
IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXX 201X 1

Heating Dispersal for Self-Healing NAND
Flash Memory

Renhai Chen, Yi Wang, Duo Liu, Zili Shao and Song Jiang

Abstract—Substantially reduced lifetimes are becoming a critical issue in NAND flash memory with the advent of multi-level cell
and triple-level cell flash memory. Researchers at Macronix have recently discovered that heating can cause worn-out NAND
flash cells to become reusable and greatly extend the lifetime of flash memory cells. However, the heating process consumes
a substantial amount of power, and some fundamental changes are required for existing NAND flash management techniques.
In particular, all existing wear-leveling techniques are based on the principle of evenly distributing writes and erases. For self-
healing NAND flash, this may cause NAND flash cells to be worn out in a short period of time. Moreover, frequently healing these
cells may drain the energy quickly in battery-driven mobile devices, which is defined as the concentrated heating problem.
In this paper, we propose a novel wear-leveling scheme called DHeating (Dispersed Heating) to address the problem. In
DHeating, rather than evenly distributing writes and erases over a time period, write and erase operations are scheduled on
a small number of flash memory cells at a time, so that these cells can be worn out and healed much earlier than other cells.
In this way, we can avoid quick energy depletion caused by concentrated heating. In addition, the heating process takes several
seconds and has become the new performance bottleneck. In order to address this issue, we propose a lazy heating repair
scheme. The lazy heating repair scheme can ease the long time heating effect by delaying the heating operation and using the
system idle time to repair. Furthermore, the flash memory’s reliability becomes worse with the flash memory cells reaching the
excepted worn-out time. We propose an early heating strategy to solve the reliability problem. With the extended lifetime provided
by self-healing, we can trade some lifetimes for reliability. The idea is to start the healing process earlier than the expected worn-
out time. We evaluate our scheme based on an embedded platform. The experimental results show that the proposed scheme
can effectively prolong the consecutive heating time interval, alleviate the long time heating effect, and enhance the reliability for
self-healing flash memory.

Index Terms—Flash memory, self-healing, wear leveling, power consumption, dispersed heating.

F

1 INTRODUCTION

NAND flash memory has many advantages such
as non-volatility, low power consumption, and

good shock resistance. It has been widely used as stor-
age devices in embedded systems. However, NAND
flash memory has some constraints, particularly, lim-
ited lifetime. For example, multi-level cell (MLC)
flash memory, which is the mainstream NAND flash
product on the market, can withstand 10,000 pro-
gram/erase (P/E) cycles; triple-level cell (TLC) flash
memory, which is the emerging flash memory prod-
uct, can withstand only 2,500 P/E cycles [1], [2], [3],
[4], [5], [6]. In order to overcome this constraint, Re-
searchers at Macronix recently invented self-healing
flash memory, in which worn-out flash memory cells
can be rejuvenated by thermal annealing [7].

• Renhai Chen and Zili Shao are with Embedded Systems and CPS
Laboratory, Department of Computing, The Hong Kong Polytechnic
University, Hung Hom, Kowloon, Hong Kong.

• Yi Wang is with the College of Computer Science and Software
Engineering, Shenzhen University, Shenzhen, China.

• Duo Liu is with College of Computer Science, Chongqing University,
Chongqing, China.

• Song Jiang is with Department of Electrical and Computer Engineer-
ing, Wayne State University, Detroit, USA.

• The corresponding author: Zili Shao (Email: cszl-
shao@comp.polyu.edu.hk; Tel: (852)27667287).

However, heating a self-healing flash memory cell
does consume a substantial amount of power [8]. If
a large number of flash memory cells are heated in
a short time period, the energy will be exhausted
in a battery-driven embedded system such as smart-
phones. For traditional NAND flash memory, wear-
leveling strategies are employed in an attempt to
evenly distribute write and erase operations [9], [10],
[11], [12], [13], [14]. If such strategies are used to
manage self-healing flash memory, it will cause the
concentrated heating problem, that is, when all flash
memory cells wear out together, healing these cells in
a concentrated manner might drain the energy. This
paper focuses on solving this problem.

Several challenging issues should be considered
when self-healing flash memory is used in embed-
ded systems. First, the lifetime of self-healing flash
memory is prolonged by the heating of worn-out flash
memory cells. However, heating does not come out
without a cost, as heating shortens the battery life and
a heating operation consumes a large amount of pow-
er [8]. As a result, heating should not occur frequently,
and only a small portion of flash memory cells should
be healed at a time. Second, heated cells can be
treated as newborn cells rather than as permanently
retired cells. Since the reliability of newborn cells is
better than that of nearly worn-out flash memory

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXX 201X

cells, data should be moved from nearly worn-out
cells to newborn cells. As discussed above, previous
wear-leveling strategies are not suitable for use on this
emerging self-healing NAND flash memory. Thus, it is
very important to design a new management strategy
for self-healing flash memory.

In this paper, we first propose a novel wear-
leveling scheme, called DHeating, to manage self-
heating NAND flash memory. DHeating performs
wear leveling by storing frequently updated data,
called hot data, in a small number of flash memo-
ry cells. By applying this technology to self-healing
flash memory, heating operations are dispersed so
that only a small portion of the cells will be healed
each time, and the time interval for the consecutive
heating operations is prolonged. In addition, the heat-
ing procedure takes several seconds, which becomes
the new performance bottleneck in self-healing flash
memory. In order to ease the long time heating ef-
fect, we propose a lazy heating repair scheme. The
basic idea of the lazy heating repair scheme is to
delay the heating operation and to repair during
the system idle time period. Furthermore, the flash
memory’s reliability degrades dramatically with self-
healing flash memory reaching its worn out point [15],
[16], [17]. In order to enhance the reliability of the self-
healing flash memory, we propose an early heating
scheme in which we start to heal flash memory cells
earlier than their expected endurance. To the best
of our knowledge, this is the first work to address
the concentrated heating problem through the use of
a dispersed heating strategy, to ease the long time
heating effect with a lazy heating repair technique,
and to enhance the reliability of the self-healing flash
memory by adopting an early heating scheme.

We have conducted experiments with various ap-
plications based on an embedded system with an
ARM11 processor and an 8Gb NAND flash memory
chip. The experimental results show that DHeating
not only addresses the concentrated heating problem,
but also improves the system response time in self-
healing flash memory compared with the baseline
scheme. The improvement of the system response
time is mainly caused by reducing the swapping of
hot and cold data that occurs frequently in previous
wear-leveling strategies.

The main contributions of this work are:
• This work addresses the concentrated heating

problem for self-healing NAND flash memory
from the wear-leveling perspective.

• A lazy heating repair scheme is proposed to
alleviate the long time heating effect.

• An early heating strategy is proposed to enhance
the reliability of the self-healing flash memory.

The rest of this paper is organized as follows:
Section 2 presents the background of this work and
our motivation on conducing this work. Section 3
introduces our DHeating strategy with performance

and overhead analysis. The experimental results are
presented and discussed in Section 4. In Section 5, we
conclude our work.

2 BACKGROUND AND MOTIVATION

2.1 NAND Flash Memory and Worn Out

Top Gate (TG)

Floating Gate (FG)

Oxide

Tunnel Oxide

N+ N+

Source Drain Source

Word Line

Silicon Substrate Silicon Substrate

Fig. 1. The structure of a traditional NAND flash
memory cell.

In a traditional NAND flash memory chip, a
floating-gate transistor is used as the storage cell as
shown in Fig. 1. A floating-gate transistor is made of
one top gate (or control gate), one floating gate, two
oxide layers, and the silicon substrate. The top gate,
floating gate, and silicon substrate are surrounded by
the oxide, which functions as insulation. The oxide
layer between a floating gate and the silicon substrate
is called tunnel oxide. When a high voltage is applied
to a word line, which is connected to the top gate
of a cell, the electrons from the silicon substrate will
traverse the tunnel oxide and be trapped in a floating
gate. The number of electrons trapped in a floating
gate is used to denote the stored data [18], [19], [20].

