
1

August 9, 2000 1

Dr. Behrooz Shirazi
Jeff Marquis
Geoff Dale

Kshiti Desai
Chris Forrest

Research Experiences for Undergraduates (REU)
in Dynamic Distributed Real-Time Systems

Summer 2000 Program

August 9, 2000 2

Student Introductions

• This summer 3 REU 2000 students were
supported in CSE@UTA:
– Chris Forrest.

• Graduating senior in second semester of REU support.

• Will enter the CSE@UTA graduate program, Fall 2000.

– Kshiti Desai
• Senior at CSE@UTA.

• Will receive REU support in Fall 2000.

– Geoff Dale
• Senior at Texas Christian University.

• Will receive REU support in Fall 2000.

August 9, 2000 3

Introduction to REU 2000

• REU 2000 was designed to give the students
a rich and rewarding experience including:
– Classroom instruction.

– Exposure to state-of-the-art programming tools.

– Applied research on an on-going research project.

• This approach was designed to allow the
REU 2000 students to participate in and
materially contribute to the overall program.

• We believe the students have gained
valuable experience with REU 2000.

August 9, 2000 4

Classroom Instruction

• The REU 2000 students were required to
enroll in CSE 4392, Parallel Processing.
– Taught by Dr. Bob Weems, CSE@UTA Professor.

– Provide the basic knowledge needed to participate
in the program.

– The course combined theory and hands-on
programming experience.

• REU 2000 student Geoff Dale will present the
course details.

August 9, 2000 5

PARSA and ThreadMan

• The REU 2000 students were tasked with learning
state-of-the-art parallel programming tools.
– The PARSATM Software Development Environment.

– The ThreadManTM Thread Manager.

• These commercial tools were developed between
CSE@UTA and Prism Parallel Technologies
(www.prismpti.com).
– Access to the tools provided an ideal setting for the students

to understand the inner workings of a commercial software
product.

• REU 2000 student Kshiti Desai will present an
introduction to PARSA and ThreadMan.

August 9, 2000 6

Applied Research

• The REU 2000 students were tasked with working
with a CSE@UTA graduate student who was
extending the capabilities of PARSA.
– Support for distributed cluster computers.

• Mix of multi-threading and message passing.

• The REU 2000 students validated distributed cluster
computing using PARSA.

• The REU 2000 students did a performance analysis
of distributed cluster computer using PARSA.

• REU 2000 student Chris Forrest will present the
results of their applied research.

2

August 9, 2000 7

An Introduction to
Parallel Programming

Presented by Geoff Dale

August 9, 2000 8

CSE 4392: Parallel Processing

• Taught by Dr. Bob Weems

• Met for 2 hours on Tuesdays and Thursdays
for the entire summer session

• G.R. Andrews, Foundations of Multithreaded,
Parallel, and Distributed Programming,
Addison-Wesley, 2000.

• P.S. Pacheco, Parallel Programming with
MPI, Morgan Kaufmann, 1997.

August 9, 2000 9

Objective of the Class:

An introduction to the variety of topics
necessary for developing parallel

applications

August 9, 2000 10

Goals of the Class:

1. The ability to implement small applications
on shared-memory multiprocessors (Linux
SMP) using pthreads

2. The ability to implement small applications in
message-passing paradigm using MPI

3. The understanding of concepts of parallel
algorithms

4. The understanding of elementary topologies
5. The understanding of compiler

concurrentization concepts

August 9, 2000 11

Structure of the Class

• The semester was divided into two sections

• Each section consisted of note taking,
lectures, two labs, and one test

• The C programming language was the
primary language used for code writing and
algorithm demonstrations

• Programs were written on dual processor
machines named Ketchup and Mustard

August 9, 2000 12

Pthreads

• Shared Memory Systems

• Scheduling Methods:
– Static Scheduling:

