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ABSTRACT
Cyber-physical systems revolutionize how we interact with physi-
cal systems. Smart grid is a prominent example. With new features
such as fine-grained billing, user privacy is at a greater risk than
before. For instance, a utility company (UC) can infer users’ (fine-
grained) usage patterns from their payment. The literature only
focuses on hiding individual meter readings in bill calculation. It
is unclear how to preserve amount privacy when the UC needs to
assert that each user has settled the amount as calculated in the bill.

We advocate a new paradigm of cash payment settlement en-
abling payment privacy. Users pay their bills in unit amount so that
they can hide in the crowd. Meanwhile, UC can obtain payments
earlier in the pay-as-you-go model, leading to a win-win situation.
A highlight of our proposed system, Sipster, is that the receipts for
the payments can be combined into aO(1)-size receipt certifying the
smart meter’s certification. Without such aggregation, techniques
such as zero-knowledge proof would fail since it typically cannot
hide the size of the witness. Seemingly helpful tools, e.g., aggregate
signatures or fully homomorphic signatures, also fail.

The novelty of Sipster lies in fulfilling our five goals simulta-
neously: 1) privacy-preserving: the UC cannot infer a user’s pay-
ment amount; 2) prover-efficient: no zero-knowledge proof is ever
needed; 3) verifier-efficient: it takes O(1) time to verify a combined
receipt; 4) double-claiming-free: users cannot present the same re-
ceipt twice; and 5) minimalistic smart meter: it has the capability
to report signed readings (needed even in a non-private setting).

CCS CONCEPTS
• Security and privacy→ Cryptography; Privacy-preserving
protocols; Pseudonymity, anonymity and untraceability.
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1 INTRODUCTION
Pay-As-You-Go has recently emerged as a desired way to settle util-
ity bills in some cyber-physical systems (CPS), such as smart grids.
Many companies, such as AT&T [6], Siemens [52], and SmartGrid-
CIS [53], have developed their pay-as-you-go payment programs
for residential customers. It is forecasted that more than 2.6 mil-
lion households in the United States will adopt this bill settlement
model by the end of 2021 [47]. Meanwhile, this model is quite
common in some other countries such as South Africa [32, 44].
Different from the traditional post-pay model, where customers
use utilities for 30 days and then pay for a monthly bill, customers
in the pay-as-you-go model usually pre-pay a certain amount in
advance [7, 32, 44, 52, 53], which is then deducted based on the fine-
grained usages, say, per day or even per hour, calculated according
to the meter readings and real-time tariffs. The utility company (UC)
is motivated to implement this model to mitigate late customer pay-
ments [53] and shorten investment cycles by charging in real-time.
Customers can also become more aware of their utility consump-
tion, partially due to psychological factors, and adjust their usages
accordingly to avoid unusually high bills that were only notified
at the end of a long billing cycle1. It thus helps to smoothen peaks
in load demand, leading to more efficient utilization (of electricity
generation capacities) and a higher level of resilience (e.g., against
unforeseen grid disruptions). Ideally and ultimately, it aids in global
electricity usage reduction and saves our planet.

1.1 A Neglected Weakest Link in Privacy
The utility of fine-grained meter readings, apart from benefiting all
stakeholders, raises privacy and safety concerns as well. Through
meter readings, robbers can identify empty households or even if a
robbery alarm has been set [50], or insurers can identify electricity
usage patterns with fire risks (and charge customers higher pre-
miums). Existing research studied how to preserve privacy in bill
1There is recurring news on complaints of unusually high monthly electric bills,
e.g., https://foxsanantonio.com/news/local/san-antonio-residents-complain-about-
unusually-high-electric-bills-09-14-2019.
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calculation under the post-pay model, i.e., aggregating unit usages
of a customer within a period or aggregating the usages across
a group of customers, while hiding the usage of any individual.
Section 6 discusses some representative works on these topics. Un-
fortunately, privacy issues of the bill settlement stage have been
neglected. Obviously, hiding the payment amount is equally critical
for its obvious correlation with the utility usage or the bill amount.

Preserving user privacy is not only for pleasing the customers
or the financial benefits of pay-as-you-go. Privacy compliance with
the fine-grained usage information, and its financial consequence
if it fails2, strongly motivate the UC to explore advanced solutions.

1.2 A New Problem Formulation
We advocate the following bill settlement paradigm. For each unit
of utility consumption, the smart meter issues a “small bill” to the
customer, who then pays anonymously to the UC from time to time
in unit amount and is given a receipt in return. By a certain deadline,
they combine all the receipts to convince the UC that what they
have paid settled what they have used so far according to the smart
meter. The benefits are twofold. The UC can get payments early as
in the pay-as-you-go model. Meanwhile, customers can hide their
payments in the crowd of all payments. We divide bill settlement
into two processes, bill payment and bill verification. Cryptographic
e-cash (e.g., [15]), ensuring unlinkability of e-coins from the same
user, can serve as a solution to the former. However, linkability is de-
sirable for bill verification to show the UC that the bill has been set-
tled. Realizing bill verification in a privacy-preserving man-
ner is an unaddressed problem very different from private
payment. The UC needs a special mechanism to verify that the
hidden amount is correct, and a user has paid enough.

1.3 Our Contributions and Design Constraints
We propose Sipster, a cash payment settlement scheme for any
smart-meter-enabled systems expecting fine-grained bill settlement
with privacy. Sipster aims to satisfy five goals simultaneously.
• Privacy. The UC cannot infer the exact payment amount a
user makes for the bill. Moreover, individual payments made
by the same user are unlinkable by the UC.
• Prover-efficient. The residential user should only perform
arguably the only necessary operation, which is to prove
their bill is settled to the UC, ideally, by just a few group
operations and one exponentiation. Despite being a privacy-
preserving solution, our user should be free from perform-
ing any explicit zero-knowledge proof. Moreover, the user
should not be required to maintain any state information.
• Verifier-efficient. The UC takes constant time (in the num-
ber of receipts/amount) to verify a combined receipt.
• Double-claiming-free. Users cannot present the same re-
ceipt twice that can pass the payment verification.
• Deployable. 1) Sipster should be modular and work seam-
lessly with any e-cash system deployed currently [10, 43]
and in the future. 2) Smart meters remain “minimalistic.”
They need not possess general computing functionality be-
yond what is assumed in the non-private setting, e.g., signing
for ensuring the unforgeability of the billing amounts.

2It may be due to financial motivation, e.g., Equifax was fined $700mil. for data breach.

Having some form of a trusted computing base (TCB) is common
and inherent in smart meters [33, 37, 48]. Specifically, we assume
the TCB of the meters can perform primitive operations for digital
signatures, including pseudorandom number generation and basic
modular operations. In particular, the TCB only outputs group
elements and signatures without taking any input (except in a
limited form such as taking a signal to trigger the troubleshooting
mode for fault tolerance), let alone processing any cryptographic
objects such as zero-knowledge proofs. This captures the constraint
of meters in other kinds of CPSes beyond power systems, greatly
limits our design space, and rules out many potential techniques.

If we assume the TCB performs general computing functionality,
the “prover-efficient” property is made less interesting because one
could move all user computation into the TCB. In other words, our
design challenge is to “extend the trust” from the minimalistic out-
puts of the TCB to an untrusted computation environment, which
typically resorts to the “traditional” cryptographic data processing.

Note that typical hardware-aided cryptographic solutions and
Sipster leverage the TCB differently for different goals. A general
goal in the literature, especially those recent ones that appeared
after the recent developments in commodity trusted execution
environments, is to outsource computation over confidential data
to some untrusted environment. Specific technical challenges thus
often involve processing data within the limited memory space of
the TCB (e.g., [55]), interoperability with the different computing
architecture of the untrusted environment, say, GPU (e.g., [42]), or
verifiability of computation result from the untrusted environment
(e.g., [54]). Sipster aims to use the TCB to “bootstrap” the security of
a malleable-signature-like functionality (see Section 3.2), in contrast
to the trendy processing encrypted data theme.

Roughly, Sipster can be seen as authenticating encrypted data
while hiding the data size. Our problem boils down to hiding the
size of the witnesses (i.e., the number of individual signatures to be
combined) or the domain of the function modeling the controlled
malleability; both are not well explored in theoretical cryptography.

To the best of our knowledge, this is the first study on enabling
customers to prove they have paid a bill without revealing the
amount of usage, which appears to be inherent in fine-grained
incremental billing. Specifically, we will discuss in Section 3 that:

• purely cryptographic solutions, even assuming heavyweight
primitives (e.g., multi-key fully-homomorphic signatures [36]),
face several obstacles, which are unclear how to tackle;
• “trusted-computer-like” solution exists, but its deployment
cost will be high; nevertheless, it can serve as a baseline to
indirectly illustrate the novelty of our approach.

As such, we empirically evaluate a prototype implementation of
Sipster without any baseline comparison. The smart meter is imple-
mented on an ARM development board, whereas the other entities
are implemented on regular PCs. Our experiments show that Sipster
can be efficiently performed on resource-restricted systems. For
example, it issues a 1-unit bill in 34.272ms and settles the bill in
5.665ms on average. Verifying a 100-unit bill takes only 9.212ms.

We discuss in the context of smart grids for concreteness. Sipster
generally fits with the IOU (“I owe you”) model with the amount
the user owes certified by a trusted environment. Section 7 explains
how to apply Sipster in privacy-preserving mobile payment.
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2 SYSTEM MODEL AND USE CASES
2.1 Usage Model
Our CPS payment settlement system, Sipster, involves three entities.

Residential Users (RUs): All RUs first register with the UC to
get a meter. To receive uninterrupted electricity provisions, an RU
has to settle the bill with the UC by the end of a billing period3.

We suppose there is a payment system that RU can first deposit
money (say, at the bank) to receive (e-)coins. For every e-coin spent,
the RU receives a receipt from the UC. All the collected receipts will
be used to prove the correctness of this RU’s bill payment during
the verification process.

Smart Meters (SMs): SMs are deployed at the RU side to mea-
sure the electricity consumption. For each unit of expense, SM
outputs an authenticated token to the RU. With the knowledge of
real-time tariffs and consumption measurements, the SM computes
the bill at the end of each billing period and sends it to its RU.

Utility Company (UC): Once received from the RU any proof
of payment output by the underlying payment system, the UC
returns the RU a receipt, collected and used later for payment
verification. By the end of a billing period, the UC interacts with
each RU to carry out the verification process. In this way, the UC
knows which RU has (not) settled the bills.

Since there are multiple payments within one billing period, the
time for payment and the time for bill verification are different.
The billing period represents the period that the SM calculates and
certifies a final bill for an RU. Within a single billing period, the UC
can receive payment from the anonymous RU from time to time.
The UC only needs to verify the bill at the end of a billing period.

2.2 Some Deployment Issues
Sipster needs to work with a base (e-)cash system. An electronic
payment system facilitates automatic payment via the RU’s de-
vice/software even when privacy/verifiability concerns are absent.

Moreover, Sipster works with any payment system ranging from
cryptographic e-cash4 to even paying physically at a booth. For
example, the former can be instantiated by (efficient) compact e-
cash [15] (with a compact wallet) or simple blind-signature-based
approaches. For the latter, we assume RU can get some form of
signatures corresponding to the payment, similar to the current
practice. (Here, similar to what we expect from the SMs to be
detailed below, we assume the booth will issue signature without
embedding tracking information.) Other applications may use the
same e-cash system at the same time, and it could be run by any
external party. During a billing period, the RU pays using this
payment system and retains the proof of payment to be presented
to the UC via our protocol. Apart from this only linkage, we stress
that this payment process is independent of Sipster.

Computing devices (e.g., desktops) of RUs can also save the trou-
ble of settling the bill in person5. They are responsible for receiving
any outbound traffic of the meters, which helps in preventing the
meters from directly interacting with the UC.

