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Introduction  
The National Science Foundation (NSF) Research Experiences for Undergraduates (REU) in Dynamic 
Distributed Real-Time Systems Program for Summer 2000 (REU 2000) in the Computer Science and 
Engineering Department at The University of Texas at Arlington (CSE@UTA) was designed to give three 
sponsored undergraduate students theoretical knowledge, exposure to advanced programming tools, and 
participation with applied research in parallel and distributed processing. This was achieved through 
classroom instruction, hands-on application development, introduction to the state-of-the-art PARSATM 
Software Development Environment and the ThreadManTM Thread Manager, and exposure to applied 
research being conducted to advance the capabilities of PARSA to support distributed cluster computers. 
We believe the students have benefited from this program by combining the theoretical basis and hands-on 
exposure to software development issues in parallel and distributed processing. 

Classroom Instruction: The REU 2000 students were required to register for Introduction to Parallel 
Processing, CSE4351 (http://reptar.uta.edu/NOTES4351/cse4351.html), taught by Dr. Bob Weems, 
CSE@UTA Professor. In the course the students were introduced to parallel programming concepts and 
were assigned a series of practical programming assignments using multi-threading for shared memory 
systems and message passing for distributed memory systems. Specifically, the students were introduced to 
the pthreads library for exploiting parallel processing on shared memory systems and the Message Passing 
Interface (MPI) for exploiting parallel processing on distributed memory systems. The students acquired 
the theoretical knowledge and hands-on parallel programming skills through classroom instruction that 
allowed them to participate in and materially contribute to the REU 2000 program. 

Introduction to PARSA: The PARSATM Software Development Environment and ThreadManTM Thread 
Manager are commercial software products developed at CSE@UTA under license to Prism Parallel 
Technologies, Inc. (www.prismpti.com). The current commercial versions of PARSA and ThreadMan are 
used for developing parallel multi-threaded software for shared memory systems. CSE@UTA and Prism 
Parallel Technologies continue to perform collaborative fundamental and applied research to advance the 
capabilities of PARSA and ThreadMan. The REU 2000 students were given exposure to these on-going 
research and development activities, which applied the theoretical knowledge and parallel programming 
skills obtained through classroom instruction. 

The REU 2000 students were tasked with replicating applications developed in CSE4351 using PARSA 
and ThreadMan. At first, students were simply given access to PARSA and the PARSA Programming and 
Reference Manual and were instructed to figure out the most efficient way to develop applications in 
PARSA. This part of the program forced the students to independently learn to use state-of-the-art 
programming tools with a minimum of instruction, which we believe will serve them well throughout their 
computer science careers. During this phase of the program the students were given cursory guidance by 
Jeff Marquis, a CSE@UTA Faculty Research Associate and the founder of Prism Parallel Technologies, on 
the use of PARSA and ThreadMan.  

The students successfully replicated several of the class assignments in PARSA, which exposed them to the 
benefits that PARSA, ThreadMan and advanced programming tools provide. Namely, the students learned 
i.) that PARSA reduces the level of expertise required by programmers by abstracting programmers from 
the low-level details of multi-threaded programming; ii.) that PARSA significantly reduces the amount of 
code that must be generated by an automated code generation process that generates all multi-threading 
directives and data passing code for shared memory systems, iii.) that ThreadMan efficiently manages the 
execution of multi-threaded software at run-time relieving programmers of this tedious and difficult task, 
and iv.) that PARSA and ThreadMan produce very efficient and scalable code. The students were then 
given formal training on the use of PARSA and asked to redevelop class assignments in PARSA, which 
exposed them to the benefits of rigorous and formal training. 

Applied Research: To provide the REU 2000 students with exposure to applied research the students were 
instructed to work with a CSE@UTA graduate student, Mr. Kannan Bhoopathy, who was performing 
fundamental and applied research that extended PARSA and ThreadMan to support the development of 
applications for distributed cluster computers, an emerging architecture popularized by networked clusters 
of symmetric multi-processors (SMPs), the Compaq SC, IBM SP3, and other contemporary supercomputer 



class architectures. The students were assigned the task of developing applications for distributed clusters 
following Mr. Bhoopathy’s methods, validating the methods proposed by Mr. Bhoopathy, and doing a 
performance analysis of the results. 