Top Gate (TG)

Floating Gate (FG)

Oxide

Oxide

Lo
G

Floa

Heat
(Neg

N+ N+
Source Drain

N+
Source

Word Line

Silicon Substrate S

Top Gate (TG)

Floating Gate (FG)

Oxide

Tunnel Oxide

Low-Resistance
Gate (LRG)

Floating Gate (FG)

Oxide

Tunnel Oxide

Heat Plate
(Negative)

Heat Plate
(Positive)

N+ N+
Source Drain

N+ N+
DrainSource

Word Line

Silicon Substrate Silicon Substrate

Low-Resistance
Gate (LRG)

Floating Gate (FG)

Oxide

Tunnel Oxide

Heat Plate
(Negative)

Heat Plate
(Positive)

N+ N+
DrainSource Silicon Substrate

Low-Resistance
Gate (LRG)

FG

Oxide

Tunnel Oxide

Heat Plate
(Negative)

Heat Plate
(Positive)

N+ N+
DrainSource Silicon Substrate

Low-Resistance
Gate (LRG)

FG

Oxide

Tunnel Oxide

Heat Plate
(Negative)

Heat Plate
(Positive)

N+ N+
DrainSource Silicon Substrate

Low-Resistance
Gate (LRG)

Floating Gate (FG)

Oxide

Tunnel Oxide

Heat Plate
(Negative)

Heat Plate
(Positive)

N+ N+
DrainSource Silicon Substrate

(a) (b)

FG

Oxide

Tunnel Oxide
N+ N+

DrainSource Silicon Substrate

FG

Oxide

Tunnel Oxide
N+ N+

DrainSource Silicon Substrate

Top Gate (TG)

Word Line

Top Gate (TG)

Word Line

Electrons

Current

Heat

(a) (b)

Fig. 2. Illustration on wearing of a flash memory cell
caused by (a) the programming operation, and (b) the
erase operation.

The lifetime of a flash memory cell decreases with
constant program and erase operations, since repeat-
ed P/E cycles can damage the tunnel oxide layer
as shown in Fig. 2. Program operations can cause
electrons to traverse through the tunnel oxide layer
to the floating gate as shown in Fig. 2 (a), while erase
operations make electrons to traverse through the
tunnel oxide layer to the silicon substrate as shown
in Fig. 2 (b). The repeated traverse procedures may
cause electrons to be trapped in the tunnel oxide layer.

CHEN et al.: HEATING DISPERSAL FOR SELF-HEALING NAND FLASH MEMORY 3

Eventually, the tunnel oxide layer is damaged because
of too many electrons being trapped in the tunnel
oxide layer.

2.2 Self-Healing NAND Flash Memory and Heat-
ing Repair

Heat plate
(negative) Heat plate

(positive)

Low-resistance
gate

Silicon substrate

Floating
gate

Oxide

Diode

Diode

Low-Resistance

Gate (LRG)

Floating Gate (FG)

Oxide

Tunnel Oxide

Heat Plate

(Negative)

Heat Plate

(Positive)

N+ N+

Source Drain

N+ N+

DrainSourceSilicon Substrate Silicon Substrate

(a) (b)

Fig. 3. The structure of a self-healing NAND flash
memory storage cell. (a) 3D vision. (b) 2D vision.

Several state-of-the-art works [8], [21], [22] discover
that high temperature can make electrons to be de-
trapped from the oxide layer. Therefore, researchers at
Macronix modify the traditional NAND flash memory
structure and invent self-healing NAND flash mem-
ory. The structure of a self-healing flash memory cell
is shown in Fig. 3(a) and Fig. 3(b). In self-healing
NAND flash, a word line is modified to become a
double-ended structure with one positive heat plate
and one negative heat plate; a low-resistance gate is
used as the top gate, which enables the current to
pass through the gate [8]. The two heat plates are
connected to a double-ended word line-one plate on
each end.

Top Gate (TG)

Floating Gate (FG)

Oxide

Oxide

Lo
G

Floa

Heat
(Neg

N+ N+
Source Drain

N+
Source

Word Line

Silicon Substrate S

Top Gate (TG)

Floating Gate (FG)

Oxide

Tunnel Oxide

Low-Resistance
Gate (LRG)

Floating Gate (FG)

Oxide

Tunnel Oxide

Heat Plate
(Negative)

Heat Plate
(Positive)

N+ N+
Source Drain

N+ N+
DrainSource

Word Line

Silicon Substrate Silicon Substrate

Low-Resistance
Gate (LRG)

Floating Gate (FG)

Oxide

Tunnel Oxide

Heat Plate
(Negative)

Heat Plate
(Positive)

N+ N+
DrainSource Silicon Substrate

Low-Resistance
Gate (LRG)

FG

Oxide

Tunnel Oxide

Heat Plate
(Negative)

Heat Plate
(Positive)

N+ N+
DrainSource Silicon Substrate

Low-Resistance
Gate (LRG)

FG

Oxide

Tunnel Oxide

Heat Plate
(Negative)

Heat Plate
(Positive)

N+ N+
DrainSource Silicon Substrate

Low-Resistance
Gate (LRG)

Floating Gate (FG)

Oxide

Tunnel Oxide

Heat Plate
(Negative)

Heat Plate
(Positive)

N+ N+
DrainSource Silicon Substrate

(a) (b)

FG

Oxide

Tunnel Oxide
N+ N+

DrainSource Silicon Substrate

FG

Oxide

Tunnel Oxide
N+ N+

DrainSource Silicon Substrate

Top Gate (TG)

Word Line

Top Gate (TG)

Word Line

Electrons

Current

Heat

(a) (b)

Fig. 4. A comparison of worn out flash memory and
healed flash memory. (a) The worn out flash memory
storage cell. (b) The healed flash memory cell.

If a flash memory cell reaches its lifetime as shown
in Fig. 4 (a), a certain level of voltage will be applied to
the corresponding heat plates and a high temperature
(>800◦C) will be generated immediately after the
current passes through the gate as Fig. 4 (b) shown.
Heating can repair the damaged tunnel oxide of the
cell, thus extending the lifetime of the cell.

Since self-healing NAND flash memory extends
its lifetime by heating damaged tunnel oxide layers

rather than adding new tunnel oxide layers, a flash
memory cell will permanently retire after several heat-
ing repairs. We assume that a self-healing NAND flash
memory cell can be healed at most θ times, and after
i′s (1 ≤ i ≤ θ) healing, it can be used Li times. The
lifetime of a self-healing flash cell can be represented
as follows:

Lifetime =

θ∑
i=0

Li (1)

In Equation 1, L0 denotes the factory lifetime or the
lifetime prior to healing, and Li(i ε[1, θ]) denotes the
lifetime in each stage.

Suppose that we combine this self-healing technol-
ogy with TLC NAND flash memory. Typically the
factory lifetime of a TLC NAND flash memory chip is
2,500 or L0 =2,500. After each healing, its lifetime is
decreased by 10, that is, Li−Li−1 = 10 (1 ≤ i ≤ 250).
Based on Equation (1), we find that the total lifetime
of TLC NAND flash memory is extended to

∑250
i=0 Li

= (2500+2490+...+10) = 313,750 that is about 125 times
longer than that of traditional TLC NAND flash mem-
ory.

2.3 The Architecture of Self-Healing NAND Flash
Memory

Application 1 Application 2 Application n

General File System (e.g., FAT32, EXT4)

Memory Technology Device (MTD) Layer

Self-Healing NAND Flash Memory

Address Translator

Garbage Collector

Wear-Leveler

Flash Translation Layer (FTL)

Flash File System
(JFFS, YAFFS)

Address
Translator

Operating System

......

Garbage
Collector

Wear-
Leveler

DHeating DHeating

Application 1 Application n

General File System (e.g., FAT32, EXT4)

Address Translator

Garbage Collector

Wear-Leveler

Flash Translation Layer (FTL)

Flash File System
(JFFS, YAFFS)

Address
Translator

Operating System

......

Garbage
Collector

Wear-
Leveler

DHeating DHeating

Memory Technology Device Layer

Self-Healing NAND Flash Memory

Operating System

Self-Healing NAND Flash Memory

Memory Technology Device Layer

Block Device Driver

Application 2 Application 1 Application n......Application 2

(a) (b)

Fig. 5. (a) FTL-based self-healing NAND flash mem-
ory storage systems. (b) Flash-file-system-based self-
healing NAND flash memory storage systems.