3There can be a grace period depending on UC’s policy and RU’s security deposit.
4We omit the standard and relatively lengthy definition of cryptographic e-cash and
its privacy-preserving/anonymity properties, e.g., see [15, 25].
5Sipster does not require this device to be permanently online due to its high efficiency,
even for a high-usage RU who needs to pay a lot and hence pays often.

We suppose all meters are identical. Mass-manufacture of such
meters is cost-effective. Finally, incremental deployment is possible
after the system is deployed. Users can always choose not to use
anonymous e-cash if they do not care about their privacy. Users
may also choose to pay in one shot, which means they choose to
forgo their privacy. Our paradigm is thus “backward compatible”
as both kinds of users (concerning privacy or not) can co-exist.

2.3 Security Requirements and Threat Model
2.3.1 Soundness. Soundness depends on two security properties,
namely, unforgeability and double-spending prevention.
• Unforgeability. 1) The RU cannot produce a valid receipt
unless he pays a valid e-coin to the UC. 2) The RU cannot
forge a valid aggregated receipt as the aggregation result
over K individual receipts, with only K ′ < K valid receipts.
• Double-spending prevention. Any RU cannot “redeem”
the same receipt twice.

For soundness, the SMs, which possess the secret (fine-grained
usage) we aim to protect, are tamper-resistant devices (as in [4, 48])
that can perform lightweight cryptographic computations such as
issuing digital signatures. It is a practical and necessary assumption
in reality; otherwise, any RU can change the reading and pay less.

2.3.2 The Parameter K . We first discuss a terminology issue. In a
nutshell, Sipster aims to hide the parameter K throughout the bill
settlement process from the UC. As a crucial parameter of interest
to be hidden by our new paradigm, it manifests in different “forms”
throughout different phases of the system at different levels. From
the perspective of the SM, viewing it issuing an individual bill from
time to time, K refers to the “bill size.” This individual bill servers as
a cryptographic object to be processed by the UC; we thus call each
of these outputs from the SM a “token,” and hence K also reflects
the number of tokens. Finally, from the accounting perspective, it is
the number of increments in a single bill.

2.3.3 Privacy. Privacy intuitively covers every action the RU per-
forms regarding the payment, from paying in unit amounts to prov-
ing the paid amount is sufficient. Moreover, the final bill settlement
proof (for sufficiency) cannot be linked to any prior payment.
• Payment/Receipt Amount Privacy. The UC cannot infer
how many e-coins it receives from an RU.
• Unlinkability. The UC cannot link any spending of e-coin
to a particular RU.

Even with privacy protection, the UC can still verify the correct-
ness of each RU’s bill payment without knowing the exact amount.

Game-based definitions of these requirements are formalized in
Appendix C. Note that we do not explicitly consider an outsider an
adversary since it has less power than and is covered by the UC.

For privacy, we make two necessary trust assumptions –
1) RUs’ computing devices (e.g., desktops) make the payments over
an anonymous communication network (e.g., Tor), which is neces-
sary for any privacy-preserving protocols, including e-cash.
2) SMs are uniform across an anonymity set (e.g., borough, zip
code, street). To show our core technical contribution, we describe
in terms of a standard signature scheme for the unforgeable re-
ports. One may also use privacy-oriented approaches such as group
signatures or their extensions (e.g., [1]).
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Correspondingly, our formal definition considers there are at
least two SMs do not collude with the UC, and we aim to protect
the utility usage of the corresponding RUs. Similar (non-)colluding
assumption is widely accepted in the literature [3, 27, 30, 35, 37, 48].

2.3.4 Additional Concerns. Firstly, if desired, one can always add
a (local) differentially-private mechanism to further obfuscate the
bill amount, similar to the existing works for bill calculation [3, 27].

Kleptographic attack (e.g., the SMs embed the customer ID or
the bill amount within the randomness sent to the UC) is beyond
our scope. Specific cryptographic mitigations might be applicable,
such as subversion-resistant signatures/commitments [5, 8, 26] or
cryptographic reverse firewalls [29, 39]. Integrating them while
retaining the security and privacy of Sipster is left as future work.
A physical countermeasure would be having a law enforcement
agent examine the meter and impose a penalty on such a malicious
UC. A malicious meter reporting high consumption to make the
RU pay more is also beyond our scope. Nevertheless, Section 4.4
discusses fault tolerance against non-malicious malfunction.

3 CHALLENGES AND OUR BASELINE SYSTEM
3.1 Notations
Wewrite x ← X for sampling uniformly at random from a setX . We
write {xi }n as a shorthand for X = {x1, . . . ,xn } of n elements, and
[n] denotes the set {1, . . . ,n}. Unless otherwise stated, algorithms
are all probabilistic polynomial-time (PPT). The output of algorithm
A on input x is denoted by y ← A(x). λ is the security parameter,
and negl(λ) denotes a negligible function in λ.
Pairing. For presentation brevity, our paper is written assuming
a symmetric pairing group. Let G1 (source group) and GT (target
group) be cyclic multiplicative groups of order q as a λ-bit prime. A
pairing, or a bilinear map e : G1 ×G1 → GT , has the following two
properties. (1) Bilinearity: ∀x ,y ∈ G1, and ∀a,b ∈ Z∗p , e(xa ,yb ) =
e(x ,y)ab ; (2) Non-degeneracy: e(д,д) , 1GT for any generator д of
G1, and 1GT is the identity element in GT .

Apart from brevity, we chose to write our paper in symmetric
pairings for two reasons. Looking ahead, the pairing-related compo-
nents of Sipster do not require the decisional Diffie-Hellman (DDH)
assumption to hold for the base groups, which asymmetric pairings
could offer. Describing our scheme using asymmetric pairing might
make a false impression that we also rely on DDH assumptions.
In other words, Sipster can be instantiated with a wider variety
of curves. Meanwhile, some might have an imprecise idea that a
paper written in symmetric pairing groups must be insecure, if
not incorrect. Even in the face of recent attacks against symmetric
pairing groups, related intractability assumptions remain unbroken
with appropriate security parameters, albeit affecting efficiency.
Finally, while not every symmetric-pairing-based scheme can be
ported to one using asymmetric pairing easily, many do [2, 21].
Signature Schemes. A signature scheme consists of three algo-
rithms. The KGen algorithm takes as input the security parameter λ
and outputs a pair of verification and signing keys (vk, sk). The
Sign algorithm takes as input the signing key sk, a messagem ∈ M,
and outputs a signature σ ∈ Σ. The Verify algorithm takes as input
the verification key vk and a pair (m,σ ) ∈ M × Σ and outputs a bit
indicating whether σ is valid signature for messagem under vk.

3.2 Technical Overview and Specific Challenges
Despite the relatively extensive literature oncryptographic e-cash
and related privacy-enhancing cryptographic techniques, the prob-
lem of privacy-preserving bill settlement is not straightforward.

3.2.1 Our Design Blueprint. The design blueprint is as follows. For
each unit of power consumption, the SM outputs a random number
Ri to the RU. Suppose at the end of the billing period t ; the SM
has output R1,R2, . . . ,RK . For convenience, we presume each unit
of power consumption corresponds to a unit payment. The RU
should pay K payment units (e.g., dollar) for the K power units
consumed. The SM aggregates the set {Ri }Ki=1 into a single one as
RBID,t = F (R1,R2, . . . ,RK ) with a certain function F (·), and signs
the tuple (RBID,t , ID, t) that serves as the final bill for period t .

Before seeing the final bill, the RU pays the UC a unit of (anony-
mous) e-cash from time to time and asks the UC to sign one Rj it
got from the SM. This signature acts as a receipt of a payment unit.

This design assumes the SM only outputs instead of taking any
input. It thus excludes, particularly, an alternative design that only
requires the SM to output one element R1 – To ensure unlinkability,
the function F now needs to repeatedly rerandomize some random-
ized version of R1, which requires either the SM needs to take in
some externally processed inputs (e.g., signed by the UC) or the RU
needs to maintain some state, both of which Sipster aims to avoid.

What remains is to instantiate our design with concrete details.
We start with assuming a “powerful” smart meter as a baseline to
illustrate what could not be done if we restrict to a “minimalistic”
smart meter otherwise. We then discuss at the other end of the spec-
trum and formulate a “powerful” signature scheme for solving our
problems. The goal is to illustrate that a purely cryptographic solu-
tion without any trust assumptions seems to be far-fetched. These
two approaches form a concrete basis to argue for the technical
challenges we encounter and resolve when designing Sipster.

3.2.2 Baseline Powerful-Smart-Meter Approach. Suppose that the
SM is a powerful and fully trusted processor, a “simple” solution
exists – The SM records all the random numbers it has issued. In
the bill verification step, the RU presents all the signatures ever
received from the UC to the trusted SM, who then checks if all the
locally stored random numbers have a corresponding signature. If
so, the SM simply certifies that the user has settled the bill.

This solution seems to work, except that the bill verification at
the SM is O(K) but not O(1). Also, recall that each verification is
on a random number. For verifying O(K) signatures, the SM can
deterministically re-generate them on the spot from a secret seed
or store them in static storage. Either option implies a linear-size
(in K) tamper-proof and rewritable (volatile) storage space. Linear-
size storage seems trivial for typical computing devices but not
resource-constraint smart meters. O(1) storage would be desirable.

The core issue is that having the SM actively participating in bill
verification incur various substantial implications in the hardware
requirements. In particular, it requires the SM to have an interface
for feeding in signatures instead of a typically passive device merely
outputting readings. Having an input interface is risky. Various
forms of attack exploiting malicious inputs have been shown in
various kinds of systems. It simply broadens the attack surface that
may compromise the integrity of the meters.
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For economical mass production, each SM should be as minimal
as possible. Practical deployment needs to minimize the trust as-
sumptions and the functional requirements, as well as reduce the
computation/memory cost of bill verification within the meter.

3.2.3 Unavailability of Cryptographic Tools. To free the SM from
taking processed inputs from the UC and further processing them,
our hope turns to the other major component, the signature scheme
used by our UC for issuing receipts of a unit payment. For our de-
sign to work, we hope it possesses the following malleability –
given signatures {σi }Ki=1 on {Ri }Ki=1, respectively, the RU can com-
pute a signature on RBID,t = F (R1,R2, . . . ,RK ). Suppose both the
signature size and output length of F (·) are constant (independent
of K ). Further, suppose the malleability of the signature scheme is
restricted: without signatures of all Ri , the RU cannot compute a
signature on RBID,t = F (R1,R2, . . . ,RK ). Then, by showing the UC
this special signature together with a normal signature from the SM
on the tuple (RBID,t , ID, t), the RU shows that the bill for the time
period t has been settled without revealing K .

Assuming such a signature scheme exists, this design seems
secure at first glance and has several nice features. Firstly, the
workload of SM is low. The SM does not actively involve in bill
verification. It only issues random numbers and standard signatures
on them. Secondly, bill verification time is constant. The UC only
needs to verify two constant-size signatures. Thirdly, the solution
does not involve any zero-knowledge proof. Lastly, this design
works for any CPS as long as the smart meter is tamper resistant.
It is also independent of the (e-cash) payment method the RU used.

Indeed, our final solution follows the above design footprint.
However, there are non-trivial challenges (or open problems) and a
few caveats that we need to tackle to make it work.

To start with, the UC should not be allowed to see R1, . . . ,RK
in clear; otherwise, it can compute the aggregate function F (·) on
different subsets of {Ri } it received from different RUs in a “mix-
and-match” manner to see which subset leads to a particular RBID,t .
If there is a match, the UC can at least learn the payment amount
K of the user ID. This attack remains valid even if F (·) is one-way.

An immediate solution to make the UC being blind to Ri ’s is to
let the UC sign on each Ri using blind signatures. Unfortunately,
now the RU can cheat: instead of asking the UC to sign Ri , the
RU asks for signing RBID,t = F (R1,R2, . . . ,RK ) directly. Then, this
cheating user only needs to pay one unit of e-cash.