By working closely with Mr. Bhoopathy the REU 2000 students were exposed to many facets of 
performing applied research, providing them with a rewarding experience. Specifically, the students were 
forced to understand the new method for supporting distributed cluster computers devised by Mr. 
Bhoopathy. This was achieved by successfully developing distributed cluster computer applications using 
the enhanced methods integrated into PARSA by Mr. Bhoopathy. The REU 2000 student’s independent 
work validated Mr. Bhoopathy’s work while exposing the students to the rigors of performing research. To 
summarize their results the REU 2000 students performed a detailed performance analysis on the 
applications developed for distributed cluster computers. 

REU 2000 Summary: The REU 2000 students worked as individuals and as a team throughout the 
summer. The individual work exposed each to the rigors of performing research independently, which will 
serve them well throughout their computer science careers. The group work forced the students to 
collectively solve larger scale problems by partitioning larger scale problems amongst themselves in such a 
way that the work would be completed and that each student would perform approximately the same level 
of work. We believe the REU 2000 students benefited immensely from the REU 2000 program. 

REU 2000 Technical Report Organization: In this report the REU 2000 students present an overview of 
their experiences and the lessons learned during this program. We at CSE@UTA are very pleased with the 
performance of the students, and we believe they will benefit from their work on this year’s program. For 
additional information on the REU program at CSE@UTA visit our web site at http://cygnus.uta.edu/reu/ 
or contact Dr. Behrooz Shirazi, Chairperson and Professor at CSE@UTA, at shirazi@cse.uta.edu. 

The first section provides an overview of the classroom instruction that provided the underlying knowledge 
needed by the students to participate in the REU 2000 program. The first section is written by Mr. Geoff 
Dale, who will return to finish his senior year at Texas Christian University in the fall of 2000. CSE@UTA 
has committed to continue supporting Mr. Dale during the fall 2000 semester with REU funds. 

The second section provides an overview of the PARSA Software Development Environment and 
ThreadMan Thread Manager. The second section is written by Ms. Kshiti Desai, a senior in computer 
science and engineering at CSE@UTA. CSE@UTA has committed to continue supporting Ms. Desai 
during the fall 2000 semester with REU funds. 

The third section reports on the applied research performed by the REU 2000 students on developing 
applications for distributed cluster computers. The third section is written by Mr. Chris Forrest, who is 
graduating from CSE@UTA in August 2000. We are happy to report that Mr. Forrest has decided to enter 
the graduate program at CSE@UTA, in part because of his experience with the REU program. 

Classroom Instruction 
As part of our research experience, the members of the research program were required to take the parallel 
processing class taught by Professor Bob Weems at the University of Texas at Arlington while also 
working on the research project.  The purpose of taking the class was to introduce the various programming 
techniques and the concepts involved with parallel programming.  This knowledge would be used to 
reinforce the future research involved in the research program. 

The main objective of the class was an introduction to the variety of topics necessary for developing 
parallel applications.  Some of the goals of the class included the ability to implement small applications on 
shared-memory multiprocessor (Linux SMP) using pthreads and in message-passing paradigm using MPI, 
and the understanding of concepts of parallel algorithms, elementary topologies, and compiler 
concurrentization concepts.  The class semester was structured in two parts.  Each part of the semester 
involved discussion and note taking over various topics in parallel programming with two labs to reinforce 
the covered topics and one test at the end of each portion of the semester, covering all of the topics covered 
prior to the test.  The C programming language was used to demonstrate the majority of the topics covered 
in the class. 



The class began with an introduction to parallel programming using Linux Threads (pthreads).  The class 
learned how to create parallel code with multiple processes that would work together to execute code in 
parallel.  Pthreads are used on shared memory systems, meaning every process has access to the same 
memory locations.  The class discussed the various methods of coding pthreads and process management, 
including static and dynamic scheduling. The two forms of static scheduling are the interleaving form, or 
horizontal spreading, and the contiguous form, or vertical spreading.  Interleaving is the simplest form of 
static scheduling, while the contiguous form creates a simple mapping for the execution of the code.  
Dynamic scheduling, or self-scheduling, allows threads to be allocated on the run to take available work.  
The class went over various examples involving these three scheduling methods, including parallel versions 
of a summing program, shell and quick sort, and Warshall’s algorithm.  Pthreads and the different 
scheduling techniques involved with them were used to introduce parallel programming to the research 
group. 

