
FastBuild: Accelerating Docker Image Building for
Efficient Development and Deployment of Container

Zhuo Huang1, Song Wu1∗, Song Jiang2 and Hai Jin1
1National Engineering Research Center for Big Data Technology and System

1Services Computing Technology and System Lab, Cluster and Grid Computing Lab
1School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China

2Department of Computer Science and Engineering, University of Texas at Arlington, Texas 76019, U.S
1 {huangzhuo, wusong, hjin}@hust.edu.cn 2song.jiang@uta.edu

Abstract—Docker containers have been increasingly adopted
on various computing platforms to provide a lightweight vir-
tualized execution environment. Compared to virtual machines,
this technology can often reduce the launch time from a few
minutes to less than 10 seconds, assuming the Docker image
has been locally available. However, Docker images are highly
customizable, and are mostly built at runtime from a remote
base image by running instructions in a script (the Dockerfile).
During the instruction execution, a large number of input files
may have to be retrieved via the Internet. The image building
may be an iterative process as one may need to repeatedly modify
the Dockerfile until a desired image composition is received. In
the process, every input file required by an instruction has to be
remotely retrieved, even if it has been recently downloaded. This
can make the process of building of an image and launching of
a container unexpectedly slow.

To address the issue, we propose a technique, named FastBuild,
that maintains a local file cache to minimize the expensive file
downloading. By non-intrusively intercepting remote file requests,
and supplying files locally, FastBuild enables file caching in a
manner transparent to image building. To further accelerate the
image building, FastBuild overlaps operations of instructions’
execution and writing intermediate image layers to the disk. We
have implemented FastBuild. And experiments with images and
Dockerfiles obtained from Docker Hub show that the system can
improve building speed by up to 10 times, and reduce downloaded
data by 72%.

Index Terms—Docker, container, image building.

I. INTRODUCTION

Container, such as Docker [16], has become increasingly
popular. It is a lightweight kernel virtualization technology
as an alternative to traditional virtual machines [1], [2], [13],
[14], [19]–[22], [32]. The process of launching a container
entails creation of an isolated process space, allocation of
required resources, and mounting image data. Because Docker
container shares the system kernel with the host machine, its
initialization of namespace for virtualization and Cgroup for
resource restriction is fast [1], [3], [6], [10], [18], [19]. As
a result, launching a container instance can be expected to
take only a few seconds, or even as low as less than one
second, much faster than that for virtual machines, which
may take several minutes. This makes quick deployment of a
large number of container instances possible. Such efficiency

is especially desired in a DevOps environment where frequent
deployments occur. In the meantime, DevOps also requires
repeated adjustments and testing of container images. An
image is often iteratively re-built before and after a container is
launched from it. To support flexible customization of images,
Docker adopts a mechanism to build images at the client side.
An image can be built by running a Dockerfile, which is
a script containing instructions for building an image, from
a base image that provides basic and highly customizable
execution environment. Base images are collected at Docker
Hub, the official container image registry, and are available
for downloading.

Therefore, to truly enable fast launching of Docker contain-
ers Docker must allow efficient building of user-customized
images. However, even after a base image has been down-
loaded, image building can be much slower than expected.
When instructions in the Dockerfile are executed at a local
server, often a large number of input files are required, and
these files have to be retrieved from remote servers from the
Internet. For example, running instructions in a Dockerfile
named “docker-dev” available in the Docker Hub to build a
Docker image from the base image named “ubuntu:14.04”
requires retrieval of 486 remote files with a total size of 1.9GB,
which takes 283 seconds, or 77% of the entire image building
time as measured in our experiments (the experiment setup
will be detailed in Section II).

Apparently, in many cases when images need to be built
before their deployment, remote retrieval of input files is a ma-
jor source of inefficiency in the image building process. With
wide adoption of Dockerfiles for on-site creation of images for
deployment and the need of iterative image development in the
DevOps environment, image building if often on the critical
path of launching a Docker instance. Therefore, it is important
to minimize the expensive file retrieval operations. If the image
building can be accelerated, there will be significant benefits,
including that containers can be upgraded instantly [11], [12],
[26], [28], [30], that image updates can be completed quickly
when there is a security issue [3], [14], [35], and that users can
easily build containerized applications [14], [25], [29], [34].

In this paper we will show that during building of images

there exist a large number of re-used input files, which
warrants use of local buffer to cache recently accessed files to
avoid unnecessary remote file retrievals. While this approach,
named FastBuild, has its substantial potential to improve
efficiency of image building, there is a significant challenge
in its design. As a new feature of containers, represented
by Docker, FastBuild does not run within Docker’s instance,
while execution of Dockerfile’s instructions is within the
instance, which generates requests for input files. As Docker
does not generate the file requests, it cannot make the critical
knowledge on what input files are requested available to
FastBuild. Instead, FastBuild has to non-intrusively obtain it
for caching files and redirecting requests to the cache should
hits are detected.