• Interleaving

• Contiguous

– Dynamic Scheduling

• PRAM Model

3

August 9, 2000 13

MPI

• No Shared Memory

• Message Passing Techniques
• MPI Functions

August 9, 2000 14

Synchronization

• Shared Memory
– Barriers

– Locks

– Semaphores

• Distributed Memory
– Different forms of message passing

– Blocking Techniques

August 9, 2000 15

Analysis of Algorithms

• Speed-up

• Efficiency
• Comparison of algorithms run in sequential

and in parallel

August 9, 2000 16

Topologies

• Linear Arrays

• Hypercubes
• Meshes

• Torus

August 9, 2000 17

Interconnections

• Benes Network

• Butterfly Technique
• Shuffle Exchange

• Perfect Matching

August 9, 2000 18

Numerical Problems

• Elimination Techniques
– Gaussian

– LU

– Householder

• Iterative Methods

• Sparse Matrices

4

August 9, 2000 19

Communication Problems

• Matrix Multiplication

• Matrix Transpose
• Techniques on various topologies

August 9, 2000 20

Sorting Problems

• Linear Arrays

• Bitonic Mergesort
• Meshes

August 9, 2000 21

Parallel Enumeration

• Permutations and Combinations

• Lexicographic Ordering Concepts
• Numbering

• Ranking and Unranking techniques

August 9, 2000 22

Parallelizing Compilers

• Elementary Data Dependency Concepts

• Code Generation
• Sequent FORTRAN

• Tiny Tool
• OpenMP

August 9, 2000 23

Lab 1

• Pthreads

• The modification of a sequential program to
work with two threads

• Speed-up and efficiency Evaluation

• Interleaving and Contiguous Methods

August 9, 2000 24

Lab 2

• MPI

• The modification of a client/server hashing
program to merge the client and server
functionality

• The efficient utilization of processes using
MPI

5

August 9, 2000 25

Labs 3 and 4

• Lab 3
– The implementation of a pthreads version of a

program that uses Lukes’ technique to determine
the bisection width of an undirected graph using
two threads.

• Lab 4
– An MPI version of Lukes’ technique that can use

multiple processors on multiple machines

• Dynamic Process Creation

August 9, 2000 26

Summary

• Learned techniques for hand coding parallel
algorithms

• All code available in C functions
• Class laid the building blocks for the research

that would be performed throughout the
summer

August 9, 2000 27

PARSA and ThreadMan
Presented by Kshiti Desai

August 9, 2000 28

PARSA

• Supports a graphical programming
methodology

• Designed for developing parallel software

Advantages:

• Saves time
• Reduces complexity

August 9, 2000 29

PARSA Applications

• Made up of graphical objects (or GOs) and
arcs

• Each graphical object represents an
application task to be performed and
contains:

• Interface section

• Functionality section

August 9, 2000 30

Graphical Objects

PARSA supports 3 different types of graphical
objects:

1. User-Defined

2. Forall
3. While

6

August 9, 2000 31

ARCS

• Connect graphical objects together

• Represent the data flow

• Control the flow between graphical objects

August 9, 2000 32

Figure 1. The Least Common String application in PARSA.

Least Common String in
PARSA

August 9, 2000 33

Programs Timings (CPU time)

Sequential Version 1.04

Hand-coded pthreads Version 0.30

PARSA implemented Version 0.33

Table 1. Performance comparison between hand-coded and PARSA generated multithreaded software.

Performance Results

August 9, 2000 34

Lines of code count comparison

Number of Lines

Hand-coded. 311

Developed in PARSA 63

PARSA Generated Code 558

Table 2. Lines of code count comparison between hand-coded, developed in PARSA, and
automatically generated by PARSA.

August 9, 2000 35

Applied Research
Presented by Chris Forrest

August 9, 2000 36

Applied Research Goals

• Tasked with working with a CSE@UTA
graduate student who was extending the
capabilities of PARSA
– Generate test applications that utilized MPI design

– Obtain and analyze timing results

– Note any potential problems that might discourage
automatic MPI code generation

7

August 9, 2000 37

Test Application Criteria

• Desired to demonstrate two basic types of
algorithms:
– Non-oblivious algorithms

• Algorithms that execute differently based on the input
data

– Oblivious algorithms
• Algorithms that execute similarly on different datasets.