Another technical problem is that we are not aware of any ef-
ficient signature schemes that possess the “malleability” we need.
Aggregate signatures [13] certify a number of messages while the
signature size is constant. But the verification (done by the UC
in our context) takes as input all the aggregated messages, i.e.,
R1,R2, . . . ,RK , which breaks privacy, let alone we still need to
equip them with blind signing functionality. A related attempt aims
for feautes similar to aggregate blind signature functionality [49].
Interestingly, it also relies on some trusted parameter generation.
We defer a more in-depth discussion and comparison to Section 6.4.

Other “multi-party” blind signature variants are not likely to
be relevant. For example, in threshold (partially) blind signature
schemes (e.g., [24]), a single message is signed by multiple signers
in a way that the partial signatures can be “aggregated” into a

single one, which does not match our usage since the receipts (of
unit payments) in our setting should be signatures from the same
authority (UC) on different messages.

Homomorphic signatures seem to be a better fit. However, most
of them (e.g. [17]) allow any linear combination of signatures. A
cheating user can thenmultiply an arbitrary constant to themessage-
signature pair to derive a new message-signature pair, and claim
to have paid more. Lattice-based (and less practical) homomorphic
signatures (e.g. [18]) may allow certifying the aggregation function
(which rules out arbitrary operations such as linear combinations),
yet, the privacy guarantee of the function is often all or nothing, i.e.,
either the function is revealed in plaintext, or “complete context
hiding” such that the function is hidden. In our context, it means
either the number of inputs of the function, which corresponds
to the number of signatures (as receipts), is revealed; or the func-
tion is arbitrary such that an adversarial user can claim more than
what has been actually paid. Furthermore, we still need to add the
blind-signing functionality while disallowing user cheating attacks.

4 SIPSTER: OUR PROPOSED SYSTEM
4.1 Improving the Baseline Solution
Insights.We adopt a hybrid approach that leverages a minimum
degree of trust in smart meters. We observe that for any smart
metering system to work in practice, certain trust assumptions in
the smart meter are unavoidable. For example, the smart meter
should be tamper-proof; otherwise, users can simply modify the
hardware to pay less. For another example, the authenticity of the
meter readings should be guaranteed in some way (e.g., the smart
meter signs them); otherwise, no one would trust the readings.

Even with these two minimal trust assumptions, it still seems
miles away from the malleability we desire. We derive a few in-
sightful ways to “exploit” what can be offered by a limited set of
supported cryptographic operations. Firstly, the group element out-
put by the meter can be treated as one obtained from a common
reference string with an unknown discrete logarithm. In this way,
the group elements have some implicit cryptographic structure that
aids us in attaining cryptographic security outside of the trusted
computing base. Furthermore, we assign them a semantic mean-
ing, denoting a unit amount. Meanwhile, we restrict the meaning
of their operations. For example, for group elements R1 and R2,
their product denotes an amount of two units, but their semantic
meanings is not overloaded further than that, e.g., R1/21 will not be
encoding half a unit. All these insights collectively lead to Sipster.
To the best of our knowledge, we are not aware of any related
privacy-preserving payment systems sharing these insights.
Minimizing Fancy Cryptography.Nowwe are ready to describe
our two modifications to our baseline design, relying on the SM to
perform random group element generation, simple modular mul-
tiplication and exponentiation, and signing on the group element.
Firstly, the SM still generates a random (group) element Ri for each
unit of power consumption, but instead of sending Ri to the RU
directly, it masks the element with a random blinding factor ri . The
SM sends the blinded element R̃i with a digital signature on it. The
RU forwards the blinded element and its signature to the UC, who
returns a “malleable signature” on the blinded element if and only
if the SM’s signature is valid. Thus, only the SM can unblind the
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group element, and the RU does not have the freedom to ask the UC
to sign on an arbitrary element, hence preventing cheating attacks.

The rest essentially follows the original design blueprint. We will
build a scheme such that the RU can compute a signature on R̃BID,t =
F (R̃1, R̃2, . . . , ˜RK ), where all inputs to F (·) are blinded elements. The
SM incrementally aggregates all the blinding factors as well as the
random elements as its constant-size local state. Such information
is given to the RU at the end of the billing period to unblind the
signature on R̃BID,t into a signature on RBID,t = F (R1,R2, . . . ,RK ).

Here, we make other observations that lead to our second im-
provement. Note that the “cheating capability” of RU is very lim-
ited: it only sees signatures on R̃1, R̃2, . . . chosen uniformly at ran-
dom by the SM. To argue security of the above revised solution,
we only need to show that RU cannot compute a signature on
RBID,t = F (R1,R2, . . . ,RK ) when it missed one or more signatures
on R̃i . As a result, a full-fledged malleable signature scheme seems
to be an overkill. Our secondmodification is to replace the malleable
signature with a tailor-made and surprisingly simple scheme.

Finally, the SM just acts “spontaneously” according to the change
in meter reading, instead of being a reactive device as needed in
the powerful smart meter approach we just outlined.

4.2 High-Level Ideas of Sipster
Within each billing period, the SM records the real-time consump-
tion of the RU to calculate the fine-grained charge on-the-fly. For
each unit to be charged, the SM prepares a fresh random group ele-
ment R and a random exponent r . The SM signs (e.g., using ECDSA)
R̃ = дrR, which generates σR̃ , and gives the token tk = (R̃,σR̃ ) to
the RU. Let {Ri } and {ri } be the set of random group elements and
exponents used in this period so far. The SM locally maintains the
aggregated blinding factor rτ =

∑
ri and the aggregated random

group element Rτ =
∏

Ri , which will be reset in the next period.
The RU settles the bill in units as follows. After paying the UC a

unit of e-cash, the RU presents a token tki = (R̃i ,σR̃i ) and requests
a “signature”6 on R̃i . The “signature” that the RU receives from the
UC serves as a receipt for the payment.

At the end of the period t , the SM generates the bill billID,t =
(Rτ , ID, t) for the RU with identity ID and signs it using a standard
(e.g., ECDSA) signature scheme. The signature σB

ID,t and the ag-
gregated blinding factor rτ are sent to the RU. To show that the
bill for the period t has indeed been settled, the RU aggregates all
the “signatures” received from the UC and uses rτ from the SM to
unblind the aggregated “signature.” The RU then presents Rτ , σB

ID,t
and the unblinded aggregated “signature” above to the UC.

Mindful readers may notice that the “signature” generated by
the UC bears the properties of blind signature [22] and aggregate
signature [13]. However, it is not a standalone full-fledged “aggre-
gate blind signature scheme.” Instead, we leverage the minimum
trust in the SM to tailor-make an efficient signature-like scheme
whose security guarantee is enough for our specific purpose. Fur-
thermore, such a trust assumption allows us to prove the security
of our incredibly simple scheme in the standard model. In contrast,

6Technically, this is not a standard EUF-CMA-secure signature scheme (Definition 1,
Appendix B) due to the trusted nature of the SM, but it still suffices for our purpose.

Algorithm 1 TokenGen (with internal state τ ) by the SM
Require: (skSM, τ )
Ensure: (tk,τ )
1: procedure
2: Parse τ as (rτ ,Rτ )
3: r ← Z∗p , R ← G1 ▷ Choose fresh randomness
4: R̃ := дrR, σR̃ := Sign(skSM, R̃), tk := (R̃,σR̃ )
5: r ′τ := rτ + r ; R′τ := Rτ · R
6: τ := (r ′τ ,R′τ ) ▷ Update the internal state τ
7: return (tk,τ )
8: end procedure

many efficient signature schemes are only proven secure in the ran-
dom oracle model. Hence we can instantiate this part of the system
efficiently with smaller parameters with the same security level.

4.3 Formal Descriptions
We naturally divide our Sipster construction into four conceptual
phases: setup, bill issuing, bill settlement, and bill verification. Setup
(resp. bill verification) happens strictly before (resp. after) the billing
period. However, note that the bill issuing and settlement phases
can happen during the billing period at (essentially) the same time.
Setup Phase:
Smart meters SM: The manufacturer runs the KGen algorithm of a
digital signature scheme SS = (KGen, Sign,Verify) to get a verifi-
cation/signing key pair (vkSM, skSM) for the SM. The signing key
skSM is hard-coded in the SM, and the verification key vkSM is made
public. (As in Section 2.3, one could use a group signature scheme.)
The utility company UC: It chooses groups G1 and GT of order p
(a λ-bit prime), which admit a bilinear map e : G1 × G1 → GT ,
chooses a random secret exponent α ← Z∗p , and a generator д ∈ G1.
It then publishes public parameters PPUC = (G1, GT , д, дα ), and
locally stores the secret value skUC = α . In practice, the UC can
use a different (vk, sk) pair for different periods at ease.

We follow the original work of Boneh et al. [14] in using sym-
metric pairings, which is known to work for asymmetric pairings
as well [21]. Notably, Sipster does not require a full-domain hash.
Residential users RU: each is assigned a unique identity ID.
Bill Issuing Phase (SM→ RU):
At the beginning of the period t , the SM initializes its internal
state τ = (rτ ,Rτ ) = (0, 1G1 ). Within a billing period t , the SM
records the real-time consumption of the RU and calculates the fine-
grained expense. For each unit of expense, the SM runs the stateful
algorithm TokenGen (Algorithm 1) to get the token tk = (σR̃ , R̃),
and forwards it to the RU. The SM’s internal state τ is also updated.
Bill Settlement Phase (RU↔ UC):
For each token tk received in the bill issuing phase, the RU can set-
tle the bill for this particular token immediately with the following
steps. Therefore, this phase can overlap with the bill issuing phase
significantly. For each tk, the RU engages in the following protocol:

RU→ UC: RU presents a token tk to UC and pays a unit of e-cash.
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Algorithm 2 ReceiptGen by the UC

Require: (tk = (R̃,σR̃ ), vkSM, skUC = α )
Ensure: rcpti
1: procedure
2: Parse tk as (R̃,σR̃ )
3: if Verify(vkSM, (R̃,σR̃ )) = 0 then
4: return ⊥
5: else
6: return rcpti = R̃α .
7: end if
8: end procedure

UC→ RU:
(1) The UC outputs rcpti ← ReceiptGen(tk, vkSM, skUC) (Algo-

rithm 2) after payment confirmation.
(2) If rcpti , ⊥, the UC sends it to the RU; otherwise, it aborts.

The RU checks e(rcpti ,д)
?
= e(R̃,дα ). If not, the RU aborts.7

Bill Verification Phase (SM→ RU, RU→ UC):
Suppose at the end of the billing period t , the RU with identity ID
is charged by K units of e-cash. Then, the SM must have issued K
tokens {tki }K = {R̃i ,σR̃i }K to the RU. If the RU had paid K units
of e-cash to the UC, he would have received K receipts {rcpti }i ∈K .

This is the only phase in which the RU reveals the identity ID to
the utility company, perform bookkeeping locally (and reminding
the other customers who did not settle the bill).

SM→ RU: The SM executes BillGen (Algorithm 3) to generate the
bill for the RU whose identity is ID. The SM forwards the output
of BillGen, i.e., bill = (τ ,mID,t ,σ

B
ID,t ), to the RU. Here, τ is the in-

ternal state of the SM, which consists of the aggregated random
exponent and aggregated random element (See Algorithm 1). σB

ID,t
is a signature on the billing informationmID,t .

