comparison with other schemes. (a)
Recovery rate of 6-digit PINs. (b) Impact of attacker’s posi-
tion.

Figure 27(b) compares their performance under the impact of
victim-attacker relative direction. We find that both SpiderMon
and WindTalker experience significant performance variance by
placing the attacker in different directions with respect to the vic-
tim. In contrast, the success rate of Periscope is relatively stable
regardless of the displacement. This is because the former two ex-
tract wireless channel disturbances to monitor finger movements.
They heavily rely on LoS propagation channels as they provide
the most tractable signals. These channels can be easily blocked
by the victim’s body if positioning the attacker to the left/right of
the victim. On the other hand, as discussed in Section 4.4, the ana-
lytic model of Periscope is irrelevant of surrounding environmental
conditions. Its performance is thus independent of victim-attacker
relative direction.

The main advantage of Periscope lies in its practicality. Specif-
ically, it does not require the pre-installation of malware on the
victim’s device, nor large amounts of labeled training samples. It

is also robust to environmental dynamics. As indicated by the re-
sults above, Periscope’s accuracy performance is as good as prior
inference attacks.

9 DISCUSSIONS
9.1 Limitations and Future Work
Extending attack distance. Results in Section 8.3 show that the
PIN recovery rate with top-10 candidates drops to 20% when the
attack distance is beyond 90 cm. The threat can be more severe if
the attack can be successfully performed remotely. The primary
reason of the confined distance here is the weak signal strength
of EM leakage. Besides, the EM field decays quickly over distance.
Note that our prototype is built with simple electronic pieces, in-
cluding an Arduino nano board and a conductive wire. Neither
advanced transceiver module nor sophisticated signal processing
unit is utilized. As our future work, we plan to build a more power-
ful prototype with dedicated components that can pick up useful
signals from noisy and weak EM measurements so as to extend
attack distance.

Recognizing letters. Our discussion has been focused on soft
numeric keyboards. We plan to extend Periscope to recognize let-
ter inputs. The challenge is to distinguish subtle EM emanations
from more diverse combinations of key pairs, as the number of
keys will almost be tripled. We propose to employ multiple eaves-
droppers and explore their collaboration to launch attacks. Sensor
fusion techniques [15, 33] will be applied. It combines EM readings
from disparate sources such that the resulting information has less
ambiguity than would be possible when these sources were used
individually. It is expected that the aggregated EM measurement
will provide more fine-granular recognition of finger movements.

9.2 Defense Solutions
Periscope explores human-coupled EM emanations to recover vic-
tim’s inputs on soft keyboards. An intuitive defense solution is thus
to adopt shuffled keyboards. This idea has been proposed before
[44]; the system adopts a new randomly generated keyboard layout
each time a user intends to enter a credential. Although attackers
can still derive finger movement traces, they can be hardly mapped
to specific keystrokes without the knowledge of keyboard layout.
While leaving the key inference almost impossible, as pointed by
[60], this idea sacrifices the authentication usability. Extra effort is
incurred to the user in searching for keys on a shuffled keyboard.
More input errors might also be introduced thereby.

In a more practical way, users may intentionally disrupt their
typing behaviors, for instance, adding random pauses between
keystrokes and/or adopting variant typing speeds when entering
different key pairs. For both cases, attackers will tend to make
mistakes in transforming time-dependent finger-screen distances
to 3D finger movement traces. For the former, the trace length
will appear much longer than the ground truth. For the latter, as
a user adopts a dynamic speed, it is impossible for an attacker to
generate a meaningful finger movement trace with 𝑣𝑝 , a constant
finger movement speed that is estimated in advance the attack. As
a result, the derived 𝐿𝑥 and 𝐿𝑦 become error-prone in both cases.
The attacker is less likely to accurately recover individual key pairs,
let alone the whole PIN.
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It is also possible to apply electromagnetic interference (EMI)
shielding on touchscreens. This technique has been widely em-
ployed on many electronic devices; it refers to the shielding of
radio waves so that radiations cannot penetrate the shield. In our
case, it can serve as a barrier that prevents EM emanation leak-
age, or at least reduces the radiation strength. Nonetheless, this
approach may be expensive and require hardware modifications,
including the introduction of new EMI materials and touchscreen
circuit redesign. Another alternative is to intentionally obfuscate
the EM emanations emitted by the touchscreen, so that the tra-
jectories of EM readings are not recognizable. A straightforward
approach is to add well-calibrated noise to the touchscreen driving
signal 𝑉𝑇𝑋 (𝑡). Then attacker’s EM measurements 𝑉𝑚 (𝑡) become
polluted. Since the attacker is unaware of the injected noise pattern,
it is hard to tell if observed EM variations are incurred by finger
movements or intentionally injected noise.