In general, there are two methods to make self-
healing flash memory usable in embedded systems:
FTL-based flash memory storage systems and flash-file-
system-based memory storage systems. As shown in Fig. 5
(a) and Fig.5 (b), in these methods the MTD (Memory
Technology Device) layer directly operates on a self-
healing flash memory chip by providing primitive
functions such as read, write, and erase operations; an
FTL or a flash-file-system is used to manage NAND
flash by handling such issues as out-of-place update,
erase before rewrite, and limited lifetime. Both an FTL
and a flash-file-system consist of three components:

4 IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXX 201X

an address translator, a garbage collector and a wear-
leveler. The address translator translates addresses be-
tween the logical page number (LPN) and the physical
page number (PPN). The garbage collector reclaims
space by erasing obsolete blocks in which invalidated
data exist; the wear-leveler is an optional component
that distributes write or erase operations evenly across
all blocks, so that the lifetime of a flash memory
system can be improved.

In this paper, we mainly focus on solving the wear-
leveling problem for self-healing NAND flash memo-
ry chips.

2.4 Wear Leveling
The principle in existing wear-leveling techniques
is to evenly distribute writes and erases [23], [24],
[25], [26], [27]. Basically, data are classified as hot or
cold data according to data update frequency, while
physical blocks are divided into old or young blocks.
To evenly disperse erasures to all physical blocks, hot
and cold data are allocated to young and old physical
blocks, respectively. Existing techniques can be further
divided into two categories: static and dynamic.

With the dynamic strategy, wear leveling is per-
formed by allocating young blocks to hot data, while
with the static strategy cold data are swapped with
hot data so cold data cannot stay in young blocks for
a long period of time [9], [10], [12]. In the dynamic
wear leveling, if a young block is occupied by cold
data but no update has occurred for a long period
of time, it will not be recycled and other blocks will
be worn out by updates of hot data. Therefore, static
wear leveling is proposed to overcome the shortage
of dynamic wear leveling.

SWL [12] is a typical static wear-leveling strategy.
In this strategy, a BET (Block Erasing Table) is used
to record which block has been erased in a pre-
determined time frame. In order to save memory
space, a one-to-many mapping mode is adopted in
SWL. That is, one BET flag can be shared by 2k

physical blocks. If one of the 2k physical blocks is
erased, the corresponding BET flag is set at 1. At
the same time, two numbers, fcnt and ecnt, are used
to record the number of 1 in the BET and the total
number of block erases done since the BET was reset,
respectively. When the ratio of fcnt and ecnt is equal
to or larger than a threshold T, which means that
some level of unevenness has occurred or many erases
have been done on a small number of blocks, SWL
will find out those used blocks whose corresponding
BET flag is 0, and these blocks will be swapped with
old blocks. SWL can effectively conduct wear leveling
with a small space overhead. Therefore, in this paper,
we compare our method with SWL.

2.5 Motivating Example
A motivating example is shown in Fig. 6. Assume that
there are eight blocks and one block will carry out a

heating operation after 2,500 erasures in a self-healing
NAND flash memory chip.

As shown in Fig. 6(a), SWL [12] causes all of the
blocks to be worn out evenly. As a result, at tn, all
eight physical blocks reach their healing threshold of
2,500, and the concentrated heating problem occurs.
This can exhaust the energy in the battery within a
very short time period and reduce the lifetime of the
battery.

Having made this observation, our idea in DHeat-
ing is to disperse the heating of the eight blocks over
different times. As shown in Fig. 6(b), at t2, only Block
0 and Block 1 reach the heating bar. At tm, after Block
6 and Block 7 complete heating operations, all blocks
finish the heating operation.

Normally, tm > tn, since previous wear-leveling
strategies have introduced some valid page copies
and block erasure overheads to cause all blocks to
wear out evenly. On the other hand, our proposed
DHeating scheme only introduces these overheads
when the system carry out a heating operation. As
a result, our proposed scheme can further extend the
lifetime of self-healing flash memory and improve the
performance of the system.

3 THE DHEATING SCHEME

In this section, we introduce the DHeating scheme to
effectively address the concentrated heating problem.
We first give an overview in Section 3.1, and then
present the dispersed heating strategy and the lazy
heating repair scheme in Sections 3.2 and 3.3, respec-
tively. In Section 3.4, we discuss the early heating
technique. An example to show how DHeating works
with NFTL is presented in Section 3.5. Finally, we
analyze the performance and overhead in Section 3.6.

3.1 Overview
The DHeating strategy consists of three schemes: dis-
persed heating, lazy heating repair and early heating.
The dispersed heating scheme is to disperse heating
operations to address the concentrated heating prob-
lem. The basic idea of the dispersed heating scheme is
to intensively wear a small number of flash memory
cells at a time. These cells will be worn out quickly
and be heated much earlier than that of the other cells.
Then, we swap out these heated flash memory cells,
and repeat the above procedure. To this end, data are
divided into two categories, hot data and cold data,
based on data update frequency. According to block
erasure times, physical blocks are classified into old,
young, and new physical blocks. Old physical blocks
are stored in the old pool, young physical blocks are
kept in the young pool, and new physical blocks
are stored in the new pool. When a write request
is received, the dispersed heating scheme will check
which pool the data request belongs to and allocate
the corresponding physical blocks. In addition, the

CHEN et al.: HEATING DISPERSAL FOR SELF-HEALING NAND FLASH MEMORY 5

(80)
(80)
(80)
(80)
(80)
(80)
(80)

0
1
2
3
4
5
6
7 (80)

Physical
Block

Number
(700)
(700)
(700)
(700)
(700)
(700)
(700)

0
1
2
3
4
5
6
7 (700)

Physical
Block

Number

Erase
Times

(1400)
(1400)
(1400)
(1400)
(1400)
(1400)
(1400)

0
1
2
3
4
5
6
7 (1400)

Physical
Block

Number
(2,500)
(2,500)
(2,500)
(2,500)
(2,500)
(2,500)
(2,500)

0
1
2
3
4
5
6
7 (2,500)

Physical
Block

Number

Heating
Repair

HR
HR
HR
HR
HR
HR
HR

0
1
2
3
4
5
6
7 HR

......

Physical
Block

Number

(200)
(200)
(38)
(38)
(38)
(38)
(38)

0
1
2
3
4
5
6
7 (38)

Physical
Block

Number
(2,500)
(2,500)

(90)
(90)
(90)
(90)
(90)

0
1
2
3
4
5
6
7 (90)

Physical
Block

Number

Erase
Times

Heating
Repair

HR
HR

(2,500)
(2,500)
(280)
(280)
(280)

0
1
2
3
4
5
6
7 (280)

Physical
Block

Number
Heating
Repair

HR
HR
HR
HR
HR
HR

(2,500)

0
1
2
3
4
5
6
7 (2,500)

Physical
Block

Number

Heating
Repair

HR
HR
HR
HR
HR
HR
HR

0
1
2
3
4
5
6
7 HR

Physical
Block

Number

Previous
Wear

Leveling

(b) DHeating
......

t1 t2 t3 tn

(a)

time

t1 t2 t3 tm time

Fig. 6. Motivating example.

Old Pool

Young Pool

New Pool

Hot Data

Cold Data

Cold Data Young Pool

Old Pool

New Pool

Hot Data

Cold Data

New Pool

Hot Data

Cold Data

Cold Data Young Pool

Hot Data Old Pool

(1)

Heating

Repaired

Blocks

C
ircu

lar

Heating

Repaired

Blocks

Hot Data Cold Data Young Pool Old PoolNew Pool

(2)

(3)

(4)

(5)

Fig. 7. Dispersed heating scheme.

lazy heating repair scheme is proposed to address
the long time heating issue. The heating procedure
takes several seconds and seriously degrades the I/O
performance. In order to address this issue, the lazy
heating repair scheme delays the heating operation
and employs the system idle time to repair. Further-
more, the flash memory’s reliability becomes worse
with the flash memory cells reaching the excepted
worn-out time. We propose an early heating strategy
to solve the reliability problem. With the extended
lifetime provided by self-healing, we can trade some
lifetimes for reliability. The idea is to start the healing
process earlier than the expected worn-out time. With
DHeating, the energy consumed during each occur-
rence of heating is minimized, the long time heating
effect can be eased, and the reliability of self-healing
flash memory is enhanced.