The class then began to study parallel processing through the use of the Message-Passing Interface, or MPI.  
The class had to focus on how processes could execute code in parallel without having a shared memory 
between processes.  Message passing and the different techniques involved with message passing were 
studied along with the various functions that are needed to allow MPI to execute correctly.  Several 
examples of programs using MPI were discussed in class, including Warshall’s algorithm, a hashing 
program, and table balancing.  The class was introduced to parallel programming techniques on machines 
that did not share memory through the use of MPI. 

Concepts important to parallel processing where next covered in the class.  The topic of synchronization 
techniques for both shared memory and message passing programs was one of these concepts discussed.  
Synchronization prevents race conditions and bottlenecks from occurring in the code and ensures that the 
code produces the correct output.  For shared memory programs, the concepts of locks, semaphores, and 
barriers 3 were discussed.  The class also reviewed the four forms of message passing, which are the 
remote procedure call, dynamic process creation, asynchronous message, and the rendezvous.   

The class went on to discuss shared memory models for creating efficient algorithms.  The PRAM model 
was discussed here.  Topics such as list ranking, Euler trees, and various tree traversals were also covered.  
The class also discussed speed-up and efficiency analysis and how this analysis applies to parallel 
programming. 

Routing techniques and interconnection networks were discussed by the class.  Topologies involving linear 
arrays, meshes, hypercubes, and toruses were covered.  Techniques of routing through various networks 
were discussed.  Some of these techniques included the Benes network, the butterfly technique, and the 
shuffle exchange.  Examples of all of these topics and techniques were discussed in class. 

Using parallel processing to do numerical problems was another topic covered in the class.  Solving 
systems of linear equations on both shared memory and distributed memory systems by using elimination 
methods, including Gaussian, LU, and the householder method, and by using iteration were discussed and 
enforced through examples.  The communication involved in performing matrix multiplication and matrix 
transpose was also covered in the class.   

Other topics included sorting techniques that can be applied in parallel processing, including linear arrays 
and the bitonic mergesort. The ranking and unranking of combinatorial objects was discussed.  
Lexicographic ordering concepts and numbering techniques in parallel were also reviewed.  

Along with two tests, the class had four lab assignments that reinforced the material that had been covered 
in class.  The first lab involved modifying a sequential program to work in parallel with two threads using 
pthreads.  A speed-up and efficiency evaluation based on the results of the program was to be taken after 
the completion of the program.  The results of this lab demonstrated the increase in speed-up and efficiency 
that can be gained by running a program in parallel compared to running a program sequentially. 

The second lab assignment used MPI techniques on a client/server hashing program.  This lab involved 
modifying a MPI program where every process acted as either a client or a server into a MPI program 
where every process acted as both a client and a server.  This lab served as a basis for programming in 
parallel using MPI techniques and demonstrated the effectiveness of writing efficient MPI code. 



The third and fourth lab assignments both involved creating a parallel version of Lukes’ technique to 
determine the bisection width of an undirected graph.  A pthread version using two threads and a MPI 
version using various numbers of processors on different machines was required.  These lab assignments 
provided an experience with parallelizing a non-trivial irregularly structured application.   

The parallel processing class provided a foundation for the work that the research group would use 
throughout the summer.  The class provided an introduction to parallel processing, the concepts involved 
with parallel processing, the types of problems parallel processing can be used to solve quickly and 
efficiently, and the techniques needed to write parallel code.  The research group used the knowledge 
gained from the class as the building block for the rest of the research it would perform throughout the 
summer.  

Introduction to PARSA and ThreadMan 
As we learned software development methods in our classroom instruction we were tasked with learning 
the PARSA software development methodology. PARSA supports a graphical programming methodology 
specifically designed for developing parallel software. Using PARSA’s graphical programming 
methodology software developers are abstracted from the low level details of developing multithreaded 
software. Specifically, PARSA does not require programmers to develop multithreaded directives, pass 
data between threads, or manage and coordinate the execution of threads at run-time. This saves a lot of 
time by making it as easy to develop multithreaded software in PARSA as it is to develop sequential 
software. It also reduces the complexity of developing parallel software as we learned after using PARSA 
for the first time. 

PARSA applications are made up of graphical objects (or GOs) and arcs. Each graphical object simply 
represents an application task to be performed. Graphical objects consist of an interface section and a 
functionality section. The interface section describes the interface that each graphical object will have with 
other graphical objects within an application. The functionality section is programmed by defining the 
INPUT and OUTPUT variables that the graphical object is dependent on for execution and will generate 
after execution, respectively. You simply make C variable declarations to define INPUT and OUTPUT 
variables. The graphical object ends up with one INPUT port and one OUTPUT port for each INPUT and 
OUTPUT variable declared in the interface section. The functionality section is where the graphical 
object’s task is programmed in sequential C without any threading directives. 