RU→ UC: Suppose the RU has settled the bill bill = (τ , mID,t ,
σB
ID,t ) from the SM, i.e., received K receipts {rcpti }i ∈K from the

UC. The RU executes CombineReceipt(bill, {rcpti }i ∈K ,PPUC) (Al-
gorithm 4) to obtain σR

ID,t . Then, the RU presents the proof πID,t =
(mID,t ,σ

B
ID,t ,σ

R
ID,t ) to the UC, who verifies it by checking whether

Verify(vkSM, (mID,t ,σ
B
ID,t )) = 1 and e(σR

ID,t ,д) = e(RID,t ,дα ), where
RID,t is a part ofmID,t . If both hold, the UC is convinced that the
RU with identity ID has settled the bill for the period t .

We remark that while the SM uses the same signing key skSM to
create both σB

ID,t = Sign(skSM,mID,t ) here and σR̃ := Sign(skSM, R̃)
in TokenGen, their respective message spaces are different, and the
UC will distinguish two different kinds of signatures.

If everything was executed honestly and with the needed verifi-
cations, the RU will convince the UC in the bill verification phase,
which follows from the correctness of the signature scheme SS
and the equality below:

7A malicious UC can always refuse to return a receipt after receiving a coin. This can
be generally resolved by requiring a fair exchange protocol. The RU may report any
misbehavior to some third-party arbitrator.

Algorithm 3 BillGen (with internal state τ ) by SM
Require: (skSM, ID, t , τ )
Ensure: bill
1: procedure
2: Parse τ as (rID,t ,RID,t )
3: mID,t := (RID,t , ID, t) ▷ Prepare the bill information
4: σB

ID,t := Sign(skSM,mID,t )
5: return bill := (τ ,mID,t ,σ

B
ID,t )

6: end procedure

Algorithm 4 CombineReceipt by RU
Require: (bill, {rcpti }i ∈K , PPUC)
Ensure: σR

ID,t
1: procedure
2: Parse bill as (τ ,mID,t ,σ

B
ID,t )

3: Extract rID,t , дα from τ and PPUC, respectively
4: σR

ID,t := (
∏K

i=1 rcpti )/(дα )rID,t
5: return σR

ID,t
6: end procedure

e(σR
ID,t ,д) = e((

K∏
i=1

rcpti )/(дα )rID,t ,д)

= e(
K∏
i=1
(дriRi )α /дαrID,t ,д)

= e(д
∑K
i=1 ri

K∏
i=1
(Ri )/дrID,t ,дα )

= e(
K∏
i=1

Ri ,д
α ) ▷ since rID,t =

∑K

i=1 ri

= e(RID,t ,дα ). ▷ since RID,t =
K∏
i=1

Ri

4.4 Flexible Payment and Fault Tolerance
Each random element Ri corresponds to a unit payment. We can
easily extend it such that the RU can choose to pay more for each
time. Suppose ten dollars is also a valid denomination. The RU can
choose to hide among the set of users who pay ten dollars at a time.

Sipster can handle non-malicious malfunction of either the RU or
the SM with some small twists. In the above description, if one pay-
ment/receipt for a particular Ri term is missed, all the other receipts
will become useless in the final aggregated receipt verification. To
add fault tolerance, instead of choosing (ri ,Ri ) uniformly at ran-
dom (or forcing each SM to store every single pair (ri ,Ri )), the SM
computes (ri ,Ri ) = PRF(kPRF, (ID| |i)), where kPRF is a hard-coded
key for the pseudorandom function PRF : {0, 1} |kPRF | × {0, 1}∗ →
Z∗p ×G1. The RU can request the SM for the missing i-th token and
re-pay the UC. This resilience feature requires the SM to have a
simple interface for keying in a number. The internal state of the
SM can also store the total number of receipts issued so far.
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If the SM stops functioning in the middle of a billing period, we
can make further modifications so that the RU does not need to pay
the entire bill again. Namely, the internal state of the SM also stores
an “interim” signature σinterim onminterim = (Rτ , ID| |“interim”, t).
When the need arises, the RU requests the smart meter company
staff to fix the meter physically and retrieve this special signature
and the internal state rτ before resetting the SM to the initial state.
The RU completes the proof almost as usual, but now the ID is
appended with a tag “interim” in clear. The UC is then assured that
the RU had paid the latest amount up to the breaking point.

In the very rare case, the (“trusted”) SM completely fails, and
even σinterim is lost too, any financial loss can still be resolved by
pre-defined agreements or different dispute resolution procedures
independent/transparent to Sipster. For example, if the meter is
deemed faulty by the staff, the smart-meter company is responsible;
otherwise, the RU should compensate for the loss and possibly the
checking and fixing fees. In practice, there are usually collateral
requirements on the RU (e.g., originally for late payment), and the
UC probably has some waiving/capping policy too.

4.5 Security Analysis
Section 2.3 identified three goals for Sipster: privacy, unforgeability,
and double-spending prevention. Accordingly, we formulate two
security notions for our Sipster systems: privacy (Definition 5) and
soundness (Definition 7, covering both unforgeability and double-
spending prevention), via cryptographic games between a chal-
lenger and an adversary, who has oracle access to various algo-
rithms. We describe the intuition behind the formalism below and
leave the formal details in Appendix C.

Intuitively, with our specific design, and the typical blind signing
trick in the underlying signature scheme, the UC only sees and signs
(pseudo)random and unlinkable tokens and verifies a constant-size
proof of correct-bill-settlement, all these can be simulated without
any secret knowledge nor any identifying information of any payer.

The intuition for soundness is more difficult to explain in purely
high-level terms as it largely depends on the cryptographic con-
struction. Intuitively, while the application settings are different,
the core arguments for unforgeability are similar to the implicit
underlying aggregate signature [13]. Likewise, for double-spending
prevention, it roots from the unforgeability of the user identity
component and the “restricted signing functionality” that only
works on the randomness chosen by the trusted meter, but not
adversarially-chosen values (as they cannot be fed to the meter).

Remarks on Usages of Pairings. The use of asymmetric primi-
tives such as pairing enables public verifiability, particularly over
the tokens generated by the UC and the proof of bill-settlement
generated by the RU. This comes in handy in dispute resolution.

If asymmetric pairing group (G1 = ⟨д1⟩,G2 = ⟨д2⟩,GT ) is pre-
ferred, Sipster can be rewritten in the asymmetric setting easily.
Specifically, дα1 can be released for CombineReceipt (Algorithm 4)
and дα2 can be released for UC verification. The security proofs will
remain more or less the same, except Theorem 2 will rely on the
co-gap-DH assumption [14].

Ethernet connection

SM (Smart Meter)

RU (Residential Users)

/UC (Utility Company)

Figure 1: An Illustration of the Experimental Setup

5 PERFORMANCE EVALUATION
We evaluate the computation and communication performances of
the proposed Sipster system to show its practicability. Fig. 1 shows
the experimental setups of Sipster: The SM is built on a testbed with
a 1.5GHz ARM Cortex-A9 processor and 1GB RAM, reflecting the
moderate computation power of a typical smart meter.8 Both the
RU and UC are implemented on PCs with a 3.4GHz Intel-i5 CPU
and 32GB RAM. The communication among them is established
via local Ethernet with 89.6Mbps bandwidth.

We instantiate the signature used by the SM by ECDSA [41] from
OpenSSL [56]. Its elliptic curve is over a prime field of n = 256 bits.
As a prototype, we use the Pairing Based Cryptography Library9
with a “Type A” elliptic curve generated for 256-bit group order
and 512-bit base field. One could easily port it over other curves,
such as “Type-F” curves. We follow a basic implementation without
any optimization, e.g., pre-computation of some pairing values, or
speeding up exponentiation for those sharing the same base, which
will further decrease the timing figures. Table 1 summarizes the time
needed for all basic operations. We report the performance in three
dimensions: (aggregated) computation time (Section 5.1), service
latency (Section 5.2), and communication cost (Section 5.3). We omit
the underlying (e-)cash system since it is not part of our design,
and any such system can do. All experimental results represent an
average of 10000 trials.

5.1 Computation Performance
Sipster has four phases: setup, bill issuing, bill settlement, and
bill verification. Setup is carried offline only once at the system

8 Cortex A-series has been adopted, e.g., STMicroelectronics offers energy SM products
with Cortex-A9 as the control unit (https://www.st.com/content/ccc/resource/sales_
and_marketing/promotional_material/brochure/eb/29/0b/3e/a3/7a/4b/7d/brmeter.
pdf/files/brmeter.pdf/jcr:content/translations/en.brmeter.pdf). It was first released in
2013. That means the great performance (in the order of milliseconds) of Sipster is
demonstrated using an old platform. We also remark that smart meters in deployment
do not need the generic interfaces and peripheral devices offered as a development
board, meaning the cost of practical deployment per smart meter would be much less
than the consumer market price for the board before economies of scale kick in.
9http://crypto.stanford.edu/pbc
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Table 1: Computation Time per Operation

Operation Pairing Addition Exponentiation Multiplication Division ECDSA Sign ECDSA Verify
Shorthand pairing add exp mul div sign verify
SM Comp. 17.567 0.997 × 10−4 12.898 3.366 × 10−2 3.047 × 10−2 1.866 2.148
Time (ms) ±2.601 × 10−4 ±1.181 × 10−6 ±5.06 × 10−4 ±3.164 × 10−6 ±1.532 × 10−6 ±1.992 × 10−4 ±6.48 × 10−4

RU/UC Comp. 1.675 0.162 × 10−6 1.196 3.265 × 10−3 3.932 × 10−3 0.277 0.366
Time (ms) ±1.365 × 10−4 ±1.081 × 10−6 ±4.05 × 10−6 ±0.982 × 10−6 ±1.135 × 10−6 ±1.805 × 10−4 ±3.92 × 10−4
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Figure 2: Computation Time at (a) SM, (b) RU, and (c) UC

initialization10, so we focus on measuring the performances of the
three online phases for different entities, namely, SM, RU, and UC.

As discussed in Section 2.3.2, the parameter 𝐾 , denoting the bill
amount that the RU has to pay, which manifests in different phases
and affects the performance most. In the bill issuing phase, the com-
putation at the SM includes generating 𝑅𝑖 , updating internal state 𝜏 ,
and computing the signature 𝜎

𝑅𝑖
. Thus, its computation complexity

contains 𝐾 × exp, 2𝐾 ×mul, 𝐾 × add, and 𝐾 × sign. Moreover, the
SM also takes charge of generating billing information for RU in
the bill verification phase. Its computation complexity is dominated
by the generation of signature 𝜎BID,𝑡 , which is 1 × sign.

Fig. 2(a) depicts its computation time under different 𝐾 ’s. Appar-
ently, the computation time increases linearly as 𝐾 grows. When
𝐾 = 100, the SM’s computation time reaches around 3s in total,
which is the total amount of time required to generate all 𝐾 tokens.
Nevertheless, these tokens are processed only once in a while. The
estimated total amount of time should be spread over for the unit
of granularity for fine-grained bill settlement. So, it should not be
interpreted as a 3s delay at the SM. See Section 5.2 for details.

For the RU, in the bill settlement phase, its computation includes
2𝐾 × pairing. Its computation in the bill verification phase includes
aggregating over rcpt𝑖 to obtain the combined receipt 𝜎RID,𝑡 , which
consists of (𝐾−1)×mul, 1×div, and 1×exp. Fig. 2(b) shows howRU’s
computation time varies with bill amount 𝐾 in each phase. An RU
needs to compute the pairing results of its own records {(�̃�𝑖 , 𝑔𝛼 )}
and the UC’s receipts {(rcpt𝑖 , 𝑔)} whose sizes are dependent on 𝐾 .
For example, when 𝐾 = 10, the RU’s computation takes 2.477ms,
and it increases to 3.031ms as 𝐾 grows to 60. Even though the
computation time of the bill verification phase is linear in 𝐾 , its
slope is rather flat compared with the bill settlement phase.
10The setup phase is quite minimal. There is no user setup. The UC setups a bilinear
group context and a key pair. The SM should also have equipped with a key pair.
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Figure 3: (a) Computation Time at the UC in Bill Settlement,
(b) Computation time at the UC in Bill Verification

For the UC, its computation in the bill settlement phase includes
verifying 𝐾 received tokens tk𝑖 = (𝑅𝑖 , 𝜎𝑅𝑖 ) and computing 𝐾 re-
ceipts: rcpt𝑖 = �̃�𝛼𝑖 , which correspond to 𝐾 × verify and 𝐾 × exp
operations. In the bill verification phase, its computation complex-
ity is 1×verify and 2×pairing. Fig. 2(c) depicts the relation between
bill amount 𝐾 and the UC’s computation time in different phases.
We observe that in the bill settlement phase, the computation time
increases linearly as 𝐾 grows, while the bill verification indicates
its computation time, i.e., 3.726ms, is independent of 𝐾 . This con-
firms the expectation that the number of operations of the UC’s bill
verification phase is fixed and independent from the bill amount 𝐾 .