3.2 Dispersed Heating
In the dispersed heating scheme, all blocks are catego-
rized into three types, namely, young, old, and new
blocks and are accordingly put into the young, old
and new pools. Meanwhile, we divide the data into
cold and hot and put them into blocks in different
pools based on the different stages of our scheme.

The dispersed heating scheme has five stages, as
shown in Fig. 7. Stage 1 is the starting point, where
cold data are stored in young blocks. In Stage 2, we
divide the hot and cold data and the young and
old blocks. In Stage 3, old blocks will be heated and
moved to the new pool. In Stage 4, no valid blocks
exist in the young pool, and all blocks are kept in the
old pool and the new pool. In Stage 5, all old blocks
are healed and put into the new pool. We can then

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXX 201X

repeat the above five stages for a new round. Next,
we will present the details of each stage and introduce
a key function used in our scheme, the hot data filter.

Stage 1 is the initial stage. In Stage 1, all data are
cold data and all physical blocks are stored in the
young pool.

In Stage 2, hot/cold data and young/old blocks are
classified. Based on block erasure times, young blocks
will be selected as old blocks and put in the old pool,
since we do not want old blocks to be allocated to
cold data and young blocks to be allocated to hot data.
Then, the blocks in the old pool will continue to be
used by the hot data. These blocks will be healed first.
A hot data filter will be used to identify hot/cold data
and young/old blocks, which will be discussed later.

In Stage 3, we start to heal blocks in the old pool,
and these healed blocks are moved to the new pool.
Then cold data are allocated to blocks in the new and
young pools, while hot data continue to be assigned
to blocks in the old pool. We move healed blocks
to the new pool, because if they are kept in the old
pool, they will be used by hot data and may reach
their permanent retiring time much earlier than the
other blocks. This can lead to very early shrinkage of
the capacity of NAND flash memory. When allocating
cold data, we will first use blocks in the young pool so
blocks in the young pool will become old and move to
the old pool, and blocks in the new pool will only be
utilized until there are no free blocks in the young
pool. In this way, the size of the young pool will
decrease while that of the new pool will increase.

We enter Stage 4 after all of the blocks in the young
pool are used up. At this stage, there are only the
new and old pools, containing new and old blocks,
respectively. Different from the above stages, in Stage
4 hot data can be allocated to blocks in both the old
and new pools. However, blocks in the new pool are
only used when there are no free blocks in the old
pool. In the new pool, a free block with the smallest
number of erasures is used to hold hot data, and this
block will be kept in the new pool after it has been
reclaimed. In the old pool, blocks will be healed and
moved to the new pool As a result, all blocks will
become new at some point in time, and we will enter
Stage 5.

Stage 5 is the last stage, and only the new pool
exists. The main function of this stage is to clear up
history records such as update times and hot or cold
data. Then, we will go back to Stage 1 and repeat the
above procedures until a flash memory enters the last
heating phase, and permanently retires.

Hot data filter: Hot/cold data are identified based
on the update frequency. We use T to represent the
number of hot data threshold that is calculated as
follows:

T = (

n∑
i=0

Ui)/n (2)

In this equation, n denotes the number of blocks
updated by hot and cold data during a time period
and Ui (1 ≤ i ≤ n) is the update times of i’s logical
block. Umax(= Max1≤i≤nUi) denotes the maximum
update times of all cold data. If Umax is equal to or
larger than the threshold T , a new piece of hot data
is detected. Correspondingly, the oldest block or the
block with the largest number of erasures in the young
pool will be moved to the old pool. The threshold T is
calculated based on the average update times during
a time period because of the following considerations:

• If T is selected larger than the average update
times, some hot data may not be identified. For
example, if all update requests are issued from
one piece of data, and Umax is equal to the
average update times, then, this piece of hot data
cannot be identified.

• If T is selected smaller than the average update
times, too many pieces of cold data may be
selected as hot data. This will lead to the selection
of many blocks as hot data.

For each logical block, we use a number to store
its page update times. Initially, all numbers are set as
zero. When one of the numbers achieves its maximum
value, the hot data filter will be triggered, and all num-
bers will be reset as zero. It is important to determine
how many bits are used to represent the number. If
too many bits are used, a large memory space will
be consumed and hot data will be detected for a
very long period of time; otherwise, the hot data filter
will be frequently triggered. In our experiments, eight
bits are used to represent this number. An example
is given below to show how hot data are identified.
Assume that there are eight logical blocks, and eight
bits are used to record the number of updates of each
logical block. Suppose that the update times of these
eight logical blocks are 255, 100, 3, 2, 6, 2, 8, and 8,
respectively. When the hot data filter is triggered, 255
is the maximum value of an 8-bit unsigned number.
Using Equation (2), the threshold T can be calculated
as (255+100+3+2+6+2+8+8)/8 = 48. If the logical block
with the update time 255 has already been chosen as
hot data and all other blocks are cold data, then Umax
is 100 as it is selected from all cold data. Because Umax
is larger than 48, the hot data filter chooses the logical
block with the update time 100 as a new piece of hot
data.

Algorithm 1 describes how the hot data filter works.
Three input parameters are used in hot data filter: n,
Uall and Umax, which denote the number of pieces
of updated data, all update times, and the maximum
update times of cold data respectively. n and Uall are
used to calculate filter threshold T . Then if Umax is
equal to or larger than the threshold T, a new piece of
hot data will be detected and returned, and a physical
block with the maximum erase time from the young
pool will be moved to the old pool. Otherwise, if Umax

CHEN et al.: HEATING DISPERSAL FOR SELF-HEALING NAND FLASH MEMORY 7

Algorithm 1: Hot data filter
Input: n: The number of updated blocks
Uall: All update times
Umax: Maximum update times of cold data
E: The erasure times of physical blocks
Py : The young pool
Po: The old pool
Output: HDN : The logical block number

identified as the hot data
1 T ← Uall/n
2 if Umax ≥ T then
3 HDN ←The logical block number with Umax
4 PBoldest ← Emax{X|XεPy}
5 Po ← PBoldest
6 Return HDN
7 else
8 Return NULL to denote no hot data is

detected

is smaller than threshold T, no hot data is detected and
the algorithm returns NULL.

3.3 Lazy Heating Repair

The heating operation takes a few seconds, which are
much longer than that of an erase operation [22], such
as 1.5ms block erase time [2]. In addition, a heating
operation can block the whole Die response in a flash
chip and thus may seriously degrade the system re-
sponse time. Therefore, the heating operation has be-
come the new performance bottleneck in self-healing
flash memory and an effective management method
is urgently required. In this section, we propose a lazy
heating repair technique to alleviate the long heating
effect with the benefits of utilizing system idle time.

When a block reaches the heating point, the block
is moved to a heating list instead of being heated
immediately. Then, when the system is idle, the blocks
in the heating list are selected to repair. By delaying
the heating operation and employing the idle time
to repair, the lazy heating repair technique can ease
the long time heating effect. However, this strategy
may introduce a new problem. If too many blocks
are accumulated in the heating list, these blocks may
be healed in a concentrated manner. In order to ad-
dress this issue, the lazy heating repair is periodically
triggered to clean the heating list. The heating period
is adaptively adjusted according to two factors: the
number of heating blocks in the heating list and the
number of free blocks. If a lot of blocks are waiting
to do heating repair in the heating list and a few free
blocks are available, the heating repair operation is
triggered intensively within a short heating period.
On the other hand, a few blocks in the heating list or
many free blocks will result in triggering the heating
operation infrequently.

Fig. 8 illustrates the procedure of the lazy heating
repair scheme. Assume that the heating period is 4t

Block
Heating
Repair

......

Time

Block
Heating
Repair

Block
Heating
Repair

Block Block Block

t1 t2 t3

Heating List

Block Block

Block

∆t1 ∆t

Idle Time

Fig. 8. Illustration on the procedure of lazy heating
repair.
and a block is heated at t1. If the system is idle after
4t1(4t1 < 4t) time interval, a block in the heating
list will be selected to repair at the idle time, such as
t2 as shown in Fig. 8. On the other hand, if the system
is always busy during the 4t time interval, a block in
the heating list is chosen to repair after the 4t time
interval. As shown in Fig. 8, the time interval between
t2 and t3 is 4t and the system is always busy during
this time interval. Then, at t3, a block in the heating
list is selected to repair, since the elapsed time has
reached the heating period 4t.