PARSA supports 3 different types of graphical objects: user-defined, forall and while. User-defined 
graphical objects are just tasks and are programmed like functions in C. Forall graphical objects provide 
support for regular parallelism, which gives good opportunity to get good speedups. While graphical 
objects provide support for repeat parallelism, which improves performance by exploiting parallelism 
within the body of a convergent loop. 

Arcs are used to connect graphical objects together. Arcs represent the data and control flow between 
graphical objects, and it simply connects OUTPUT ports of source graphical objects with INPUT ports of 
destination graphical objects.  

Once an application is complete PARSA Processing converts the graphical representation of an application 
into multithreaded source code. The source code generated by PARSA includes the code programmed into 
the functionality section of each graphical object plus all necessary threading directives and code for 
passing data between the graphical objects. The source code is compiled and linked with the ThreadMan 
Thread Manager, which manages the execution of the application at run-time. 

Our first exposure to PARSA was just access to the tool and the PARSA Programming and Reference 
Manual. We redid the first class assignment in PARSA, which was to determine the Least Common String 
from a set of 45402 words in a dictionary. In class we had to develop the application by hand using 
pthreads. As part of our research we redid the application in PARSA. Figure 1 shows the Least Common 
String in PARSA. 



 

Figure 1. Least Common String application in PARSA. 

The first user-defined GO, called inputGO, allocates space for the required data structures and reads in the 
information from the dictionary. The dictionary data is passed to the forall GO, called thread_all. thread_all 
is programmed to split the work into two threads and the result is passed to GO2. GO2 prints the results. 

The first thing we noticed was how easy it was to develop multithreaded software with PARSA. We didn’t 
have to even know we were developing multithreaded software because PARSA developed the entire 
multithreaded source and the data passing code for us. Also, we didn’t have to figure out how to manage 
the threads when they ran because ThreadMan did that for us. So PARSA proved to be a very good tool for 
making programming multithreaded software easy. 

We did a performance analysis between the hand code developed in class and the software developed with 
PARSA. The performance results are shown in Table 1. As you can see the performance of the hand-coded 
and PARSA implementations are comparable.  

 

 

 

 

 
Table 1.  Performance comparison between hand-coded and PARSA generated multithreaded software. 

Table 2 demonstrates one of the primary benefits of PARSA. The hand-coded implementation required us 
to develop each line of source code ourselves and was 311 lines of code. To develop the application in 
PARSA only required 63 lines of code. This produces significant savings in the time it takes to develop 
multithreaded software using PARSA. 

 

 

 

 

Table 2. Lines of code count comparison between hand-coded, developed in PARSA, and automatically 
generated by PARSA. 

 

Programs Timings (CPU time) 
Sequential Version 1.04 
Hand-coded pthreads Version 0.30 
PARSA implemented Version 0.33 

 Number of Lines 
Hand-coded. 311 
Developed in PARSA 63 
PARSA Generated Code 558 



 

After we learned the basics of PARSA on our own we got trained in using PARSA by Mr. Marquis. The 
training gave us a better understanding of how to use PARSA and all the features of PARSA. It was very 
helpful to see the training and it made us understand PARSA better. It also showed us some innovative 
ways that we could use PARSA to develop multithreaded functions and eCompute applications. 

Applied Research 
Introduction:  One of the goals of the REU team was to help perform applied research on the PARSA 
and ThreadMan technology being jointly developed by CSE@UTA and Prism Parallel Technologies. 
PARSA is a programmer’s development tool aiding in writing multithreaded applications. By using 
graphical representations of data flow, the application designer does not have to worry about the low-level 
thread details. A logical advancement of this software tool is the ability to assist programmers with 
distributed applications that could span across multiple machines as well as multiple processors per 
machine. We were asked to assess the feasibility of an approach devised by Mr. Kannan Bhoopathy that 
incorporates the Message Passing Interface (MPI) using the PARSA software development methodology. 
Topics that we investigated were: 

1. Determine the feasibility and difficulty of hand coding MPI calls into the code generated by 
PARSA to support distributed cluster computers. 

2. Obtain timing results of sample applications to determine what performance benefits may 
result using distributed cluster computers. 

