

CycleGuard: A Smartphone-based Assistive Tool for Cyclist Safety Using Acoustic Ranging

Wenqiang Jin^{1*}, **Srinivasan Murali^{1*}**, Youngtak Cho¹, Huadi Zhu¹, Tianhao Li¹, Rachael Thompson Panik², Anika Rimu¹, Shuchisnigdha Deb¹, Kari Watkins², Xu Yuan³, and Ming Li¹

* The first two authors contributed equally to this work

- ¹ The University of Texas at Arlington
- ² Georgia Institute of Technology
- ³ University of Louisiana at Lafayette

Motivation

Motivation

Source: National Highway Traffic Safety Administration (NHTSA)

The Right-Hook

• A motorist makes a right turn directly in front of the bicyclist abruptly

*Washington Area Bicyclist Association and The District Department of Transportation

The Right-Hook

- A motorist makes a right turn directly in front of the bicyclist abruptly
 - Not within bicyclist Field-of-view
 - Uncontrolled/partially controlled intersections
 - Worser in <u>lower light scenarios</u>

*Washington Area Bicyclist Association and The District Department of Transportation

Related Work

A portable, cost-efficient system

is needed to enhance the safety

of cyclists.

- Cyclist safety Techniques
 - Sophisticated sensors, sensitive to light
 - Expensive
- Collision av
 - Focused t
- Industrial so
 - Sole purp
 - Full functionality requires expensive add-ons

Design Rationale

- Key Idea:
 - Alert the cyclist if the car is making a right-turn too close

Design Rationale

- Collision detection criteria:
 - Bike-Vehicle Distance $\leq SSD$
 - Vehicle making a right turn
- SSD: Stopping-sight distance
 - Near worst-case distance the cyclist needs to be able to see, react, and brake to have room to stop before colliding with the vehicle.

System setup

- Smartphone, installed with application
- External speaker

System setup

Practical challenges

• Interference from cyclist's surrounding objects

Practical challenges

- Interference from cyclist's surrounding objects
- Estimate position correctly

Practical challenges

- Interference from cyclist's surrounding objects
- Estimate position correctly
- Identify right-turn vehicle from other static and non-static objects

Challenge 1: Interference from cyclist's surrounding objects

Direct

Body and bike

reflections

Target reflections

Background reflections

•
$$R(t) = \sum_{i \in U_1} h_i S_C(t - \tau_i) + \sum_{i \in U_2} h_i S_C(t - \tau_i)$$

• Cleaning of Signal:

•
$$min_{h_i} = \sum_t \left[R(t) - \sum_{i \in U_1 \cup U_2} h_i S_C(t - \tau_i) \right]$$

Step 1: Bike-Vehicle Distance estimation Step 2: Bike-Vehicle Angle estimation

• Estimation of Bike-Vehicle Distance:

•
$$C(t) = \int_{\tau=-\infty}^{+\infty} S_c(t) R(t - \tau) d\tau$$

• Estimation of Bike-Vehicle Distance:

•
$$C(t) = \int_{\tau=-\infty}^{+\infty} S_c(t) R(t - \tau) d\tau$$

• Estimation of Bike-Vehicle Angle:

•
$$\theta = \arccos(\frac{d_1^2 + A^2 + d_2^2}{2 \times d_1 \times A})$$

Step 1: Remove static objects

Step 1: Remove static objects

Step 2: Isolate right turn vehicle from other vehicles

• Consider smartphone coordinate system on the road

- Consider smartphone coordinate system on the road
- Divide intersection into 4 regions

- Consider smartphone coordinate system on the road
- Divide intersection into 4 regions
- Construct position curves for objects
 - Series of distances and angles

• Right-turn vehicles' curves confined within $[0,\pi/2]$

• Construct moving trajectory for all possible vehicle directions

- Right-turn vehicles' curves confined within $[0,\pi/2]$
 - Constantly increasing angle
 - Constantly decreasing distance