3.4 Early Heating

An early heating strategy is proposed to enhance the
reliability for self-healing NAND flash memory. In
the dispersed heating scheme, where write and erase
operations are on a small portion of flash memory
cells, the reliability problem might arise. We propose
to utilize an early heating strategy to address this
problem. The idea is to start the healing process earlier
than the expected worn-out time.

0 500 1000 1500 2000 2500 3000 3500 4000
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.065

0.070

0.075

70
.1

0%
 R

ed
uc

tio
n

75% Maximum P/E Cycles

R
a
w

 B
it
 E

rr
o
r

R
a
te

 (
%

)

P/E Cycles

Maximum P/E Cycles

Fig. 9. The raw bit error rate with different P/E cy-
cles [15].

N Blocks
Heating
Repair

Heating
Repair

......
Heating
Repair

Time

Δt

M Blocks

Heating
Repair

Time

Δt1

M Blocks

(a)

(b)

Δt1

N Blocks N Blocks

N Blocks
Heating
Repair

Heating
Repair

......
Heating
Repair

Time

Δt

(c)

Δt2

N Blocks N Blocks

N Blocks
Heating
Repair

Heating
Repair

......
Heating
Repair

Time

Δtadp

Δt1

N Blocks N Blocks

Δtdel

N Blocks
Heating
Repair

Heating
Repair

......
Heating
Repair

Δt

M Blocks

Concentrated
Heating Repair

Δt1

M Blocks

(a)

(b)

Δt1

N Blocks N Blocks

N Blocks
Heating
Repair

Heating
Repair

......
Heating
Repair

Δt

(c)

Δt2

N Blocks N Blocks

N Blocks
Heating
Repair

Heating
Repair

......
Heating
Repair

Δtadp

Δt1

N Blocks N Blocks

Δtdel

Time
t1(topt) t2

(d)

topttopt

Block
Heating
Repair

......

Time
Maximum
P/E Cycles

Block
Heating
Repair

Maximum
P/E Cycles

Block
Heating
Repair

Maximum
P/E Cycles

Early Heating Point

Fig. 10. The early heating strategy for reliability.

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXX 201X

Since the dispersed heating scheme utilizes a small
number of flash memory cells in a concentrated man-
ner, the reliability problem may arise. Fig. 9 shows
the raw bit error rate with different P/E cycles. These
results are obtained via testing Micron’s MLC flash
29F64GCBAAA with the capacity of 64 Gb and the
maximum of 3000 P/E cycles. One key observation
form Fig. 9 is that the raw bit error rate increases
dramatically with flash memory cells reaching the ex-
pected maximum P/E cycles. If we do healing earlier
than the expected maximum P/E cycles as shown in
Fig. 10, the raw bit error rate can be greatly reduced
and thus the reliability of self-healing flash memory
can be effectively enhanced. For example, the bit error
rate can be reduced by 70.10% with the cost of 25%
lifetime reduction.

3.5 DHeating Working with NFTL
Fig. 11 illustrates how the DHeating scheme works.
For purpose of demonstration, NFTL [12] is selected
as the FTL. NFTL uses a block-level address transla-
tion mechanism for coarse-grained address translation
and is widely used in embedded systems. Note that
our scheme is general and can work with other FTLs
at block-level, page-level, or hybrid-level. In NFTL, a
logical page number (LPN) is divided by the number
of pages in a block to obtain its logical block number
(LBN) and block offset, where the LBN is the quotient,
and the block offset is the remainder of the division.
A block-level mapping table maps the LBN into a
physical block known as the primary block (PPBN).
Each primary block is associated with some additional
physical blocks known as replacement blocks (RPBN).
A write operation to an LPN is mapped to a page in
a primary block, and subsequent update operations
to the same LPN are made on the corresponding
replacement block with the same block offset.

Fig. 11(a) shows the first stage of the dispersed heat-
ing, where all data update times are 0 and all physical
blocks are young. After some data requests are issued,
hot data LBN 0 is filtered from cold data with the help
of a hot data filter (Fig. 11(b)). Correspondingly, two old
blocks (block 0 and block 1) with the erasure times of
210 and 200 respectively are stored in the old pool.

Fig. 11(c) shows that block 0 and block 1 have been
healed and moved from the old pool to the new pool.
Moreover, two old blocks (block 2 and block 3) are
moved from old pool to new pool. In Fig. 11(d), when
all the young blocks have been depleted; and only
old blocks and new blocks are stored in the old pool
and new pool respectively, we enter Stage 4. After the
blocks in the old pool have healed, we enter the last
stage as shown Fig. 11(e).

3.6 Performance and Overhead Analysis
In this section, we analyze the system performance
and overhead of DHeating by comparing it with

the SWL scheme[12]. The system response time is
an important metric to evaluate the performance of
FTLs. It is the time period from the point when an
operation is issued to the point when the operation
has been completed. The inputs of an FTL are read
and write operations. We conduct the analysis for the
system response time of read and write operations.
The symbols used in this analysis are listed below.

Trd The time to read one page
Twr The time to write one page
Terase The time to erase a block
Nvpage The number of valid pages in one block

The performance overhead is reflected as extra valid
page copies and block erasures, and the time is:

(Trd + Twr)×Nvpage + Terase. (3)

Compared with SWL, DHeating only introduces
small performance overhead. In SWL, cold data and
hot data are swapped very frequently so as to achieve
static wear leveling. The frequent swap operations
result in heavy performance overhead. SWL will be
triggered to find old and young blocks, and swap
valid data between the two different kinds of blocks
when unevenness occurs. On the other hand, DHeat-
ing only does a data swap when young blocks become
old or old blocks become new. Therefore, compared
with the SWL scheme, DHeating can reduce valid
page copies and block erasures, thereby improving the
system response time.

DHeating requires more memory space than that
of SWL to record the update times of each block.
However, the memory space overhead is negligible
since the information recorded is at the block level.
For example, the block size of a 32Gb MLC NAND
flash [2] memory chip is 512KB. If we use 2 bytes to
record the erasure times for each block, only 16KB
memory space is required.

With the early heating scheme, DHeating trades
lifetime for reliability. However, as shown in the ex-
periments, with only 5% of lifetime overhead, heating
can still be dispersed very well. Indeed, the reliability
is also improved in DHeating.

4 EVALUATION

In this section, we present our experimental results
with analysis. We compare and evaluate the proposed
DHeating scheme with the baseline scheme [12] in
terms of four metrics: the consecutive heating time
intervals, the extra valid page copies, the lazy heating
effect and the early heating effect. The performance e-
valuation is conducted on an embedded development
board with a Samsung ARM11 processor and a 8 Gb
NAND flash memory chip.

CHEN et al.: HEATING DISPERSAL FOR SELF-HEALING NAND FLASH MEMORY 9

Cold Data

Hot Data

Cold Data

Young Pool

Old Pool

New Pool

LBN: Logical Block Number

PPBN: Primary Physical Block Number

RPBN: Replacement Physical Block Number

LBN PPBN

0

1 -1 -1

2 -1 -1

Block

Mapping

TableUpdate

Times

0

0

0 -1 -1

4 -1 -1

5 -1 -1

3 -1 -1

6 -1 -1

0

0

0

0

(0)

(0)

(0)

(0)

(0)

(0)

(0)

0

1

2

3

4

5

6

7 (0)

Erase

Times

Young Pool

Physical

Block

Number
RPBN

(a)

LBN PPBN

100

1 2 -1

2 3 -1

Block

Mapping

TableUpdate

Times

10

1

0 0 1

4 -1 -1

5 -1 -1

3 4 -1

6 -1 -1

2

0

0

0

(210)

(200)

(5)

(4)

(1)

(0)

(0)

0

1

2

3

4

5

6

7 (0)

Erase

Times

Young Pool

Physical

Block

Number
RPBN

Cold Data

Old Pool
Hot Data

(b)

LBN PPBN

120

1 4 -1

2 5 -1

Block

Mapping

TableUpdate

Times

20

2

0 2 3

4 -1 -1

5 -1 -1

3 6 -1

6 -1 -1

5

0

0

0

(200)

(230)

(20)

(30)

(10)

(1)

(0)

2

3

4

5

6

7

0

1 (0)

Erase

Times

Young Pool

Physical

Block

Number
RPBN

Old Pool

New Pool

Cold Data

Hot Data

(c)
Block

Mapping

Table
Erase

Times

LBN PPBN

130

1 4 -1

2 5 -1

Update

Times

10

5

0 6 7

4 -1 -1

5 -1 -1

3 6 -1

6 -1 -1

10

0

0

0

(270)

(280)

(13)

(10)

(10)

(6)

(5)

6

7

0

1

2

3

4

5 (0)

Physical

Block

Number
RPBN

New Pool

Old Pool

(d)

Hot Data

Cold Data

LBN PPBN

200

1 4 -1

2 5 -1

Block

Mapping

TableUpdate

Times

35

5

0 6 7

4 -1 -1

5 -1 -1

3 0 -1

6 -1 -1

10

0

0

0

(0)

(0)

(14)

(11)

(10)

(6)

(5)

6

7

0

1

2

3

4

5 (1)

Erase

Times

Physical

Block

Number
RPBN

New Pool

(e)

Hot Data

Cold Data

Times Times Number

Fig. 11. Illustration of the dispersed heating scheme working with NFTL [12].