3. Determine if any problems exist that might hinder MPI code to be automatically generated by 
PARSA, which would relieve software developers of this tedious and time-consuming task. 

4. Review a requirements document generated by Mr. Bhoopathy for PARSA to automatically 
generate MPI code to support distributed cluster computers. 

Sample Application Selection: When searching for applications to code, we decided to look for 
functions that were typically done in parallel. After talking with our sponsor, we decided to program two 
applications. One program would use matrix multiplication and the other would use merge sort. Both 
matrix multiplication and merge sort are classic parallel applications. These applications were also picked 
because of their high use of the CPU (when given large inputs). Another reason these applications were 
picked was because they can benefit from parallelism, which would help recognize how efficient the code 
generated would be. 

We worked closely with Kannan Bhoopathy who devised a scheme for using the PARSA graphical 
programming methodology to support distributed cluster computing. His work provided the basis of our 
work because we were validating and assessing the performance of the scheme he devised. 



Merge Sort: The merge sort program was divided into 4 different sections as shown in Figure 2. 
 

 

 

Figure 2. Merge Sorting 

 

The input generator generates random integer data (with a specific random seed for repeatability) that is 
placed into an array. This array is then subdivided to worker threads that sort the information relative to 
their smaller arrays. The smaller arrays are then combined together to generate the final output. We wanted 
to see what the penalty would be for placing the sorting task into one process. In order to accomplish this, 
we used the above concept to generate the following applications: 



 

1. A simplistic merge sort application that executes sequentially (i.e., as a single thread). 

 

Figure 3. Merge sort as a single thread. 

The above single thread application creates an array double the size of the original array (notated in the 
code as b). The newly created array is then used to partition the data into two different sections. Data is 
placed in either section based on comparing the elements within the original array. After the data has 
been separated and sorted, the information is brought back together to produce the resultant output. 

2. A merge sort application designed in PARSA that uses a forall graphical object and a while graphical 
object. The forall graphical object creates multiple threads that allow independent iterations of the 
function to run in parallel. The forall graphical object was used because the work performed by the 
loop iterations is independent, and therefore, can most benefit using a forall graphical object. This 
version also used a while graphical object to merge the sorted sublists together. A while graphical 
object was used because the merging task exhibits repeat parallelism, and while graphical objects 
exploit the run-time benefits of repeat parallelism. 

 



 
Figure 4. Merge sort in PARSA 

The PARSA application performs the sorting operation in four different stages. Once the randomly 
generated data (with a specific random seed for repeatability) is created in the “GenerateList” graphical 
object, the array (and other required information) is passed to the “SortSubLists” forall graphical 
object. SortSubLists creates multiple (independent) worker threads and allows the threads to work on a 
different region of the input array. The generated results are passed to the “while1” while graphical 
object, which merges the sorted sublists. The information is then passed to the “Print” graphical which 
prints the sorted and merged list. 



 

3. Merge sort using the PARSA programming methodology with MPI support, or MPI-PARSA. The 
MPI-PARSA version of merge sort has the same overall layout as shown in Figure 4, but the graphical 
objects contain calls to MPI routines for passing data between graphical objects. The required MPI 
routine calls were hand coded into the graphical objects. With the MPI code embedded into the 
application the PARSA programming methodology is maintained, but the graphical objects execute as 
MPI processes, not as threads. For merge sort five MPI processes are created, one for each graphical 
object. Notice that each process can itself spawn multiple threads, which supports distributed cluster 
computing. For example, forall graphical object SortSubLists creates multiple threads to perform the 
work.  

 
Timing Analysis: After developing the different versions of merge sort we performed a timing analysis to 
compare and contrast the various methods used to develop the application. We used a two-processor 
Pentium II (named zig) to collect timing results. We expected that the PARSA-MPI version would be 
slower than the multithreaded version generated by PARSA because of the overhead associated with 
passing the data between MPI processes and the lack of parallelism between the graphical objects of merge 
sort (see Figure 4).  

The work was divided as shown in Table 3: 

 
 Serial PARSA only PARSA-MPI 
Machines used Zig Zig Zig 
Memory size of 
machine 

127MB 127MB 127MB 

Swap size of machine 72MB 72MB 72MB 
Number of 
processors working 
collectively  

1 2 2 

Number of work 
threads per machine 

1 2 2 

Number of threads 
combining the result 
array 

Not 
applicable 

1 1 

Number of active 
MPI processes 

0 Not applicable 5 

 
Table 3. Work divided between systems and the system configurations. 