We then consider another parameter 𝑁 , denoting the number
of RUs handled by the UC. Fig. 3(a) depicts the UC’s computation
time in the bill settlement phase with different 𝑁 ’s, assuming that
all RUs share the same 𝐾 . We notice that the computation time
is a linear function of both 𝐾 and 𝑁 . Specifically, when 𝐾 = 100
and 𝑁 = 100, the total computation time at the UC for generating
receipts is around 13.5s, which is still a relatively short duration
compared with the billing granularity, say one hour. We believe that

Figure 2: Computation Time at (a) SM, (b) RU, and (c) UC

initialization10, so we focus on measuring the performances of the
three online phases for different entities, namely, SM, RU, and UC.

As discussed in Section 2.3.2, the parameter K , denoting the bill
amount that the RU has to pay, which manifests in different phases
and affects the performance most. In the bill issuing phase, the com-
putation at the SM includes generating R̃i , updating internal state τ ,
and computing the signature σR̃i . Thus, its computation complexity
contains K × exp, 2K ×mul, K × add, and K × sign. Moreover, the
SM also takes charge of generating billing information for RU in
the bill verification phase. Its computation complexity is dominated
by the generation of signature σB

ID,t , which is 1 × sign.
Fig. 2(a) depicts its computation time under different K ’s. Appar-

ently, the computation time increases linearly as K grows. When
K = 100, the SM’s computation time reaches around 3s in total,
which is the total amount of time required to generate all K tokens.
Nevertheless, these tokens are processed only once in a while. The
estimated total amount of time should be spread over for the unit
of granularity for fine-grained bill settlement. So, it should not be
interpreted as a 3s delay at the SM. See Section 5.2 for details.

For the RU, in the bill settlement phase, its computation includes
2K × pairing. Its computation in the bill verification phase includes
aggregating over rcpti to obtain the combined receipt σR

ID,t , which
consists of (K−1)×mul, 1×div, and 1×exp. Fig. 2(b) shows howRU’s
computation time varies with bill amount K in each phase. An RU
needs to compute the pairing results of its own records {(R̃i ,дα )}
and the UC’s receipts {(rcpti ,д)} whose sizes are dependent on K .
For example, when K = 10, the RU’s computation takes 2.477ms,
and it increases to 3.031ms as K grows to 60. Even though the
computation time of the bill verification phase is linear in K , its
slope is rather flat compared with the bill settlement phase.

10The setup phase is quite minimal. There is no user setup. The UC setups a bilinear
group context and a key pair. The SM should also have equipped with a key pair.
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Table 1: Computation Time per Operation

Operation Pairing Addition Exponentiation Multiplication Division ECDSA Sign ECDSA Verify
Shorthand pairing add exp mul div sign verify
SM Comp. 17.567 0.997 × 10−4 12.898 3.366 × 10−2 3.047 × 10−2 1.866 2.148
Time (ms) ±2.601 × 10−4 ±1.181 × 10−6 ±5.06 × 10−4 ±3.164 × 10−6 ±1.532 × 10−6 ±1.992 × 10−4 ±6.48 × 10−4

RU/UC Comp. 1.675 0.162 × 10−6 1.196 3.265 × 10−3 3.932 × 10−3 0.277 0.366
Time (ms) ±1.365 × 10−4 ±1.081 × 10−6 ±4.05 × 10−6 ±0.982 × 10−6 ±1.135 × 10−6 ±1.805 × 10−4 ±3.92 × 10−4
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initialization10, so we focus on measuring the performances of the
three online phases for different entities, namely, SM, RU, and UC.

As discussed in Section 2.3.2, the parameter 𝐾 , denoting the bill
amount that the RU has to pay, which manifests in different phases
and affects the performance most. In the bill issuing phase, the com-
putation at the SM includes generating 𝑅𝑖 , updating internal state 𝜏 ,
and computing the signature 𝜎

𝑅𝑖
. Thus, its computation complexity

contains 𝐾 × exp, 2𝐾 ×mul, 𝐾 × add, and 𝐾 × sign. Moreover, the
SM also takes charge of generating billing information for RU in
the bill verification phase. Its computation complexity is dominated
by the generation of signature 𝜎BID,𝑡 , which is 1 × sign.

Fig. 2(a) depicts its computation time under different 𝐾 ’s. Appar-
ently, the computation time increases linearly as 𝐾 grows. When
𝐾 = 100, the SM’s computation time reaches around 3s in total,
which is the total amount of time required to generate all 𝐾 tokens.
Nevertheless, these tokens are processed only once in a while. The
estimated total amount of time should be spread over for the unit
of granularity for fine-grained bill settlement. So, it should not be
interpreted as a 3s delay at the SM. See Section 5.2 for details.

For the RU, in the bill settlement phase, its computation includes
2𝐾 × pairing. Its computation in the bill verification phase includes
aggregating over rcpt𝑖 to obtain the combined receipt 𝜎RID,𝑡 , which
consists of (𝐾−1)×mul, 1×div, and 1×exp. Fig. 2(b) shows howRU’s
computation time varies with bill amount 𝐾 in each phase. An RU
needs to compute the pairing results of its own records {(�̃�𝑖 , 𝑔𝛼 )}
and the UC’s receipts {(rcpt𝑖 , 𝑔)} whose sizes are dependent on 𝐾 .
For example, when 𝐾 = 10, the RU’s computation takes 2.477ms,
and it increases to 3.031ms as 𝐾 grows to 60. Even though the
computation time of the bill verification phase is linear in 𝐾 , its
slope is rather flat compared with the bill settlement phase.
10The setup phase is quite minimal. There is no user setup. The UC setups a bilinear
group context and a key pair. The SM should also have equipped with a key pair.
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Figure 3: (a) Computation Time at the UC in Bill Settlement,
(b) Computation time at the UC in Bill Verification

For the UC, its computation in the bill settlement phase includes
verifying 𝐾 received tokens tk𝑖 = (𝑅𝑖 , 𝜎𝑅𝑖 ) and computing 𝐾 re-
ceipts: rcpt𝑖 = �̃�𝛼𝑖 , which correspond to 𝐾 × verify and 𝐾 × exp
operations. In the bill verification phase, its computation complex-
ity is 1×verify and 2×pairing. Fig. 2(c) depicts the relation between
bill amount 𝐾 and the UC’s computation time in different phases.
We observe that in the bill settlement phase, the computation time
increases linearly as 𝐾 grows, while the bill verification indicates
its computation time, i.e., 3.726ms, is independent of 𝐾 . This con-
firms the expectation that the number of operations of the UC’s bill
verification phase is fixed and independent from the bill amount 𝐾 .

We then consider another parameter 𝑁 , denoting the number
of RUs handled by the UC. Fig. 3(a) depicts the UC’s computation
time in the bill settlement phase with different 𝑁 ’s, assuming that
all RUs share the same 𝐾 . We notice that the computation time
is a linear function of both 𝐾 and 𝑁 . Specifically, when 𝐾 = 100
and 𝑁 = 100, the total computation time at the UC for generating
receipts is around 13.5s, which is still a relatively short duration
compared with the billing granularity, say one hour. We believe that

Figure 3: (a) Computation Time at the UC in Bill Settlement,
(b) Computation time at the UC in Bill Verification

For the UC, its computation in the bill settlement phase includes
verifying K received tokens tki = (R̃i ,σR̃i ) and computing K re-
ceipts: rcpti = R̃αi , which correspond to K × verify and K × exp
operations. In the bill verification phase, its computation complex-
ity is 1×verify and 2×pairing. Fig. 2(c) depicts the relation between
bill amount K and the UC’s computation time in different phases.
We observe that in the bill settlement phase, the computation time
increases linearly as K grows, while the bill verification indicates
its computation time, i.e., 3.726ms, is independent of K . This con-
firms the expectation that the number of operations of the UC’s bill
verification phase is fixed and independent from the bill amount K .

We then consider another parameter N , denoting the number
of RUs handled by the UC. Fig. 3(a) depicts the UC’s computation
time in the bill settlement phase with different N ’s, assuming that
all RUs share the same K . We notice that the computation time
is a linear function of both K and N . Specifically, when K = 100
and N = 100, the total computation time at the UC for generating
receipts is around 13.5s, which is still a relatively short duration
compared with the billing granularity, say one hour. We believe that
the computation performance at the UC can be further improved
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Table 2: Computation Performance
Computation Complexity

SM K × exp, 2K ×mul, K × add, K × sign, 1 × sign
RU 2K × pairing, (K − 1) ×mul, 1 × div, 1 × exp
UC K × verify, K × exp, 1 × verify, 2 × pairing

Table 3: Service Latency of Sipster
Issuing Settlement Verification

Latency (ms) 34.272 ± 2.807 5.665 ± 0.819 9.212 ± 0.826

20 40 60 80 100
0

500

1000

1500

2000

2500

3000

Se
rv

ic
e 

la
te

nc
y 

(m
s)

Bill issuing phase
Bill settlement phase
Bill verification phase

20 40 60 80 100
5

10

15

20

25

30

35

Se
rv

ic
e 

la
te

nc
y 

(m
s) Bill issuing phase

Bill settlement phase
Bill verfication phase

Figure 4: (a) Service Latency under Different K (b) or N

by adopting powerful server clusters or cloud computing services.
Recall that UC is implemented on a PC with moderate computation
capability in our experiments. Fig. 3(b) demonstrates the relation
between computation time and N in the bill verification phase. It
increases linearly as N grows.

To sum up, for a fixed bill amount K , the SM has the longest
computation time while the RU has the shortest. This is because
the SM typically is a low-cost micro-computation unit with much
lower computation capacity. However, as observed in Fig. 5(a),
most bills are handled within a very short time; the longest service
latency is less than 3s, which is negligible to RUs. Naturally, the
UC experiences the longest computation time when the number
of RUs is relatively large. In real-world implementations, it can
be greatly shortened by employing computation unit clustering.
Table 2 summarizes the computation complexity.

5.2 Service Latency
We also evaluate the service latency of Sipster in terms of the overall
delay in each of the three phases: bill issuing, bill settlement, and
bill verification. We focus on computation but not communication
since our protocols are 2-message protocols.

Table 3 shows the service latency by considering one RU. Particu-
larly, for the bill issuing and the bill settlement phases, we examine
the total computation time for handling one unit of expense, i.e.,
K = 1. For the bill verification phase, K is set to 100, indicating that
the RU consumes total utility at expense K for one billing period.
We set K = 1 for the first two phases because the SM generates
a token and forwards it to the RU once each unit of expense is
incurred, regardless of how much expense the RU causes in total
in one billing period. The service latency of bill issuing (34.272ms)
is the largest among the three phases. Its most time-consuming
operation is for the RU generating the tokens (tk,τ ).