Trace	1	2	3	4	5	6	7	8	9	10	11	Right-turn vehicle (0)
θ	↓	\downarrow	\downarrow	\downarrow	\downarrow	↑↓	↓	\downarrow	1	1	1	1
d	↓ ↑	$\downarrow \uparrow$	ſ	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	↑	1	1	\downarrow
θ range	Q1	Q2	Q1	Q2	Q1	Q1	Q1	Q1	Q1	Q1	Q2	Q1
Q1: $\theta \in [0, \pi/2], Q2: \theta \in [\pi/2, \pi]$												

Piecing all together

- System benchmarks
 - Detection in presence of multiple vehicles
 - Impact of on-road obstacles
- Real-world testing (on-road)
 - Different environments
 - Different times of the day
- Micro benchmarks
 - Computation time
 - Energy consumption
 - Device diversity

Evaluation Testing Scenario

- Evaluation metrics:
 - True Positive Rate (TPR):
 - System successfully detects target vehicle before collision
 - True Negative Rate (TNR):
 - No false alarms in the absence of target vehicles

- Impact of Multi-vehicles
 - Bike riding speed

Metric		Bike ri	ding sp	beed (m/	s)	Vehicle speed (mph)						
Methe	2	3	4	5	6	5	7	10	12	15		
TPR	98%	98%	96%	94%	93%	98%	98%	94%	92%	92%		
TNR	90%	88.8%	88%	87.5%	86.95%	90%	88.8%	87%	86.6%	85%		

- Impact of Multi-vehicles
 - Bike riding speed
 - Vehicle speed

Motrio		Bike ri	ding sp	peed (m/	′s)		Vehicle	e speed	l (mph)			
Metric	2	3	4	5	6	5	7	10	12	15		
TPR	98%	98%	96%	94%	93%	98%	98%	94%	92%	92%		
TNR	90%	88.8%	88%	87.5%	86.95%	90%	88.8%	87%	86.6%	85%		
					•					¥		
	Successfully detect the compat											
	Successfully detect the correct											
	$ratio = \frac{1}{2} \frac{1}$											
				ve	incle	92	70 U	IUI	eun	110		

- Impact of maneuver changes
 - Bike riding speed

Metric		Bike 1	riding spe	ed (m/s)		Relative b-v distances (m)						
wiethe	2	3	4	5	6	10	15	20	25	30		
TPR	98%	96.8%	95.83%	93.75%	92.3%	96.6%	96%	94.73%	93.9%	93.1%		
TNR	90%	89.2%	88.57%	87.5%	87.5%	90.9%	88.4%	88%	86.9%	86.2%		

- Impact of maneuver changes
 - Bike riding speed
 - Relative distances between bike and vehicle

CycleGuard achieves a minimum of 92.3% TPR and 86.2% TNR

Metric		Bike 1	riding spe	ed (m/s)		Relative b-v distances (m)						
wienie	2	3	4	5	6	10	15	20	25	30		
TPR	98%	96.8%	95.83%	93.75%	92.3%	96.6%	96%	94.73%	93.9%	93.1%		
TNR	90%	89.2%	88.57%	87.5%	87.5%	90.9%	88.4%	88%	86.9%	86.2%		

Evaluation Real-world testing

- Real-world environment:
 - Parking lot

		Parkin	g lot	Ca	ampus are	eas	Residential areas			
Metric/Setting	Relat	ive b-v d	istances (m)	Relative	b-v dista	nces (m)	Relative b-v distances (m)			
	10	20	30	10	20	30	10	20	30	
TPR	98%	96%	92%	96.15%	93.9%	92.3%	95.45%	93.54%	91.83%	
TNR	92%	89.7%	88%	91.66%	85.71%	80.55%	90.32%	84.31%	78.84%	

- Real-world environment:
 - Parking lot
 - Campus areas

		Darkin	ur lat	C	mnue ar	200	Dec	idential a	rang	
		r ai kii	ig ioi		ampus are	cas	Residential aleas			
Metric/Setting	Relat	ive b-v d	listances (m)	Relative	b-v dista	nces (m)	Relative b-v distances (m)			
	10	20	30	10	20	30	10	20	30	
TPR	98%	96%	92%	96.15%	93.9%	92.3%	95.45%	93.54%	91.83%	
TNR	92%	89.7%	88%	91.66%	85.71%	80.55%	90.32%	84.31%	78.84%	