10 CONCLUSION
In this paper, we present Periscope, a new eavesdropping attack that
leverages human-coupled EM emanations from touchscreens to
infer victims’ typing inputs at a remote distance. We implemented
the proposed attack with a prototype that costs less than $10. Its
effectiveness is evaluated from various aspects. Periscope exhibits
promising recovery accuracy over a distance up to 90 cm. It can well
adapt to diverse device models and setting contexts. Compared with
prior works, our approach is built on an analytic model that charac-
terizes the relationship between EMmeasurements and fingermove-
ment traces. Therefore, it avoids the collection of large amounts
of labeled data samples in advance of the attack. In summary, we
believe that Periscope outperforms state-of-the-art keystroke infer-
ence attacks, especially in terms of practicality. Meanwhile, it can
be further extended with longer attack distance and inference over
letter inputs, which are deemed as our future work.
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A APPENDIX

Table 4: Comparison with state-of-the-art inference attacks.

Signal System Keyboard
type

Pre-install
malware

Environment
adaptability

Hardware
costs

Attack
distance

LoS
required

Training
required

Setup
difficulty

Motion
status

TouchLogger [9] Soft Yes - Low None - Yes High
Taplogger [57] Soft Yes - Low None - Yes High
Mait et al. [33] Physical Yes - Low None - Yes High
Liu et al. [30] Physical Yes - Low None - Yes High
Accessory [39] Soft Yes - Low None - Yes High

Motion
status

Tapprints [36] Soft Yes - Low None - Yes High

Audio

Berger et al. [7] Physical No Low Medium Medium No No Medium
Kune et al. [18] Physical & Soft No Low Medium Medium No Yes Medium
Zhu et al. [62] Physical No Low Medium Short Yes No High

KeyListener [32] Soft No Low Medium Short Yes No High
Liu et al. [29] Physical No Low Medium Short Yes No High
Ubik [52] Physical No Low Medium Short Yes Yes High

Agrawal et al. [4] Physical No Low Medium Medium Yes Yes Medium
Zhuang et al. [63] Physical No Low Medium Medium Yes Yes Medium

Audio

Shumailov et al. [46] Soft Yes Low Low None Yes No High

Video

Shukla et al. [45] Soft No Low Medium Long Yes Yes High
Seeing double [56] Soft No Low High Long Yes Yes High
GazeRevealer [55] Soft Yes Low Low Medium Yes Yes High

EyeTell [11] Soft No Low High Medium Yes Yes High
Wang et al. [54] Soft Yes Low Low Medium Yes Yes High
VISIBLE [47] Soft No Low High Medium Yes Yes High

Backes et al. [5] - No Low Medium Long Yes No Medium
iSpy [42] Soft No Low Medium Long Yes Yes Medium

Video

Backes et al. [6] - No Low Medium Long Yes No Medium

RF

Li et al. [27] Soft No Low Medium Long No Yes Medium
Ali et al. [1] Physical No Low Medium Medium No Yes Medium

Zhang et al. [61] Soft No Low Medium Long No Yes Medium
Fang et al. [16] Physical No Low High Long No No Medium

RF

SpiderMon [28] Physical No Low Medium Long No Yes Medium

EM
Li et al. [51] Physical No High High Long No No Medium

Wang et al. [53] Physical No High High Long No No MediumEM
Du et al. [14] Physical No High High Long No No Medium

Human
-coupled

EM
Periscope Soft No High Low Medium No No Low
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