Fig. 4(a) depicts the average service latency with respect to K
when N = 1. The bill issuing is executed by the SM. Its service
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Table 2: Computation Performance
Computation Complexity

SM 𝐾 × exp, 2𝐾 ×mul, 𝐾 × add, 𝐾 × sign, 1 × sign
RU 2𝐾 × pairing, (𝐾 − 1) ×mul, 1 × div, 1 × exp
UC 𝐾 × verify, 𝐾 × exp, 1 × verify, 2 × pairing

Table 3: Service Latency of Sipster
Issuing Settlement Verification
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the computation performance at the UC can be further improved
by adopting powerful server clusters or cloud computing services.
Recall that UC is implemented on a PC with moderate computation
capability in our experiments. Fig. 3(b) demonstrates the relation
between computation time and 𝑁 in the bill verification phase. It
increases linearly as 𝑁 grows.

To sum up, for a fixed bill amount 𝐾 , the SM has the longest
computation time while the RU has the shortest. This is because
the SM typically is a low-cost micro-computation unit with much
lower computation capacity. However, as observed in Fig. 5(a),
most bills are handled within a very short time; the longest service
latency is less than 3s, which is negligible to RUs. Naturally, the
UC experiences the longest computation time when the number
of RUs is relatively large. In real-world implementations, it can
be greatly shortened by employing computation unit clustering.
Table 2 summarizes the computation complexity.

5.2 Service Latency
We also evaluate the service latency of Sipster in terms of the overall
delay in each of the three phases: bill issuing, bill settlement, and
bill verification. We focus on computation but not communication
since our protocols are 2-message protocols.

Table 3 shows the service latency by considering one RU. Particu-
larly, for the bill issuing and the bill settlement phases, we examine
the total computation time for handling one unit of expense, i.e.,
𝐾 = 1. For the bill verification phase, 𝐾 is set to 100, indicating that
the RU consumes total utility at expense 𝐾 for one billing period.
We set 𝐾 = 1 for the first two phases because the SM generates
a token and forwards it to the RU once each unit of expense is
incurred, regardless of how much expense the RU causes in total
in one billing period. The service latency of bill issuing (34.272ms)
is the largest among the three phases. Its most time-consuming
operation is for the RU generating the tokens (tk, 𝜏).
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Figure 5: (a) Computation Time, (b) Communication Cost

Fig. 4(a) depicts the average service latency with respect to 𝐾
when 𝑁 = 1. The bill issuing is executed by the SM. Its service
latency is proportional to 𝐾 for the fine-grained billing. Note that
these bills are not necessarily generated all at once. They can be
frommultiple cycles. In this case, the service latency for bill amount
𝐾 reflects the cumulative latency over multiple cycles.

The service latency for bill settlement also increases since the RU
performs more pairing operations to verify the receipts generated
by Algorithm 2. For bill verification, its latency slightly increases
with 𝐾 . For example, the latency is 8.701 ± 0.352ms when 𝐾 = 20,
and it is 9.212±0.826ms when𝐾 = 100. This slight increase is due to
more receipts being combined (generation of 𝜎RID,𝑡 in Algorithm 4).
We remark that the receipt combination takes place in the RU side
and does not require computation from the UC.

Fig. 4(b) shows the impact of 𝑁 , the number of RUs. In the code,
we create a separate thread for handling operations from each RU
at the UC side. Thus, the UC processes RUs’ requests in parallel.
The bill issuing still takes a longer time for the signing process
in a resource-constrained smart meter. Specifically, it is 34.272 ±
2.807ms when 𝑁 = 100, while the latencies for bill settlement and
verification are 9.541 ± 0.359ms and 12.08 ± 1.187ms, respectively.
The latencies are acceptable even under a short billing period, say
one hour. Besides, for bill verification, its latency can be further
reduced by adopting a more powerful cluster at the UC.

5.3 Communication Performance
We then evaluate the transmitted payload data size between differ-
ent entities. In our system, communication only occurs between
the RU and the SM, and between an RU and the UC.

In the bill issuing phase, the SM transmits 𝐾 tuples of (�̃�𝑖 , 𝜎�̃�𝑖 ),
totaling 𝐾 |𝑛 | + 𝐾 |G1 | bits, to the RU, where |G1 | denotes the size
of an element in G1. For |G1 | = 512 bits and |𝑛 | = 256 bits, the cost
is 96𝐾 bytes. In the bill settlement phase, the RU forwards 𝐾 tuples
of (�̃�𝑖 , 𝜎�̃�𝑖 ) to the UC, resulting in 96𝐾 bytes transmission. The
UC replies with 𝐾 receipts �̃�𝛼𝑖 , which costs 𝐾 |G1 | and translates
to 64 · 𝐾 bytes. In the bill verification phase, the SM sends the RU
(𝜏, 𝜎BID,𝑡 ) with the communication cost of |𝑝 | + |G1 | + |𝑛 | = 104 bytes
as |𝑝 | = 160 bits. Then, the RU forwards (𝑅ID,𝑡 , 𝜎BID,𝑡 , 𝜎RID,𝑡 ) to the
UC, resulting in |G1 | + 2|𝑛 | = 128 bytes of transmission. In total,
the SM transmits 96𝐾 + 104 bytes to the UC. The data transmitted
from the RU to the UC is 96𝐾 + 128 bytes, and the UC replies 64𝐾
bytes back.

Figure 5: (a) Computation Time, (b) Communication Cost

latency is proportional to K for the fine-grained billing. Note that
these bills are not necessarily generated all at once. They can be
frommultiple cycles. In this case, the service latency for bill amount
K reflects the cumulative latency over multiple cycles.

The service latency for bill settlement also increases since the RU
performs more pairing operations to verify the receipts generated
by Algorithm 2. For bill verification, its latency slightly increases
with K . For example, the latency is 8.701 ± 0.352ms when K = 20,
and it is 9.212±0.826mswhenK = 100. This slight increase is due to
more receipts being combined (generation of σR

ID,t in Algorithm 4).
We remark that the receipt combination takes place in the RU side
and does not require computation from the UC.

Fig. 4(b) shows the impact of N , the number of RUs. In the code,
we create a separate thread for handling operations from each RU
at the UC side. Thus, the UC processes RUs’ requests in parallel.
The bill issuing still takes a longer time for the signing process
in a resource-constrained smart meter. Specifically, it is 34.272 ±
2.807ms when N = 100, while the latencies for bill settlement and
verification are 9.541 ± 0.359ms and 12.08 ± 1.187ms, respectively.
The latencies are acceptable even under a short billing period, say
one hour. Besides, for bill verification, its latency can be further
reduced by adopting a more powerful cluster at the UC.

5.3 Communication Performance
We then evaluate the transmitted payload data size between differ-
ent entities. In our system, communication only occurs between
the RU and the SM, and between an RU and the UC.

In the bill issuing phase, the SM transmits K tuples of (R̃i ,σR̃i ),
totaling K |n | + K |G1 | bits, to the RU, where |G1 | denotes the size
of an element in G1. For |G1 | = 512 bits and |n | = 256 bits, the cost
is 96K bytes. In the bill settlement phase, the RU forwards K tuples
of (R̃i ,σR̃i ) to the UC, resulting in 96K bytes transmission. The
UC replies with K receipts R̃αi , which costs K |G1 | and translates
to 64 · K bytes. In the bill verification phase, the SM sends the RU
(τ ,σB

ID,t )with the communication cost of |p |+ |G1 |+ |n | = 104 bytes
as |p | = 160 bits. Then, the RU forwards (RID,t ,σB

ID,t ,σ
R
ID,t ) to the

UC, resulting in |G1 | + 2|n | = 128 bytes of transmission. In total,
the SM transmits 96K + 104 bytes to the UC. The data transmitted
from the RU to the UC is 96K + 128 bytes, and the UC replies 64K
bytes back.
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Table 4: Communication Cost Performance
Communication Cost (bytes)

SM→ RU 96 · K + 104
RU→ UC 96 · K + 128
UC→ RU 64 · K

Table 4 and Fig. 5 summarize the communication cost between
different entities when K varies. Overall communication costs be-
tween each pair of entities are all in the order of 103 bytes, even
when K = 100.

6 RELATEDWORK
6.1 Cryptocurrency-based Solutions
Our approach of paying unit coins may have some resemblance
to the Zerocoin [38] approach, where a user also first pays for
units of coins (by publishing commitments of the coins on a public
bulletin board) and proves later that the bill has been settled by
proving the knowledge of the openings (blinding factors) to K of
them. Technically, it does not solve our problem immediately. First,
it requires continual updates on both the accumulator [16] of the
coins and hence the witness for proving the knowledge of a coin
stored in the commitment. A more serious problem is that the RU
needs to prove the knowledge ofK distinct openings. Its complexity
is O(K), and it is unclear how to hide the value K for this proof.11

Cryptocurrencies that support confidential transactions (e.g.,
Monero12 and Zerocash [10]) and specifically the privacy of the
transactional amount seem to be the right tool for our problem.
However, note that the amount privacy is protected from outsiders
who oversee and maintain the underlying blockchain/consensus
system, but not the payee. More seriously, the core problem, namely,
privacy-preserving proof that a user has settled a bill, and having
the payee return the acknowledgment, remains unsolved. One could
imagine a complex zero-knowledge proof that somehow tightly
couples the encryption of the total amount to encryption of the
corresponding customer identity, and some secure-two-party com-
putation that returns a signature on the identity. Even assuming
it can be efficiently done, an integral part of it contains a witness-
indistinguishable proof among all pending and certified amounts
(otherwise, one can easily prove an imaginary bill of 0 amount has
been settled), which is essentially a paraphrase of our problem.

6.2 Privacy-Preserving Billing in Smart Grids
The general goal for privacy-preserving billing aims to protect the
privacy of fine-grained utility usage in the bill generation while
remaining verifiable by the UC. To protect individual readings,
Jawurek et al. [33] hide them by commitments and use their ho-
momorphic property for computing a linear function, summing up
the multiplication of the readings and the cost from tariffs/price
schema for different periods. Rial and Danezis [48] further apply
zero-knowledge proof to verify the correctness of the bill in each
11Alternatively, if one coin is proven each time, an additional two-party protocol is
required to let the UC know that a particular customer has paid a coin. For example,
the RU needs to present another signature from the UC and requests to update such a
signature on a decreasing outstanding balance, both in zero-knowledge. This approach
still takes O (K ) time and a high number of communication rounds.
12https://www.getmonero.org, http://ia.cr/2015/1098

billing period without revealing it. Realizing that even the aggre-
gated bill may leak individual values, Danezis et al. [27] use a
differentially-private mechanism to add noise to the aggregated
bill from the previous approach [48]. The noise serves as a con-
figurable trade-off between payment accuracy and privacy level.
Since the payment amount differs from the original one, they fur-
ther design an oblivious payment protocol that allows the users to
get rebates (in the amount of their noise) in future payments. Fi-
nally, Lin et al. [37] proposed privacy-preserving bill generation and
load monitoring by using distributed pseudorandom functions [40],
which have been utilized in distributed cryptosystems [20] and
many other privacy-preserving aggregation schemes ([28, 51], also
see Appendix A). Nevertheless, all of them did not consider hiding
the total amount beyond adding noise, which is not an effective
protection mechanism without causing too much error.

6.3 Privacy-Preserving Pricing in E-Tolling
Electronic toll collection system is another kind of CPS that makes
use of trusted hardware on the car as a “meter” to record how much
toll a driver should pay after passing through a certain place. There
are quite a few privacy-preserving electronic toll pricing systems.
VPriv [46] uses secure two-party computation (2PC) to ensure
tolling privacy. To ensure users cannot cheat on the total toll price,
the scheme asks them to upload their historical driving information,
including license plate, location, and time. Meanwhile, a trusted
authority needs to randomly record users’ driving information as
well and then challenge them with these records during payment.
Apparently, it compromises the user privacy at the “checking spots.”
PrETP [9] is proposed with similar goals. Rather than using 2PC, the
toll charger first collects homomorphic commitments from users.
Then the toll service provider asks them to open the commitments
of certain location-time tuples corresponding to its random spot-
checks. Each user only reveals the payment amount and location-
time tuples in the physical vicinity of random spot-checks.

