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Probability 

  Bayesian probabilities summarize the effects 
of uncertainty on the state of knowledge 
  Probabilities represent the values of statistics 

  P(o) = (# of times of outcome o) / (# of outcomes) 

  All types of uncertainty are incorporated into a 
single number 

 P(H | E) 

  Probabilities follow a set of strict axioms 
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Probability 

  Random variables define the entities of 
probability theory 
  Propositional random variables: 

  E.g.: IsRed, Earthquake 

  Multivalued random variables: 
  E.g.: Color, Weather  

  Potentially Real-Valued 
  E.g.: Height, Weight 
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Axioms of Probability 

  Probability follows a fixed set of rules 
  Propositional random variables: 

  P(A) ∈ [0..1] 

  P(T) = 1 , P(F) = 0 
  P(A∨B) = P(A) + P(B) – P(A∧B) 

  P(A∧B) = P(A) P(B|A) 

  ∑x∈Values(X) P(X=x) = 1 
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Probability Syntax 

  Unconditional or prior probabilities represent 
the state of knowledge before new 
observations or evidence 
  P(H) 

  A probability distribution gives values for all 
possible assignments to a random variable 

   A joint probability distribution gives values 
for all possible assignments to all random 
variables 
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Conditional Probability 

  Conditional probabilities represent the 
probability after certain observations or 
facts have been considered 
  P(H|E) is the posterior probability of H 

after evidence E is taken into account 

  Bayes rule allows to derive posterior 
probabilities from prior probabilities 

  P(H | E) =  P(E | H) P(H)/P(E) 
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Conditional Probability 

  Probability calculations can be 
conditioned by conditioning all terms 
  Often it is easier to find conditional 

probabilities 

  Conditions can be removed by 
marginalization 

  P(H) = ∑E P(H|E) P(E) 
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Joint Distributions 

  A joint distribution defines the 
probability values for all possible 
assignments to all random variables 
  Exponential in the number of random 

variables 

  Conditional probabilities can be computed 
from a joint probability distribution 

  P(A|B) = P(A∧B)/P(B) 
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Hypothesis Testing 

  Hypothesis testing is a statistical method 
used to evaluate if a particular hypothesis 
about data resulting from an experiment is 
reasonable. 
  Uses statistics to represent the data 

  Value of the data 

  Distribution of the data 

  Determine how likely it is that a given hypothesis 
about the data is correct  
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Statistics 

  Statistics attempt to represent the important 
characteristics of a set of data items (or of a 
probability distribution) and the uncertainty 
contained in the set (or the distribution). 
  Statistics represent different attributes of the 

probability distribution represented by the data 

  Statistics are aimed at making it possible to 
analyze the data based on its important 
characteristics 
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Statistics 

  A number of important statistics can be used 
to characterize a data set (or a population 
from which the data items are drawn) 
  Mean 

  Median 

  Mode 

  Variance 

  Standard deviation 
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Mean 

  The arithmetic mean µ represents the 
average value of data set {Xi} 

  The arithmetic mean is the expected value of a 
random variable, i.e. the expected value of a 
data item drawn at random from a population 
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Median and Mode 

  The median m is the middle of a distribution  

  The mode of a distribution is the most 
frequently (i.e. most likely) value 
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Variance and Standard Deviation 
  The variance σ2 represents the spread of a distribution 

  In a data set {Xi} an unbiased estimate s2 for the variance can be 
calculated as 

  N-1 is often called the number of degrees of freedom of the data set 

  The standard deviation σ is the square root of the variance 
  In the case of a sample set, s is often referred to as standard 

error 
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Examples 

  Statistics of a distribution 
  http://www.ruf.rice.edu/~lane/stat_sim/

descriptive/index.html 



17 

Hypothesis Testing 
  Hypothesis testing is aimed at establishing if a particular 

hypothesis about a set of observations (data) should be 
trusted 
  Example: 

  The average and variance of the body height of the population of a 
country is 

  In a different country a set of 10 people are randomly selected and 
measured resulting in the following data set with mean    = 1.776: 

  Can we conclude that people in this second country are on the 
average taller (average height µX) than people in the first one ? 
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Hypothesis Testing 
  To be able to trust in a hypothesis on statistical data 

we have to make sure that the data set could not be 
the result of random chance  
  In the example the hypothesis would be: 

  To determine if the hypothesis has a base we have to make 
sure that we do not accept it if the data could be the result 
of random chance 