August 9, 2000 38

Test Application Winners

• Merge sort Application
– Mergesort is good non-oblivious algorithm

• Dependencies between loop iterations

• Loops can not run independently

• Matrix Multiplication
– Matrix multiplication is good oblivious algorithm

• Loop order does not need to be preserved

• Loops can run independently

August 9, 2000 39

Merge Sort Outline

• Input Generator creates
random data into array

• Data is split into smaller
sections and workers
sort the small subsets

• The data is merged
together sorted and
presented in a file

August 9, 2000 40

Merge Sort – Single-threaded

• New array is created
that is twice as large as
original array

• New array is partitioned
into two sections and
data is placed between
both sides

August 9, 2000 41

Merge Sort – Multi-threaded
(PARSA)

• Data generation occurs
in the first user defined
Graphical Object (GO)

• Data is sectioned off
into smaller sections.

• New threads are
created for each
section.

• Data is sorted and then
combined

• Data is presented in file
format

August 9, 2000 42

Merge Sort – Multi-threaded
(PARSA - MPI)

• MPI added to PARSA
generated code

• A process is created for
each GO

• Data is transferred
between processes via
MPI calls

• Threads are still created
to handle work

8

August 9, 2000 43

Merge Sort – Performance
Results

• On a limted set of data
sizes (10k – 100k),
PARSA is better without
MPI.
– For 10,000 entries, MPI

slows down PARSA by
approximately 9 seconds

• MPI is not being utilized
to it’s fullest
– Sorting of work is done

by threads only
– Design was intentional to

see how much MPI
would hinder
performance.

0

50

100

150

200

250

300

350

400

10k 30k 50k 70k 100kEntries

T
im

e
(i

n
se

co
nd

s)

Serial

Parsa

Parsa-
MPI

August 9, 2000 44

Matrix Multiplication Outline

• Input Generator creates
random data into two
arrays A and B

• Data is split among two
workers who divide the
work.
– Worker 1 provides top

half of result array
– Worker 2 provides

bottom half of result array

• The data is merged
together sorted and
presented in a file

August 9, 2000 45

Matrix Multiplication –
Single-threaded

• Resultant array obtains
sums of row-elements *
column-elements

August 9, 2000 46

Matrix Multiplication –
Multi-threaded (PARSA)

• Data generation occurs in
the first user defined
Graphical Object (GO)

• Data is sent to both workers
for processing.

• New threads are created in
each worker
– More for use in MPI

• Data is sorted and then
combined
– Data is written directly into

result array in PARSA only
vesrion

• Data is presented in file
format

August 9, 2000 47

Matrix Multiplication –
Multi-threaded (PARSA - MPI)

• MPI added to PARSA
generated code

• A process is created for
each GO

• Data is transferred between
processes via MPI calls

• Threads are still created to
handle work in both worker
sections
– Means more than one MPI

process can perform work

• Combine section required
since MPI

August 9, 2000 48

Matrix Multiplication –
Performance Results

• On a tested set of square
matrices sizes (100 thru
3000), PARSA benefits from
MPI (when adding more
processors)
– MPI is slower than

PARSA in 100x100 and
500x500 cases

– PARSA-MPI test was run
on two, two-processor
machines.

– Overall results show that
you can obtain good
speedups with MPI and
PARSA working together 0

1000

2000

3000

4000

5000

6000

7000

8000

9000

100 1000 2000 3000Entries

T
im

e
(i

n
se

co
nd

s)

Serial -
1
Parsa -
2
Parsa-
MPI - 4

9

August 9, 2000 49

PARSA-MPI Findings

• Memory consumption can escalate in PARSA
applications that use MPI (on large scale
problems)
– Memory is freed, however system can not reclaim

– Some O/S (Tru64 for example) have special O/S
specific parameters for attempting to deal with
these problems

• Passing dynamically allocated structures can
pose a problem
– Becomes difficult for a program to recognize how

much memory has been allocated by user

August 9, 2000 50

PARSA-MPI Findings (contd.)

• Passing structures in heterogeneous
environments
– When passing structures, MPI is not able to

handle endian issues unless given information
about the structure

• Special MPI constraints
– Some functions (such as exit()) can not be called

by the user due to deadlock cases

– Special MPI functions can be called but go against
the basic premise of PARSA (no need to know)