Moreover, they prevent users from manipulating the toll price
by spot checks, which reveal the price, inevitably violating privacy.

6.4 On “Aggregate Blind Signatures”
Aggregate signature [13] certifies a number of messages, and the
number of messages reveals the payment amount. A recent aggre-
gate signature scheme considers blind signing functionality [45]. It
requires the signatures to be aggregated come from different signers,
which does not match our need since there is only one company that
issues receipts as signatures. In other words, aggregating signatures
from a single signer remains a technical challenge.

The notion of aggregate blind signature, intuitively, is vulnerable
to the following issue. When the messages can be hidden, a mali-
cious user may hide multiple messages to be aggregated in a single
blind-signing request. Any scheme should remain secure against
such kinds of attacks. The closest related work we can find is a
privacy-preserving payment system for public transport [49] with
a refund feature. Similar to our approach, the above potential secu-
rity issue is resolved by assigning an authenticated random group
element to each of the signature requesters. Its core cryptographic
mechanism appears to be a “history-free sequential aggregate blind
signature” signing protocol over a restricted message set. A signer
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can derive the next aggregate using only the previous aggregate
(but not the history of previous messages and the corresponding
public keys) apart from (the obvious inputs of) the current message
to be signed and the signature key. In their application, all signa-
tures to be aggregated come from the same signer, who cannot
learn previous aggregates and the corresponding messages. More-
over, the aggregate signature verification is over an aggregate of
the messages instead of all the messages, conveniently storing the
amount to be refunded.

The signature requester needs to maintain state information
for the sequential aggregation, which is slightly inconvenient in
general. The most important distinction from our approach is that,
an amountd is encoded as the power of a secret α as the exponent of
the random group element. Correspondingly, to enable verification,
the public key size of their scheme is as large as the magnitude
of the aggregatable amount, i.e., O(K)-size when the amount to
pay is K unit dollars. With respect to the random group element,
the “aggregate signature” is deterministic, meaning that a zero-
knowledge proof is needed to hide the amount. In contrast, our
approach is based on the collection of K signatures to aggregate
instead of an explicit encoding of the value K , freeing us from the
zero-knowledge proof. Our underlying primitive allows arbitrary
(or non-sequential) aggregation and features a constant-size public-
key independent of the maximum aggregatable amount.

Finally, we remark that it is of theoretical interest to propose an
efficient aggregate blind signature scheme in the standard model
without any trusted device.

7 APPLICATIONS IN MOBILE PAYMENT
To show the wide applicability of our Sipster system beyond the
context of cyber-physical systems, we describe how it can be applied
to mobile payment systems to enhance payment privacy. We note
that some current mobile payment systems also rely on the TPM in
the cellphone, but for payment security instead of payment privacy.

The system involves three types of parties: the bank, the mer-
chants, and bank clients holding a (lightweight) trusted device
manufactured by a third-party company that does not collude with
the bank. The clients want to enjoy the convenience of mobile pay-
ment, yet do not want to reveal their spending pattern to the bank
or major global-scale smartphone manufacturers.

We can apply Sipster to realize a privacy-preserving credit-card
system [25]. Namely, the bank client can carry out transactions
with different merchants. From time to time, the client pays the
bank in unit amounts. These payments should collectively settle all
the transactions made within a certain billing period.

To use Sipster, the bank acts as the UC, the trusted device cor-
responds to the SM, and bank clients correspond to RUs. When
a bank client wants to pay the merchant K units of money, it en-
ters the amount K to the device, which locally outputs K (blinded)
random tokens as in TokenGen (cf. Algorithm 1), but this time it
further outputs a (normal) signature on the amount K (and a ran-
dom serial number). The merchant will redeem money from the
bank by presenting this signature. For each token generated by
the trusted device, the bank client pays back the bank some (real)
money in some private manner, such that the bank will sign on
the token after receiving the payment. The bank’s signature serves

as the receipt, in the same way as ReceiptGen (cf. Algorithm 2).
At the end of the billing period, the trusted device outputs a bill
via BillGen (cf. Algorithm 3), representing the total amount that
the client should settle. Suppose the bank client has indeed settled
the bill; it combines the receipts in the manner of CombineReceipt
(cf. Algorithm 4) and proves to the bank analogously.

The security of the above mobile payment system comes directly
from the security of our Sipster system. The bank learns nothing
about the client’s payment pattern and amount. Nevertheless, it
is assured that it has received enough money from its client if the
bill verification algorithm passes. The threat model of the above
payment system is the same as our CPS example (Section 2.3), with
the corresponding parties’ identity substituted as above.

8 CONCLUSION
We propose Sipster, a novel anonymous payment settlement proto-
col for cyber-physical systems without generic (and hence heavier)
techniques such as zero-knowledge proof or two-party computation
protocols. It protects the privacy of customers against utility com-
panies, while at the same time ensuring that the utility company
gets correct payment according to fine-grained tariff policy.

We conduct extensive simulations to demonstrate that our sys-
tem is efficient for practical deployment. In particular, the verifica-
tion time at the utility company is only linearly dependent on the
number of customers but independent of the individual amount.

Technically, we devise a variant of “aggregate blind signature”
functionality13 using smart meters equippedwith a TCB.We believe
such kinds of functionalities will find application elsewhere, most
likely in the context of e-cash and anonymous credentials. We
brieflymention how this can be used as a privacy-preserving mobile
payment system in the credit card or IOU model, where the mobile
device locally records the transaction amount of its owner for a
given period, that the owner should eventually settle with the bank.

This work refutes the thought (of some non-cryptographers
perhaps) that there be no payment privacy since the utility company
must receive and see (sufficient) money. We demonstrate that a
“win-win” situation is possible: the utility company can enjoy pay-
as-you-go while users can hide unit payments “in-the-crowd.”
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A PRIVACY-PRESERVING AGGREGATION
Bill generation is considered as a special case of aggregation [34].
Each user can mask the readings before submitting them to the
company. The masks can be obtained through collaboration among
all users [35], such that the aggregated masks can be canceled with
each other, but it incurs heavy communication overhead. Acs and
Castelluccia [3] employ a differential-privacy model in which the
user adds carefully designed noise to the reading to hide the real
value. The utility company can then obtain the sum of the noisy
readings. This can be seen as sacrificing data accuracy for privacy.

Garcia and Jacobs [31] homomorphically encrypt secret shares
of the measurements to each member in the aggregation group.
With homomorphism, every user can obtain an aggregated share
encrypted under the public key. The user then sends the decryption
result of the aggregated shares to the utility company, who finally
obtains the total consumption over all users without knowing in-
dividual measurements. Erkin and Tsudik [30] develop another
aggregation scheme using encryption as homomorphic commit-
ment. The scheme also first splits a value (specifically, the modulo)
into random shares among the users. An individual user reading is
committed with the exponent of the random term (which was the
modulo originally) being the share. Like other schemes, when all
commitments are combined, the random shares cancel each other.

To hide individual usage, all the above schemes aggregate in-
dividual consumption over either a long duration or a group of
users. In short, privacy-preserving data aggregation is a kind of
secure multi-party computation of secret values but is not related
to any subsequent payment according to those values. On the other
hand, our payment problem requires signatures certifying the secret
amounts and aims to achieve seemingly contradictory requirements
(e.g., unlinkability between payments and receipts and preventing
double claim of the same receipt).

B BASIC DEFINITIONS
Definition 1 (Existential Unforgeability). LetSS = (KGen,

Sign, Verify) be a signature scheme. We say that SS is (t ,q, ϵ)-
EUF-CMA-secure if for all PPT adversaries A running in time t :

Pr
[
Verify(vk, (m∗,σ ∗)) = 1 ∧ m∗ < Q :
(vk, sk) ← KGen(1λ); (m∗,σ ∗) ← ASign(sk, ·)(vk)

]
≤ ϵ

where Q = {m1, . . . ,mq } denotes the set of queries to the signing
oracle. Whenever q = poly(λ) and ϵ(λ) = negl(λ), we simply say that
SS is EUF-CMA-secure.

Agroup sampler is a PPT algorithmIG that on input the security
parameter λ outputs a tuple (G,д,q) ← IG(1λ). It defines a poly(λ)-
bit representation for group elements in G of order q. For the sake
of simplicity, we omit the indication of IG hereafter, but we note
that in the following definitions, the probabilities are also taken
over the randomness of IG.

Definition 2 (Computational Diffie-Hellman Problem).
Given (д,дx ,дy ), compute дxy , where {д,дx ,дy } ∈ G and (x ,y) ←
Z2q . Let the advantage of a PPT algorithm A in solving the computa-
tional Diffie-Hellman (CDH) problem be:

AdvCDHA = Pr[(x ,y) ← Z2q : A(д,дx ,дy ) = дxy ].

The CDH assumption requires that, for any PPT adversary A, the
advantage of solving the CDH problem AdvCDHA is negligible.

Gap Diffie-Hellman (Gap-DH) groups (e.g., [12, 19]) are those
where the decisional Diffie-Hellman (DDH) problem can be solved
in polynomial time, but no PPT algorithm can solve the CDH
problem with non-negligible probability, e.g., bilinear groups. Let
ODDH (·) denote an oracle machine that takes input (д,дx ,дy ,дz ) ∈
G4, outputs 1 if z = xy and outputs 0 otherwise.

Definition 3 (Gap-Diffie-Hellman (Gap-DH) Problem). Given
(д,дx ,дy ) and access to a DDH oracle (ODDH (·)), computeдxy , where
{д,дx ,дy } ∈ G and (x ,y) ← Z2q . Let the advantage of a PPT algo-

rithm A in solving the gap-DH problem AdvGap-DHA be:

Pr[(x ,y) ← Z2q : AODDH (·)(д,дx ,дy ) = дxy ].
The gap-DH assumption requires that, for any PPT adversary A, the
advantage of solving the gap-DH problem AdvGap-DHA is negligible.

We assume that the gap-DH assumption holds in bilinear group
G1. The use of pairing groups enables such a DDH oracle.

C FORMAL SECURITY ANALYSIS
C.1 Privacy
First, we claim that Sipster satisfies privacy, namely the UC can-
not infer how many e-coins it receives from an RU, nor link any
spending of e-coin to a particular RU.

To define privacy, we introduce a user indistinguishability game
between an adversary A, acting as the malicious UC, and a chal-
lenger C, acting as both the RU and SMs. This definition guarantees
that a curious UC cannot differentiate users who made payments in
Sipster, even when UC can choose these target users and adaptively
induce them to perform payment-related operations of its choice.

Definition 4 (User Indistinguishability). The user indis-
tinguishability game between an adversary A and a challenger C
proceeds in steps as follows:

• Setup Phase: C runs the key generation algorithm of a digi-
tal signature scheme to obtain a verification/signing key pair
(vkSM, skSM), and gives the verification key vkSM to A. C
plays the role of theRU andN smartmeter instances {SMi }i ∈[N ]
that share the same signing key skSM. The internal states
{τi }i ∈[N ] are initialized. C also initializes empty sets ID
(for recording corrupted IDs) and {RCi }i ∈[N ] (for storing re-
ceipts). C chooses a random permutation π : [N ] → [N ]. A
chooses a billing period t . It runs the setup algorithm for the
UC and forwards PPUC to C while keeping skUC secret.
• Query Phase: A and C mimic the Sipster protocol:
(1) WhenA sends a consume query (Consume, i) to C, C runs

TokenGen on input skSM and state τπ (i). The internal state
τπ (i) is updated. The output tk = (R̃,σR̃ ) is forwarded toA.

(2) A runsReceiptGen(tk, vkSM, skUC) to obtain rcpt. If rcpt ,
⊥, A sends rcpt to C.