  What is the likelihood that the data could be obtained by 
randomly sampling 10 items from the distribution in the first 
country ? 
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Percentiles 
  To determine the likelihood that a data item could 

come from a distribution we have to be able to 
determine percentiles 
  A data item belongs to the nth percentile if the likelihood to 

obtain a value that is equal to the data item or even 
further away from the distribution mean is greater or equal 
to n%  

  For certain distributions (e.g. normal distribution) 
percentiles can be relatively easily calculated 

  http://davidmlane.com/hyperstat/z_table.html 
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Percentiles in Normal 
Distributions 

  The percentile in a normal distribution is a function of the 
distance of the data value from the mean and of the 
standard deviation 

  E.g. a data value that is more than 1.5 standard deviations 
larger than the mean of the distribution occurs only with 
probability 0.0668 
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Percentiles 
  If the distribution of the population is normal, the 

z-value and the z-table allow to compute how 
likely it would be to randomly draw the particular 
data value (or one even further from the mean) 
  If the likelihood is not very small, then we should not 

assume that the data value is significant different from 
the value of the distribution 

  Percentiles for general, skewed distributions are 
difficult to derive 
  Attempt to formulate hypothesis on a statistic for which 

the distribution is approximately normal 
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Sampling Distributions 
  Sample Distribution: The probability distribution 

representing individual data items 

  Sampling Distribution: The probability distribution 
of a statistic calculated from a set of randomly 
drawn data items 
  Sampling Distribution of the mean: The distribution of the 

means of random data samples of size n 
  For a sample distribution with mean µ and standard deviation 
σ the mean µs and standard deviation σs of the sampling 
distribution of the mean over n samples is: 
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Central Limit Theorem 
  For any sample distribution with mean µ and 

standard deviation σ , the sampling distribution of 
the mean approaches a normal distribution with 
mean µ and standard deviation σ/√n as n becomes 
larger 
  Percentiles for the sampling  

 distribution of the mean are  

 easier to compute than for  

 the sample distribution. 

  http://onlinestatbook.com/simulations/CLT/clt.html 
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Logic of Hypothesis Testing 
  The goal of hypothesis testing is to establish the viability of a 

hypothesis about a parameter of the population (often the 
mean) 
  Define hypothesis (also called alternative hypothesis) 

  E.g.:  

  Set up Null hypothesis (i.e. the “opposite” of the hypothesis) 
  E.g.:  

  Compute the percentile and thus the likelihood of the Null 
hypothesis 

  If the Null hypothesis has more than a small likelihood, the data 
does not significantly support the hypothesis (since it could also 
represent the Null hypothesis) 

  Usually thresholds or 5% or smaller are used 
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Logic of Hypothesis Testing 
  If the Null hypothesis’ likelihood (i.e. the likelihood to 

obtain data at least as extreme) is smaller than the 
significance level, the Null hypothesis can be rejected 
  Rejection implies that the Null hypothesis is discarded in 

favor of the alternative hypothesis and the result is 
considered significant 

  Note that a p-value less than 5% for the Null hypothesis does 
NOT imply a likelihood of 95% for the alternative hypothesis. 

  Note that it is NOT possible to show that the Null hypothesis is 
correct. Failure to reject the Null hypothesis does NOT imply 
acceptance of the Null hypothesis but rather that no significant 
conclusion could be drawn from the test  
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One-Tailed vs. Two-Tailed Tests 
  Depending on the hypotheses we might be interested to know how 

the likelihood to generate data that is more extreme than the test 
data in a particular direction (e.g. the likelihood of it being larger 
than or equal to the given data) or in any direction (i.e. that it is 
further from the mean than the given data) 

  If we are only interested in data on one end of  

 the distribution we perform a one-tailed test,  

 i.e. we only count the percentile at one end of  

 the distribution 

  If we are interested in both sides, we perform a  

 two-tailed test which computes the percentile at  

 both ends 

  If we are not sure we should choose a two-tailed test (which is more 
stringent) 
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The Z Test 
  The Z Test is the most basic hypothesis test to evaluate a hypothesis 

relating an unknown distribution (with mean µX) from which a known 
sample set {Xi} of size n with mean    was randomly drawn to a 
population with sample distribution with mean µ and standard 
deviation σ  

  Assumes that the sampling distribution of the means is normal 
  Either the sample distribution is normal or the sample size is very large 

  Example Hypotheses: 

  Compute z-value: 

  Translate z-value to p-value and evaluate significance 
  Translation usually uses z-table. E.g. p = 2.5% -> z=1.96 
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Z Test With Unknown Variance 
  If the standard deviation of the population is unknown we can 

make the assumption that the population and the data set 
have come from populations with the same standard deviation 

  Use standard error s of the sample set to estimate standard deviation of 
the sampling distribution 