- Real-world environment:
 - Parking lot
 - Campus areas
 - Residential areas

		Parkir	ng lot	Ca	ampus are	eas	Residential areas			
Metric/Setting	Relat	ive b-v d	listances (m)	Relative	b-v dista	nces (m)	Relative b-v distances (m)			
	10	20	30	10	20	30	10	20	30	
TPR	98%	96%	92%	96.15%	93.9%	92.3%	95.45%	93.54%	91.83%	
TNR	92%	89.7%	88%	91.66%	85.71%	80.55%	90.32%	84.31%	78.84%	

- Real-world environment:
 - Parking lot
 - Campus areas
 - Residential areas

Acceptable real-world performance

		Parking l	ot		Ca	ampus are	as	Residential areas			
Metric/Setting	Relat	ive b-v dist	ances (r	n)	Relative	b-v dista	nces (m)	Relative b-v distances (m)			
	10	20	30		10	20	30	10	20	30	
TPR	98%	96%	92%		96.15%	93.9%	92.3%	95.45%	93.54%	91.83%	
TNR	92%	89.7%	88%		91.66%	85.71%	80.55%	90.32%	84.31%	78.84%	

- Testing during night-time:
 - Parking lot

		Parking lot	t		Campus roads				
Metric/Setting	Relativ	re b-v distar	nces (m	Relative b-v distances (m)					
	10	20	30		10	20	30		
TPR	98%	96.67%	92.3%		96.55%	94.1%	92.85%		
TNR	93.9%	91.66%	90.9%		91.89%	86.36%	81.48%		

- Testing during night-time:
 - Parking lot
 - Campus roads

	Parking lo	t		Campus roads				
Relativ	e b-v distar	ices (m))	Relative b-v distances (m)				
10 20		30		10	20	30		
98%	96.67%	92.3%		96.55%	94.1%	92.85%		
93.9%	91.66%	90.9%		91.89%	86.36%	81.48%		
	Relativ 10 98% 93.9%	Parking lot Relative b-v distar 10 20 98% 96.67% 93.9% 91.66%	Parking lot Relative b-v distates (m) 10 20 30 98% 96.67% 92.3% 93.9% 91.66% 90.9%	Parking lot Relative b-v distavces (m) 10 20 30 98% 96.67% 92.3% 93.9% 91.66% 90.9%	Parking lot Ca Relative 10 20 30 10 98% 96.67% 92.3% 96.55% 93.9% 91.66% 90.9% 91.89%	Parking lot Campus roa Relative b-v distatives (m) Relative b-v distatives (m) 10 20 30 10 20 20 98% 96.67% 92.3% 9 96.55% 94.1% 93.9% 91.66% 90.9% 9 91.89% 86.36%		

Acceptable real world performance at night

- Micro benchmarks
 - Computation time

Acceptable time consumption:

- Average : 365ms

- 90% measurements \leq 414ms

- Micro benchmarks
 - Computation time
 - Energy consumption

Acceptable power consumption: - 30-min usage: 242mAh

Application	CycleGuard	Video calling	Video streaming	Web browsing
Energy consumption	242 mAh	563 mAh	422 mAh	242 mAh
Percentage	7%	16%	12%	7%

- Micro benchmarks
 - Computation time
 - Energy consumption
 - Different devices

Portable to other devices

Phone	Battery capacity	Energy consumption	Percentage
Pixel XL	3450 mAh	242 mAh	7%
Galaxy S8	3000 mAh	270 mAh	9%

Conclusion

- We presented a low-cost, accurate, portable system to continuously detect potential right-hook collisions
- Our solution relies on emitting ultrasonic signals via a cheap external speaker to analyze the vehicular reflections, which cannot affect human hearing, but can be captured by standard smartphone hardware
- We conduct extensive experiments in both controlled parking lots and on real-roads in low-light conditions
- Our system achieves up to 95% real-world accuracy and is energy friendly

Thanks for your attention!

For more details, please refer to our paper

For Demo video: <u>https://bit.ly/3BbsPRE</u>