NAND

Flash

SDRAM

S3C6410

(a) (b)

Fig. 12. Experimental platform. (a) The top layer of
our experimental platform. (b) The core development
board.
4.1 Experimental Setup

We conducted experiments on a hardware platfor-
m. Fig. 12(a) shows the top view of our hardware
platform. The evaluation platform adopts an ARM11
processor core (Samsung S3C6410 [28]) with ARMv6
architecture. In this platform, the ARM processor core
runs at 532MHz; and consists of a 16 KB instruction
cache and a 16 KB data cache. The platform adopts the
Linux kernel 2.6.38. The core board is equipped with
8 Gb of NAND flash memory and 256 MB of SDRAM.
The physical interfaces, such as the RJ45 interface, are
designed in the mother board. One pin connector is
used to connect the core board with the mother board.

The evaluation framework of our work is shown in
Fig. 13. DHeating is implemented as a block device
driver in the Linux kernel 3.5. DHeating functionally
works as the wear-lever of the flash translation layer
(FTL), and another trace driver module is implement-
ed to trigger DHeating. In our evaluation, the trace
driver module is also implemented as a block device
driver. FTL can issue read/write operations to the
memory technology device (MTD) layer, which can
control the NAND flash memory chip. We utilize
the universal serial device driver (i.e. a char device
driver) to obtain and output the experimental results.

Samsung 8Gb

SLC NAND Flash Memory

Memory Technology

Device Layer

Flash Translation Layer

(Block Device Driver)

Trace Driver Module

(Block Device Driver)

Results

Universal Serial Device

Driver

(Char Device Driver)

Linux Kernel

Fig. 13. The evaluation framework of DHeating.
For fair comparisons, the same configuration have
been adopted for both the baseline scheme and the
proposed DHeating scheme. We emulate the process
of self-healing and assume that NAND flash memory
will perform heating after a given lifetime.

We use real applications as benchmarks to evaluate
the effectiveness of DHeating. Since the real environ-
ment varies significantly and the same application
may generate different I/O requests with different
running time even with the same configuration, we
collect the I/O requests of real applications and use
the collected traces to evaluate the techniques in order
to make a fair comparison. The characteristics of traces
are shown in Table 1. These applications are typical
operations in our daily lifetime. They are mainly write
dominant, and they can be used to accelerate the eval-
uation process and evaluate the performance of worn-
out flash memory cells for NAND flash memory. We
test each benchmark on the evaluation platform. The
traces iteratively issue requests to the storage system.

4.2 Results and Discussion
In this section, we present the experimental results
with analysis. We first present the heating impact
of the self-healing flash memory. Then, we present

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXX 201X

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

7000

8000

C
o

n
s
e

c
u

ti
v
e

 H
e

a
ti
n

g
 T

im
e

 I
n

te
rv

a
l
(s

)

Heating Times

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

C
o

n
s
e

c
u

ti
v
e

 H
e

a
ti
n

g
 T

im
e

 I
n

te
rv

a
l
(s

)

Heating Times

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

C
o

n
s
e

c
u

ti
v
e

 H
e

a
ti
n

g
 T

im
e

 I
n

te
rv

a
l
(s

)

Heating Times

(a) SWL(File Copy). (b) SWL(Sensor). (c) SWL(Multimedia).

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

7000

8000

C
o

n
s
e

c
u

ti
v
e

 H
e

a
ti
n

g
 T

im
e

 I
n

te
rv

a
l
(s

)

Heating Times

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

C
o

n
s
e

c
u

ti
v
e

 H
e

a
ti
n

g
 T

im
e

 I
n

te
rv

a
l
(s

)

Heating Times

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

C
o

n
s
e

c
u

ti
v
e

 H
e

a
ti
n

g
 T

im
e

 I
n

te
rv

a
l
(s

)

Heating Times

(d) DHeating(File Copy). (e) DHeating(Sensor). (f) DHeating(Multimedia).

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

C
o

n
s
e

c
u

ti
v
e

 H
e

a
ti
n

g
 T

im
e

 I
n

te
rv

a
l
(s

)

Heating Times

0 20 40 60 80 100 120 140 160 180 200
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000
17000

C
o

n
s
e

c
u

ti
v
e

 H
e

a
ti
n

g
 T

im
e

 I
n

te
rv

a
l
(s

)

Heating Times

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

C
o

n
s
e

c
u

ti
v
e

 H
e

a
ti
n

g
 T

im
e

 I
n

te
rv

a
l
(s

)

Heating Times

(g) SWL(NFS). (h) SWL(SD Card). (i) SWL(FTP).

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

C
o

n
s
e

c
u

ti
v
e

 H
e

a
ti
n

g
 T

im
e

 I
n

te
rv

a
l
(s

)

Heating Times

0 20 40 60 80 100 120 140 160 180 200
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000
17000

C
o

n
s
e

c
u

ti
v
e

 H
e

a
ti
n

g
 T

im
e

 I
n

te
rv

a
l
(s

)

Heating Times

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

C
o

n
s
e

c
u

ti
v
e

 H
e

a
ti
n

g
 T

im
e

 I
n

te
rv

a
l
(s

)

Heating Times

(j) DHeating(NFS). (k) DHeating(SD Card). (l) DHeating(FTP).

Fig. 14. The consecutive heating time interval of SWL and DHeating over six applications.

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

7000

8000

C
o

n
s
e

c
u

ti
v
e

 H
e

a
ti
n

g
 T

im
e

 I
n

te
rv

a
l
(s

)

Heating Times

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

7000

8000

C
o

n
s
e

c
u

ti
v
e

 H
e

a
ti
n

g
 T

im
e

 I
n

te
rv

a
l
(s

)

Heating Times

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

7000

8000

C
o

n
s
e

c
u

ti
v
e

 H
e

a
ti
n

g
 T

im
e

 I
n

te
rv

a
l
(s

)

Heating Times

(a) File Copy(100%Lifetime). (b) File Copy(95%Lifetime). (c) File Copy(90%Lifetime).

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

7000

8000

C
o

n
s
e

c
u

ti
v
e

 H
e

a
ti
n

g
 T

im
e

 I
n

te
rv

a
l
(s

)

Heating Times

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

7000

8000

C
o

n
s
e

c
u

ti
v
e

 H
e

a
ti
n

g
 T

im
e

 I
n

te
rv

a
l
(s

)

Heating Times

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

7000

8000

C
o

n
s
e

c
u

ti
v
e

 H
e

a
ti
n

g
 T

im
e

 I
n

te
rv

a
l
(s

)

Heating Times

(d) File Copy(85%Lifetime). (e) File Copy(80%Lifetime). (f) File Copy(75%Lifetime).

Fig. 15. The consecutive heating time intervals of DHeating over File Copy application with different lifetimes.

CHEN et al.: HEATING DISPERSAL FOR SELF-HEALING NAND FLASH MEMORY 11

Benchmarks
Numbers Write Avg.Arr. Avg.Req.

of Request (%) Time (ms) Size (KB)

File Copy 645,895 90.83 8.19 3.17
Sensor 777,945 92.66 8.12 2.26

Multimedia 790,925 83.10 196.90 48.03
NFS 850,700 89.37 8.40 29.38

SD Card 987,970 94.95 38.30 49.87
FTP 518,575 97.4 72.97 20.05

TABLE 1
The characteristics of the applications.

the improvement in performance by comparison of
DHeating scheme and the baseline scheme. Finally,
we analyze the early heating effect.