After running the different versions of merge sort with varying sized arrays the following timing data was 
obtained (all times are in seconds): 
 

 10000 30000 50000 70000 100000 
Serial  4 33 90 177 361 
PARSA 2 17 46 90 182 
PARSA-MPI 12 20 57 93 191 

 
Table 4. Timing data collected for multiple runs of merge sort. 

The results show that the MPI version is slower than the PARSA version as expected. This is due to the 
overhead of passing messages between MPI processes and the lack of parallelism between graphical 
objects (i.e., MPI processes). For example, a performance gain could be obtained if two forall graphical 
objects were used to sort the sublists where each forall graphical object would be executed on a different 
system. The effectiveness of this method is demonstrated in the matrix multiplication application presented 
below. 



Matrix Multiplication: The matrix multiplication program was divided into 5 different sections as shown 
in Figure 5. 
 

 
 
 

Figure 5. Matrix Multiplication. 

The input generator generates random integer data (with a specific random seed for repeatability) to be 
placed into two arrays, A and B. A third array, C, is also created to store the result. The C array is passed to 
the worker sections for storing the results of the multiplication. Instead of having a single section generate 
the full result array, the worker sections split the work between them evenly (one section multiplies the 
upper-half of the array while the other section multiplies the lower-half). We also developed another 
variation of matrix multiplication that used four workers to generate the result. We generated the following 
versions of matrix multiplication: 

1. A sequential version of matrix multiplier application (i.e., that executes as a single thread). 

 

 

Figure 6. Matrix multiplication as a single thread. 

The single thread application is based on the idea of multiplying a row of A by columns within B. This 
is done all within a nesting of for loops. 

 



2. Matrix multiplication designed in PARSA that uses forall graphical objects. Each forall graphical 
object creates multiple independent threads that perform the matrix multiplication task in parallel. The 
forall graphical object could be used because instantiations of the loop iterations in matrix 
multiplication are independent of all instantiations. This version also has a forall graphical object that 
merges the two data regions together. A forall graphical object could be used because merging the two 
arrays can be done safely in parallel.  

 

Figure 7. Matrix multiplication defined within PARSA 

The PARSA version of matrix multiplication looks complicated, but it simply follows the design 
shown in Figure 5. The “input” graphical objects creates the A, B, and C arrays. Then randomly 
generates data (with a specific random seed for repeatability) for the A and B arrays. The arrays are 
then passed to the two worker forall graphical objects, “worker1” and “worker2”. Each worker forall 
graphical object creates a user-defined number of threads to perform the multiplications. Since the total 
work is divided between the two worker graphical objects, each will calculate an independent region of 
the output array C. Once the subregions of array C have been calculated the “combine” forall graphical 
object combines the two subregions together into C, which is then passed to the user-defined graphical 
object “output”. Graphical object output either displays the results or stores the results in a file.  

3. A matrix multiplier application designed using PARSA based on the previous implementation with 
MPI support. As with the PARSA-MPI version of merge sort, the PARSA-MPI version of matrix 
multiplication has the same layout as Figure 7, but each graphical object has hand-coded calls to MPI 
routines embedded within them. Again, graphical objects in PARSA-MPI applications are each an MPI 
process, not a thread. Therefore, five processes are created for matrix multiplication. It should be noted 
that each forall graphical object in matrix multiplication can itself generate multiple threads that can 
execute in parallel. Hence, the PARSA-MPI version of matrix multiplication has multiple MPI 
processes that can execute concurrently on different machines, and each MPI process can execute in 
parallel. This demonstrates how the PARSA programming methodology can be used to support both 
multithreading and message passing for distributed cluster computers.  



Timing Analysis: After developing the different versions of matrix multiplication we performed a timing 
analysis to compare and contrast the various methods used to develop the application. We had three 
different multiprocessor machines available for testing which proved to be very helpful for comparing the 
different implementations. We used a two-processor Pentium II (named zig), a second two-processor 
Pentium machine (named mustard), and a third two-processor Pentium machine (named ketchup).  