  Compute z-value: 

  Translate z-value to p-value and evaluate significance 
  Translation usually uses z-table. E.g. p = 2.5% -> z=1.96 
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Student’s t Distribution 
  If the sample size is small and the form of the 

sample distribution is unknown a normal distribution 
might not be the correct distribution for the 
sampling distribution of the mean 
  Student’s t distribution addresses this by increasing the 

spread of the distribution as the sample size decreases 
  For large sample sizes Student’s t approximates the normal 

distribution arbitrarily well 

  For small sample sizes Student’s t models the deviations in 
the variance estimates 

  http://www.econtools.com/jevons/java/Graphics2D/tDist.html 
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The t Test 
  The t test operates in the same way as the Z test 

but uses Student’s t distribution instead of the 
normal distribution  
  Example Hypotheses: 

  Compute t-value: 

  Translate t-value to the corresponding p-value (percentile) 
according to the Student’s t distribution for sample size n and 
evaluate significance 

  Translation usually uses t-table. E.g. p = 2.5% -> t9=2.26 
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The t Test 
  The t test should be used whenever the sample size is smaller than 

approximately 30  

  Example: 
  The average and variance of the body height of the population of a 

country is 

  In a different country a set of 10 people are randomly selected and 
measured resulting in the following data set with mean    = 1.776: 

  Can we conclude that people in this second country are on the average 
taller (average height µX) than people in the first one ? 

  Hypotheses:   

  T value:   

  Reject Null hypothesis in favor of alternative hypothesis.  
  People in the second country are on average taller than in the first country  
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Two-Sample t Test 
  A two-sample test is to compare two samples to see whether they come from 

the same or different distributions  
  E.g.: Does algorithm 1 perform better than algorithm 2 based on a set of 

experiments performed with each 

  Since no population standard deviation or mean is available, the standard error from 
the two samples is pooled to obtain an estimate of the standard deviation of the 
difference between the two sample distributions 

  Example Hypotheses: 

  Compute t-value: 

  Translate t-value to the corresponding p-value (percentile) according to the Student’s t distribution 
for n1+n2-2 degrees of freedom and evaluate significance 
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Paired Sample t Test 
  A paired sample test is used to compare two sample sets that have a different 

common variable that should be controlled for to see whether they come from 
the same or different distributions  

  E.g.: Does algorithm 1 perform better than algorithm 2 based on their performance 
on a specific set of problems (the same problems for both) 

  A paired sample test avoids the variance caused by the controlled variable (e.g. the 
specific problem the algorithm is applied to) by establishing the sampling 
distribution over the differences in the value between paired data items from both 
sets 

  Example Hypotheses: 

  Compute t-value: 

  Translate t-value to the corresponding p-value (percentile) according to the Student’s t distribution 
for sample size n and evaluate significance 
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Paired Sample vs. Two-Sample 
Test 

  The paired sample test is preferable 
whenever an additional variable is known 
which produces variations in the data items 
  Paired sample test often has smaller standard 

deviations because of the avoided variance  

  If no conditional variable that would pair 
individual samples together is known to be 
relevant, the two-sample test is most of the 
time better because it uses more samples  
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Confidence Intervals 
  Confidence intervals on the means of data points (or curves) 

indicate intervals for which, if a data point from a different 
sample falls within it, a significance test would not succeed to 
reject the Null hypothesis. 
  E.g.: The performance for system 1 is significantly better than the 

performance of system 2 if the performance values lie outside the 
confidence intervals.  

  A (1-α)% confidence interval around a data point     would cover 
all values for which the t-value with respect to     would have a p-
value below α% 

  Confidence interval bounds:  

  http://www.math.csusb.edu/faculty/stanton/m262/confidence_means/confidence_means.html 
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Confidence Intervals 
  When presenting and comparing performance data (and 

making statements regarding performance differences) either 
significance test should be performed or error bars 
(confidence intervals) should be presented with the data 
  Error bars illustrate the  

 significance of the difference  

 between two performance  

  measures 
  Error bars usually either  

 represent (1-α)% confidence  

 intervals or are of size σ 
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Significance Testing 
  To be able to make statements comparing performance derived from 

experiments it is necessary to show that the differences are not the 
result of chance 

  Benefits 
  Significance tests are a flexible way to evaluate if a hypothesis about the 

sampling mean (or some similar statistics) has significant support 

  Significance tests can be applied without complete knowledge of the 
distributions underlying the problem 

  Problems: 
  Significance tests only reject the Null hypothesis 

  No direct proof of the hypothesis 

  Significance tests are difficult when trying to evaluate hypotheses that are 
not involving the mean 