We use SWL and DHeating to represent the results
obtained from the work in [12] and the proposed
DHeating scheme, respectively.

4.2.1 Heating Dispersal

Benchmarks
SWL DHeating

Ave. Heating Ave.Heating DHeating/SWL
Time Int.(s) Time Int.(s)

File Copy 162.663 3,143.191 19.323
Sensor 159.070 3,789.925 23.825

Multimedia 166.572 3,864.397 23.199
NFS 185.844 4,152.161 22.342

SD Card 176.371 4,831.884 27.395
FTP 169.512 2,514.422 14.833

TABLE 2
Average heating time interval.

Table 2 shows the average consecutive heating
intervals of two physical blocks. The consecutive
heating interval denotes the frequency of heating.
Therefore, the longer the consecutive heating inter-
val that the NAND flash memory experiences, the
better its performance and lifetime. Judging from the
experimental results, our DHeating scheme can delay
heating by up to 24 times compared to SWL. This
shows the effectiveness of DHeating in maximizing
the consecutive heating interval.

Fig. 14 presents the experimental results of the con-
secutive heating time intervals of SWL and DHeating.
From the results, we can see that the consecutive
heating time interval for SWL is very short, and that
our scheme can delay the consecutive heating time
interval for much longer thant SWL can. In the evalu-
ation, we assume that self-healing flash memory will
trigger heating for every 100 program/erase (P/E)
cycles.

Taking the benchmark sensor as an example, SWL
finishes the 200th block heating in 31, 655 seconds,
while our scheme finishes the 200th heating in 754, 195
seconds , which is 23 times longer. As the lifetime
increases, DHeating will also significantly increase in
improvement over SWL.

4.2.2 Performance Improvement
Previous wear-leveling schemes basically relied on the
swapping of hot and cold data to balance the erase
counts [11], [9], [10]; therefore, some system perfor-
mance had to be sacrificed, such as extra valid page
copies and extra block erasures. In our technique, we
allocate hot data to old blocks and simply swap the
data when young blocks become old blocks or old
blocks become new blocks. Therefore, DHeating can
incur much less extra overhead compared to previous
wear-leveling schemes.

Benchmarks SWL DHeating
DHeating over

SWL (%)

File Copy 158,720 9,344 94.11
Sensor 209,920 10,496 95.00

Multimedia 158,720 7,936 95.00
NFS 206,036 9,472 95.40

SD Card 215,096 8,640 95.98
FTP 139,202 10,688 92.32

TABLE 3
Extra valid page copies.

Benchmarks SWL DHeating
DHeating over

SWL (%)

File Copy 3,262 192 94. 11
Sensor 3,800 190 95.00

Multimedia 3,600 180 95.00
NFS 4,010 184 95.41

SD Card 4,508 181 95.99
FTP 2,394 183 92.36

TABLE 4
Extra block erasures.

The extra valid page copies and the extra number
of block erase counts are compared in Table 3 and
Table 4, respectively. The results of the experiment
show that DHeating performs significantly better than
SWL in reducing the extra valid page copies and the
extra number of block erase counts. Since the extra
number of valid page copy operations will issue more
write operations to blocks containing free pages, more
erase operations will be incurred and the lifetime of
the NAND flash memory will be shortened. DHeating
can effectively reduce the number of extra valid page
copy operations and the extra number of block erase
counts, which are beneficial to a NAND flash memory
storage system.

4.2.3 Lazy Heating Repair Effect
Lazy heating repair is proposed to eliminate the long
heating time effect. In this experiment, the heating
time is configured to 3s. In order to study the heating
period effect, the heating period is configured to 60s
and 600s, respectively. The system idle time is de-
tected based on the pending requests. If the pending
request queue is empty, the system is idle.

12 IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXX 201X

10000 20000 30000 40000 50000 60000
0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

R
e
s
p
o
n
s
e
 T

im
e
 (

u
s
)

of Requests

10000 20000 30000 40000 50000 60000
0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

R
e
s
p
o
n
s
e
 T

im
e
 (

u
s
)

of Requests

10000 20000 30000 40000 50000 60000
0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

R
e
s
p
o
n
s
e
 T

im
e
 (

u
s
)

of Requests

(a) (b) (c)

Fig. 16. The lazy heating repair effect with running the File Copy application. (a) The baseline scheme without
lazy heating repair. (b) The lazy heating repair technique with 60s heating period. (c) The lazy heating repair
technique with 600s heating period.

Fig. 16 illustrates the lazy heating repair effect. The
dispersed heating scheme without the lazy heating
repair technique is adopted as the baseline scheme.
In the baseline scheme, the self-healing flash memory
heats the worn-out cells immediately. As a result, the
response time is greatly degraded as shown in Fig. 16
(a), such as 6632964us in the worst case. By employing
the lazy heating scheme, the system response time can
be effectively improved with the benefits of utilizing
the system idle time as shown in Fig. 16 (b) and Fig. 16
(c). The benefits of the lazy heating repair scheme are
reflected into two aspects, the worst case response
time and the total heating overhead. Compared with
the baseline scheme, the worst case response time is
reduced by 49.77% and the total heating time over-
head is improved by 98.84% on average. In addition,
with the heating period prolonged, such as from 60s
to 600s, the lazy heating repair scheme works better
and the improvement is enhanced by 43.49%. How-
ever, this improvement benefits from keeping more
worn-out blocks in the heating list. If only a few free
blocks are available to response the write requests and
a lot of blocks are kept in the heating list, the blocks
in the heating list may be required to be healed in
a concentrated manner. This may seriously degrade
the system response time. In order to well utilize the
lazy heating repair scheme, it is better to dynamically
adjust the heating period according to the number of
heating blocks in the heating list and the number of
free blocks.

4.2.4 Early Heating for Reliability
Early heating strategy can enhance the reliability at
the expense of trading some flash memory lifetimes.
With heating repair started earlier than the expected
maximum P/E cycles, the reliability of flash memory
can be effectively enhanced. For example, the bit error
rate can be reduced by 70.10% with the cost of 25%
lifetime reduction [15].

Table 5 shows the experimental results for early
heating with different lifetimes. It can be seen that,
using 95% as the heating threshold, early heating can
work very well and the average heating time interval
only decreases by an average of about 5%. Fig. 15

Benchmarks
DHeating 100% DHeating 95% Ave. Early
Life Time Ave. Life Time Ave. Heat. Diff.
Heat. Time(s) Heat. Time(s) (s)

File Copy 3,143.191 2981.181 162.010
Sensor 3,789.924 3,596.558 193.366

Multimedia 3,864.396 3,663.518 200.878
NFS 4,152.160 3,931.683 220.477

SD Card 4,831.884 4,569.271 262.613
FTP 2,514.422 2,383.442 130.980

TABLE 5
A comparison of early heating over different
applications with different reduced lifetimes.

illustrates how different threshold values influence
the consecutive heating time intervals of the applica-
tion File Copy. With the heating threshold decrease,
the average heating interval decreases accordingly.
However, the proposed scheme can still work well
with the decrease in the lifetime of the flash memory,
and the reliability of the self-healing flash memory is
enhanced.

5 CONCLUSION

In this paper, we proposed a scheme, called DHeat-
ing, to solve the concentrated heating problem and
overcome the constrains of self-healing NAND flash
memory. DHeating consists of three techniques: the
dispersed heating technique, the lazy heating repair
technique, and the early heating technique. These
three techniques are proposed based on different
considerations and interact with each other. The dis-
persed heating technique is designed to avoid the
concentrated heating problem. The lazy heating repair
technique can address the long time heating issue and
the early heating technique is proposed to enhance the
reliability of self-healing flash memory. We conducted
experiments on a set of representative I/O workloads
collected from the embedded development board. The
experimental results show that our proposed scheme
not only solves the concentrated heating problem for
NAND flash memory, but also improves the system
response time and enhances the reliability of the self-
healing flash memory.