The work was then divided amongst the different systems as shown in Table 5: 

 
 Serial PARSA only PARSA-MPI / Load 

Balanced 
PARSA-MPI / Not 

Load Balanced 
Machines used Zig Zig Mustard, ketchup Mustard, ketchup 
Memory size of 
machine 

127MB 127MB Both machines have 
256MB 

Both machines have 
256MB 

Swap size of machine 72MB 72MB Both machines have 
260MB 

Both machine have 
260MB 

Total number of 
processors working 
collectively  

1 2 4 – This is done via 
MPI 

4 – This is done via 
MPI 

Number of work 
threads per machine 

1 2 2 2 

Number of threads 
combining the result 
array 

Not 
applicable 

Not applicable 2 threads running on 
Ketchup 

2 threads running on 
Ketchup 

Number of active 
MPI processes 

0 0 2 Mustard 
3 Ketchup 

1 Mustard 
4 Ketchup 

 
Table 5. Work divided between systems and the system configurations. 

Matrix multiplication was developed so the user could specify the input array size. We chose the following 
array sizes for performing our timing analysis: 100x100, 500x500, 1000x1000, 1500x1500, 2000x2000, 
2500x2500, and 3000x3000.  

After running the different versions of matrix multiplication the following timing data was obtained (all 
times are in seconds): 
 
 100x100 500x500 1000x1000 1500x1500 2000x2000 2500x2500 3000x3000 
Serial  0.23 34.47 282.64 970.64 2360.6 4976 8473 
Parsa Only 0.13 15.88 126.12 312.53 1058.93 2160 3840.48 
Parsa MPI 
Load 
Balanced 

24.76 29.85 115.59 324.2 712.55 1384 2438 

Parsa MPI 
Non 
Balanced 

25.36 27.14 104.09 299.95 685.2 1342 2383 

 
Table 6. Timing data collected for multiple runs of matrix multiplication. 

The reason for testing the PARSA-MPI applications as both balanced and non-balanced is due to memory 
issues. By equally dividing the number of PARSA-MPI processes, the memory consumption was equally 
distributed. The non-balanced version suffered a performance penalty continually running out of memory 
because it had to use the system’s swap space (even with 256MB of memory!). The same was true of the 
PARSA Only version. The memory issues are discussed below. 

Findings Using Parsa-MPI 

We discovered several issues when executing the various versions of the applications. 



Issue 1 – Memory Consumption  
Memory appears to be a problem when larger input data sets are used (e.g., matrix multiplication with input 
arrays of size 3000x3000). This may seem to be a simple matter of freeing unused arrays throughout the 
life of the test application. However, we found the problem to be much worse. Malloc and free can give 
back memory to the operating system, but there are certain circumstances when this is not possible. One 
might wonder how 250MB of memory can become consumed by a small test application. We found that 
memory is consumed only when the (large) arrays are passed via MPI and dynamically allocated memory 
is not released back to the operating system.   

Issue 2 – Passing Dynamic Memory 
We discovered that passing non-primitive data types (such as dynamically allocated arrays, structures, 
linked lists) between distributed clusters causes problems. In PARSA v1.2 passing pointers to non-
primitive data types is allowed because PARSA exploits the shared memory model of multithreaded 
systems. However, passing pointers on distributed memory systems and distributed clusters this model 
breaks down because a pointer is a memory address, which has no meaning when passed to another 
autonomous system in the distributed architecture.  

Issue 3 – Passing Structures in Heterogeneous Environments 
Another issue that comes with distributed computing is the non-uniformity of machine types that you wish 
to work together. MPI can allow for primitive data type conversion. However, MPI must be informed of 
other structures before they can be used. This requires additional steps to be developed to handle these 
types of situation where data types may differ between different processors in the system (e.g., little endian 
versus big endian). 

Issue 4 – Non-Standard C Functionality in PARSA-MPI  
There are certain functions that must not be used in PARSA-MPI. For example, the C exit function is 
acceptable to use within PARSA since when a thread exits you usually desire the whole program to exit. 
This is not the case under MPI where each section is an actual process. If a section of an MPI application 
exits it may cause the application to deadlock. MPI has a directive to inform the application to quit 
(MPI_Abort), however this is not standard C. 

Conclusion 

In conclusion, the REU 2000 program was well conceived and very informative. It provided us with not 
only theoretical knowledge, but practical, hands-on research experience, which we each think will benefit 
us throughout our computer science careers. We want to thank the National Science Foundation for their 
support of this program, and we would encourage them to continue and expand such programs. We think 
more students could benefit from this program. 
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encouragement. Specifically, we would like to thank Kannan Bhoopathy, Jeff Marquis, Dr. Bob Weems, 
Dr. Diane Cook and Dr. Behrooz Shirazi. 
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