(3) C checks if rcpt is valid w.r.t. PPUC. If not, C aborts the
game. Otherwise, C adds rcpt to the set RCπ (i).

The above queries can be issued polynomially many times.
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• Corruption Query: In the Query Phase, A can send a corrup-
tion query (Corrupt, i) to C at any time. C will return π (i)
and add i to ID. This query can be issued polynomially many
times.
• Challenge Phase: When A issues a bill-generation query, C
checks for all i ∈ [N ] \ ID, whether RCπ (i) is empty. If
there are less than two non-empty RCπ (i), it aborts; otherwise,
for all non-empty RCπ (i), it runs BillGen on inputs (skSM,
IDi , t , τπ (i)) to get billi = (τπ (i),mIDi ,t , σ

B
IDi ,t
). Then, C runs

CombineReceipt on inputs (billi , RCπ (i), PPUC) to obtain the
results σR

IDi ,t
. C sends all such (mIDi ,t , σ

B
IDi ,t

, σR
IDi ,t
) to A.

• Guess Phase: A returns a pair (j, jπ ) as its guess.
Definition 5 (Privacy). Sipster satisfies privacy, if the advan-

tage of any PPT adversary defined by AdvPrivA = | Pr[jπ = π (j)|j <
ID] − 1

n |, is negligible in λ, where n is the number of non-empty
RCi ’s, i ∈ [N ] \ ID.

The privacy game mimics the interaction among the UC, RU,
and SM. Definition 5 guarantees that neither the identity nor the
payment amount is leaked to the adversary. In the game, A has
full control over when to see receipt requests for IDπ (j) in the
Bill Settlement Phase. A can also determine the payment amount
for IDπ (j) by choosing how many Consume queries are issued for
IDπ (j). The security notion says that such a powerful adversary still
cannot guess π (j) with a non-negligible advantage. It means that
UC can infer neither the RU’s identity nor the payment amount in
the Bill Verification Phase. Effectively, RUi remains hidden among
the set of non-corrupted residential users that have made payments.

C.2 Soundness
We summarize the two properties of unforgeability and double-
spending prevention as the soundness property. Similarly, we define
this security notion via a game.

In the soundness game, adversary A plays the role of the RU
while challenger C plays the roles of both the SM and UC.

Definition 6. The soundness game between an adversary A
and a challenger C proceeds in steps as follows:

• Setup Phase: Challenger C runs the setup algorithm for the UC
and forwards PPUC toA. C runs the key generation algorithm
to get a verification/signing key pair (vkSM, skSM), and gives
the verification key vkSM toA. C plays the role of the UC and
one smart meter instance SM with the signing key skSM above.
The internal state of the SM is then initialized. A chooses an
identity ID∗ and a billing period t∗, and informs C a payment
amount K .
• Challenge Phase: A and C mimic the Sipster protocol:
(1) C runs the stateful algorithm TokenGen on input (skSM, τ )

for K times to obtain a set of K tokens {tki }K (the internal
state τ is also updated). All tokens are forwarded to A.

(2) At the end of the billing period t∗, C executes BillGen on
input (skSM, ID∗, t∗, τ ) to generate the bill for identity ID∗,
and forwards the resulting bill = (τ ,mID∗,t ∗ ,σ

B
ID∗,t ∗ ) to A.

• Query Phase: C initializes a counter ctr = 0. A sends receipt-
generation queries:

(1) A sends tk′ to C;

(2) If ctr ≥ K , C ignores the query; otherwise, C computes
rcpt = ReceiptGen(tk′, vkSM, skUC). If rcpt , ⊥, incre-
ments the counter ctr = ctr + 1, and sends rcpt toA; other-
wise, ignores the query.

• Output Phase:A outputs πID∗,t ∗ . C accepts if πID∗,t ∗ is a valid
proof for ID∗ and period t∗.

Definition 7 (Soundness). Sipster satisfies soundness if the
advantage of any PPT adversary in the above game, defined by
AdvBillA = Pr[C accepts], is negligible in the security parameter λ.

C.3 Proof for Privacy
Theorem 1. Sipster satisfies privacy and AdvPrivA = 0.

Proof. In the Query Phase, the response of a (Consume, i) query
is of the form (R̃,σR̃ ) = (дrR, Sign(skSM,σR̃ )). Because all r ’s are
chosen independently from a uniform distribution, what A sees in
the whole Query Phase is a series of independently and identically
distributed random group elements and signatures on them. Such
distribution is independent of the index i .

Assume that challenger C does not abort. We argue that the
view of A in the Challenge Phase is independent of the random
permutation π (·). Let i be an arbitrary index such thatRCπ (i) is non-
empty.A sees (mIDπ (t ),t = (RIDπ (t ),t , IDi , t), σB

IDπ (t ),t
, σR

IDπ (t ),t
). In

essence, RIDπ (t ),t , σB
IDπ (t ),t

, σR
IDπ (t ),t

substitute RIDi ,t , σB
IDi ,t

, σR
IDi ,t

respectively. Therefore, the problem reduces to showing (RIDπ (t ),t ,
σB
IDπ (t ),t

,σR
IDπ (t ),t

) is identically distributed as (RIDi ,t ,σB
IDi ,t

,σR
IDi ,t
).

The last two elements (σB
IDπ (t ),t

, σR
IDπ (t ),t

) and (σB
IDi ,t

, σR
IDi ,t

) de-
pend on the first one (mIDπ (t ),t andmIDi ,t ): σB

IDπ (t ),t
(resp. σB

IDi ,t
)

is a signature onmIDπ (t ),t (resp.mIDi ,t ); σR
IDπ (t ),t

= RαIDπ (t ),t
(resp.

σR
IDi ,t

= RαIDi ,t
). So, the problem further reduces to showingRIDπ (t ),t

and RIDi ,t are identically distributed.
To see why they are identically distributed, note that RIDπ (t ),t

(as a part of the internal state τπ (t )) is a random group element
independent of RIDi ,t as well as all r ’s in the Query Phase. (See
Algorithm 1 and Algorithm 3.) A similar conclusion also holds
for RIDi ,t . As a result, the distributions of RIDπ (t ),t and RIDi ,t are
identical even conditioned on whatA saw in the Query Phase. □

C.4 Proof for Soundness
Theorem 2. Sipster satisfies soundness if SS is an EUF-CMA-

secure digital signature scheme and the gap-DH problem (Definition 3)
is hard in G1.

Proof. By contradiction, there exists an adversary A breaking
the soundness gamewith a non-negligible probability.We show that
one of the following must hold: (1) the underlying digital signature
scheme SS is not EUF-CMA secure; (2) the gap-DH problem (Defi-
nition 3) is easy in G1.

Suppose the output of A is πID∗,t ∗ = (m̃ID∗,t ∗ , σ̃B
ID∗,t ∗ , σ̃

R
ID∗,t ∗ ).

We classifyA into two types. A Type-I adversaryA satisfies the fol-
lowing requirements: (1) m̃ID∗,t ∗ in πID∗,t ∗ equalsmID∗,t ∗ received
from C in the Query Phase (in bill = (τ ,mID∗,t ∗ ,σ

B
ID∗,t ∗ )), and (2)

for all the receipts rcpti ’s received in the Query Phase, their cor-
responding tokens tki ’s are all received from C in the Challenge
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Phase. Any adversary who is not Type-I is a Type-II adversary.
Clearly, any adversary must be either Type-I or Type-II.
Case One:A is Type-I.We build a reduction BGap-DH that solves
the gap-DH problem with a non-negligible probability by using
A. Suppose BGap-DH receives the gap-DH challenge (д,X ,Y ) =
(д,дx ,дy ). BGap-DH plays the role of C in the soundness game.
BGap-DH simulates the Setup Phase of the soundness game as
follows: it simulates the output of the setup procedure for UC
as PPUC = (G1, GT , д, X ). It runs the KGen for SS to gener-
ate (vkSM, skSM). After receiving a payment amount K from A,
BGap-DH selects a random index i ∈ [1,K]. BGap-DH selects (K − 1)
random exponents (r1, . . . , ri−1, ri+1, . . . , rk ) ← ZK−1q and com-
putes R1 = дr1 , . . . ,Ri−1 = дri−1 ,Ri = Y ,Ri+1 = дri+1 , . . . ,RK =
дrK .BGap-DH then simulates the Challenge Phase by computing, for
all j ∈ [1,K], tkj = (Rj , Sign(skSM,Rj )). It also selects rID∗,t ∗ ← Zq ,
computes RID∗,t ∗ = дr1 · · ·дri−1Yдri+1 · · ·дrK /дrID∗,t∗ . The output
of BillGen is bill = (τ ,mID∗,t ∗ ,σ

B
ID∗,t ∗ ), where τ = (rID∗,t ∗ ,RID∗,t ∗ )

and mID∗,t ∗ = (RID∗,t ∗ , ID∗, t∗). σB
ID,t can be computed by using

skSM. The simulations of the Setup and the Challenge Phases are
perfect.

By our assumption thatA is Type-I, we know that all the queries
A made in the Query Phase come from {tkj }K . Without loss of
generality, we assume thatA makes (K − 1) queries to BGap-DH . If
the query tk′ = tkj for some j , i , BGap-DH responds with X r j . If
tk′ = tki , BGap-DH aborts and restarts the simulation from scratch.
The probability that BGap-DH does not abort in the Query Phase
is 1/K , which is non-negligible. Conditioned on the event that
BGap-DH does not abort, the simulation is also perfect in the Query
Phase. Then, by our assumption, A outputs an accepting πID∗,t ∗

with a non-negligible probability. BGap-DH extracts σR
ID∗,t ∗ from

πID∗,t ∗ and outputs σR
ID∗,t ∗ ·X rID∗,t∗ /(X r1 · · ·X ri−1X ri+1 · · ·X rK ) as

the solution for the gap-DH problem.
To see why σR

ID∗,t ∗ · X rID∗,t∗ /(X r1 · · ·X ri−1X ri+1 · · ·X rK ) is the
correct solution, recall that σR

ID∗,t ∗ must satisfy the pairing equation:

e(σR
ID∗,t ∗ ,д) = e(RID∗,t ∗ ,X )

= e(дr1 · · ·дri−1Yдri+1 · · ·дrK /дrID,t ,X )
= e(X r1 · · ·X ri−1ZX ri+1 · · ·X rK /X rID,t ,д)

where Z = Y x is the expected solution of the gap-DH problem. It
follows that Z = σR

ID∗,t ∗ · X rID∗,t∗ /(X r1X r2 · · ·X ri−1X ri+1 · · ·X rK )
by simple rearrangement of terms, which means BGap-DH solves
the gap-DH problem with a non-negligible probability.
Case Two: A is Type-II. Given a Type-II adversary, it is easy to
construct a reductionBEUF-CMA that breaks the EUF-CMA-security
of the signature scheme SS. BEUF-CMA simply uses the vk it re-
ceived in its EUF-CMA-game as vkSM to simulate the soundness
game for A without knowing skSM = sk. The only algorithms that
skSM would be used are TokenGen and BillGen. For the former,
BEUF-CMA queries the signing oracle for K random group elements
to compute a set of K tokens {tki }K . For the latter, it queries the
signing oracle on inputmID∗,t ∗ to compute the output of BillGen.
The message spaces for either kind of requests are different. By as-
sumption, a Type-II adversaryA outputs an accepting proof πID∗,t ∗
with a non-negligible probability. Thus BEUF-CMA can extract at

least one forgery (a new token tk′) in the Query Phase or from
πID∗,t ∗ (a forgery for m̃ID∗,t ∗ ,mID∗,t ∗ ).

Combining the two cases above, we conclude that if there exists
A breaking the soundness game with a non-negligible probability,
then either SS is not EUF-CMA-secure, or the gap-DH problem is
easy in G1. □
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