CHEN et al.: HEATING DISPERSAL FOR SELF-HEALING NAND FLASH MEMORY 13

6 ACKNOWLEDGMENTS

The work described in this paper is partially support-
ed by the grants from Special Administrative Region,
China (GRF 152138/14E), National Natural Science
Foundation of China (Project 61272103, 61373049 and
61309004), National 863 Program 2013AA013202, Re-
search Fund for the Doctoral Program of Higher
Education of China (20130191120030), Chongqing c-
stc2012ggC40005 and cstc2013jcyjA40025, Fundamen-
tal Research Funds for the Central Universities (CD-
JZR14185501) and Chongqing University (2012T0006),
and the Hong Kong Polytechnic University (4-
ZZD7,G-YK24, G-YM10 and G-YN36). A prelimi-
nary version of this work appears in the Pro-
ceedings of IEEE/ACM International Conference on
Hardware/Software Codesign and System Synthesis
(CODES+ISSS 2013) [29].

REFERENCES

[1] C. Mellor, “TLC flash gets tender loving care from DensBits,”
http://www.theregister.co.uk/2012/05/02/densbit tlc/, 2012.

[2] S. Electronics, “K9LBG08U0M(v1.0)-32GB DDP MLC,”
http://www.samsung.com.

[3] J. Ouyang, S. Lin, S. Jiang, Z. Hou, Y. Wang, and Y. Wang,
“SDF: Software-defined flash for web-scale internet storage
systems,” in Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’14), 2014, pp. 471–484.

[4] J. Guo, J. Yang, Y. Zhang, and Y. Chen, “Low cost power
failure protection for MLC NAND flash storage systems with
PRAM/DRAM hybrid buffer,” in Design, Automation Test in
Europe Conference Exhibition (DATE ’13), 2013, pp. 859–864.

[5] S. Boboila and P. Desnoyers, “Write endurance in flash drives:
Measurements and analysis,” in Proceedings of the 8th USENIX
Conference on File and Storage Technologies (FAST ’10), 2010, pp.
1–14.

[6] P. Desnoyers, “Analytic models of ssd write performance,”
ACM Transactions on Storage (TOS), vol. 10, no. 2, pp. 8:1–8:25,
2014.

[7] H.-T. Lue, P.-Y. Du, C.-P. Chen, W.-C. Chen, C.-C. Hsieh,
Y.-H. Hsiao, Y.-H. Shih, and C.-Y. Lu, “Radically extending
the cycling endurance of flash memory (to>100M cycles) by
using built-in thermal annealing to self-heal the stress-induced
damage,” in 2012 IEEE International Electron Devices Meeting
(IEDM ’12), 2012, pp. 9.1.1–9.1.4.

[8] Y.-T. Chiu, “Forever flash,” IEEE Spectrum, vol. 49, no. 12, pp.
11 –12, December 2012.

[9] L.-P. Chang and L.-C. Huang, “A low-cost wear-leveling al-
gorithm for block-mapping solid-state disks,” in Proceedings of
the 2011 SIGPLAN/SIGBED Conference on Languages, Compilers
and Tools for Embedded Systems (LCTES ’11), 2011, pp. 31–40.

[10] L.-P. Chang, “On efficient wear leveling for large-scale flash-
memory storage systems,” in Proceedings of the 2007 ACM
Symposium on Applied Computing (SAC ’07), 2007, pp. 1126–
1130.

[11] Y.-H. Chang, J.-W. Hsieh, and T.-W. Kuo, “Improving flash
wear-leveling by proactively moving static data,” IEEE Trans-
actions on Computers, vol. 59, pp. 53 –65, 2010.

[12] ——, “Endurance enhancement of flash-memory storage, sys-
tems: An efficient static wear leveling design,” in Proceedings
of the 44th ACM/IEEE Design Automation Conference (DAC ’07),
2007, pp. 212 –217.

[13] C. Wang and W.-F. Wong, “Observational wear leveling: An
efficient algorithm for flash memory management,” in Proceed-
ings of the 49th ACM/EDAC/IEEE Design Automation Conference
(DAC ’12), June 2012, pp. 235–242.

[14] T.-W. Kuo, Y.-H. Chang, P.-C. Huang, and C.-W. Chang, “Spe-
cial issues in flash,” in Proceedings of the IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD ’08), 2008,
pp. 821–826.

[15] M. Huang, Z. Liu, and L. Qiao, “Asymmetric programming: A
highly reliable metadata allocation strategy for MLC NAND
flash memory-based sensor systems,” Sensors, vol. 14, no. 10,
pp. 18 851–18 877, 2014.

[16] Y. Cai, E. Haratsch, O. Mutlu, and K. Mai, “Error patterns in
MLC NAND flash memory: Measurement, characterization,
and analysis,” in Design, Automation Test in Europe Conference
Exhibition (DATE ’12), 2012, pp. 521–526.

[17] C. Gao, L. Shi, K. Wu, C. Xue, and E.-M. Sha, “Exploit asym-
metric error rates of cell states to improve the performance of
flash memory storage systems,” in 2014 32nd IEEE International
Conference on Computer Design (ICCD ’14), 2014, pp. 202–207.

[18] G. Sun, X. Wu, and Y. Xie, “Exploration of 3D stacked L2 cache
design for high performance and efficient thermal control,” in
Proceedings of the 14th ACM/IEEE International Symposium on
Low Power Electronics and Design (ISLPED ’09), 2009.

[19] W. Zhang, N. K. Jha, and L. Shang, “Low-power 3D
NANO/CMOS hybrid dynamically reconfigurable architec-
ture,” ACM Journal on Emerging Technologies in Computing
Systems, vol. 6, no. 3, pp. 10.1–10.32, 2010.

[20] Y. Wang, Y. Liu, Y. Liu, D. Zhang, S. Li, B. Sai, M. Chiang,
and H. Yang, “A compression-based area-efficient recovery
architecture for nonvolatile processors,” in Proceedings of the
Design, Automation Test in Europe Conference Exhibition (DATE
’12), 2012, pp. 1519–1524.

[21] W. Qi, G. Dong, and T. Zhang, “Exploiting heat-accelerated
flash memory wear-out recovery to enable self-healing SSDs,”
in USENIX Workshop on Hot Topics in Storage and File Systems
(HotStorage ’11), 2011, pp. 1–5.

[22] Y.-M. Chang, Y.-H. Chang, J.-J. Chen, T.-W. Kuo, H.-P. Li, and
H.-T. Lue, “On trading wear-leveling with heal-leveling,” in
Proceedings of the 51st Annual Design Automation Conference
(DAC ’14), 2014, pp. 83:1–83:6.

[23] D. Jung, Y.-H. Chae, H. Jo, J.-S. Kim, and J. Lee, “A group-
based wear-leveling algorithm for large-capacity flash mem-
ory storage systems,” in Proceedings of the 2007 International
Conference on Compilers, Architecture, and Synthesis for Embedded
Systems (CASES ’07), 2007, pp. 160–164.

[24] L. Shi, J. Li, Q. Li, C. Xue, C. Yang, and X. Zhou, “A unified
write buffer cache management scheme for flash memory,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 22, no. 12, pp. 2779–2792, 2014.

[25] M. Jung, W. Choi, J. Shalf, and M. T. Kandemir, “Triple-A: A
non-SSD based autonomic all-flash array for high performance
storage systems,” in Proceedings of the 19th International Con-
ference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’14), 2014, pp. 441–454.

[26] P. Desnoyers, “Analytic modeling of SSD write performance,”
in Proceedings of the 5th Annual International Systems and Storage
Conference (SYSTOR ’12), 2012, pp. 12:1–12:10.

[27] J. Guo, W. Wen, J. Hu, D. Wang, H. Li, and Y. Chen, “FlexLevel:
A novel NAND flash storage system design for LDPC latency
reduction,” in Proceedings of the 52Nd Annual Design Automation
Conference (DAC ’15), 2015, pp. 194:1–194:6.

[28] Samsung, “S3C6410,” http://www.samsung.com/global/business/se
miconductor/product/application/detail?productId=7115&iaId=835.

[29] R. Chen, Y. Wang, and Z. Shao, “DHeating: Dispersed heating
repair for self-healing NAND flash memory,” in Proceedings
of the Ninth IEEE/ACM/IFIP International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS ’13),
2013, pp. 7:1–7:10.