In this paper we make three major contributions.
1) We extensively study how frequently input files are re-

accessed in the building of Docker images and reveal
opportunity of maintaining a local file cache for accel-
erating the process.

2) We propose and design FastBuild, a file caching function
seamlessly integrated in Docker to transparently inter-
cept and redirect requests for input files to minimize
remote file access. FastBuild ensures that the buffer will
supply only up-to-date files. To further accelerate image
building, FastBuild overlaps the image writing operation
and instruction execution, and enables local building of
base images.

3) We prototype FastBuild in Docker 17.12 and extensively
evaluate its impact on speed of Docker image building.
The experiment results show that almost 72% of the du-
plicated data can be avoided for downloading, improving
image building speed by 3.1-7.0× with a high network
bandwidth, up to 10.6× with a low network bandwidth.

The rest of this paper is organized as follows. Section II
elaborates the background and motivation of building images
for Docker. Design of FastBuild is described in Section III.
Section IV evaluates the FastBuild. Section V discusses the
related work. And Section VI conclusions.

II. BACKGROUND AND MOTIVATION

A. Building of Docker Image

To launch a Docker container instance, a user needs a
locally available Docker image. Docker users often use the
official Docker container image registry, Docker Hub [15],
to obtain and share images. There are two manners for an
image to be presented and shared at the hub. One is in
the form of a set of fully-built ready-to-use image files. A
Docker image is composed of multiple layers by using union
mounting technology [33]. And each file corresponds to a
layer. An image layer file is produced when a user completes
his operations in a container instance, and saves the instance
by using the “commit” command.

The other is in the form of “recipe” and “ingredients”.
The recipe is named Dockerfile, which is a text file with
lines of instructions. Docker provides 17 commands in Docker

v17.12 [16] to create various instructions with selected argu-
ments. In the process of building a customized Docker image,
the instructions are executed in container instances line by
line. Execution of each line of instruction(s) produces a branch
(or a directory) in the instance’s overlay file system, such as
Unionfs [33]. Each corresponds to a layer in the container’s
image. In particular, in the layered image structure, the later
generated layers are laid on top of earlier generated layers.
And their data, in the form of files in one of instance’s
directories, overlaps corresponding data in the lower layers.
The layer at the bottom is named base image layer, and
presented in the Docker Hub as a tar file. In addition to
the recipe, ingredients are needed to build an image. They
consist of the base image and input files. During execution
of an instruction in a container instance, a substantial number
of input files may be requested. For successfully building of
an image, the files have to be available and up-to-date. The
current practice is to specify these files’ locations at some
well-maintained servers on the Internet, and to retrieve them
directly from the Internet at runtime. This can significantly
slow up an image’s building process.

The second manner is the most popular way to obtain and
share Dockers images, as it clearly discloses an image’s com-
position, makes sure the most up-to-date images are generated
at user sites, and allows users to conveniently customize an
image with easy adjustments, such as editing environment
variables or instruction arguments. In this approach Docker’s
containers can be both lightweight and highly configurable. In
fact, this is Docker’s officially recommended way of obtaining
images from its Docker Hub [15].

B. Reducing Remote File Access

As both ingredients are remotely retrieved, it can take a long
time period to make image locally available and its container
instance ready for use. When image provisioning becomes a
bottleneck for starting a Docker container, one of container
technology’s major advantages, which is fast launching of
Docker container instances, is weakened. Google Borg reveals
that the file-system provisioning time takes about 80% of the
total container deploying time. And the median provisioning
time is approximately 25 seconds [17]. To ameliorate the issue,
Docker has allowed reuse of image layers, as long as the layer
to be built is exactly the same as an image layer that is locally
available. The reusable layer is identified by knowing that
their immediately lower layers are the same and their lines
of instruction(s) in the Dockerfile to generate the next layers
are the same. However, when one instruction is modified,
the corresponding layer and any layers above it cannot take
advantage of the reuse mechanism.

Recognizing severity of the issue, a recent work, Slacker,
attempts to leave most of remote file retrieval and image
building out of the critical path of an instant launching
process [1]. It sets up a container file system according to
an image on a Tintri VMstore server and makes it accessible
over the network. To start the image launching process, one
only needs a small set of data in an image. Slacker modifies

the Docker image structure by identifying and marking these
data, so that only the data will be retrieved to make the instance
quickly launched. Additional image data will be lazily pulled
from the VMstore only when they are requested. Though this
approach can significantly reduce container launching time,
it is not compatible with the Docker Hub framework, and
thus is not a general-purpose solution. It requires specialized
image formats, and the support of a particular VMstore to
leverage its file cloning and snapshotting mechanisms. In this
work, we aim to provide a generic solution that well fits in
the Docker’s environment by making most input files required
in an image building locally available. This is achieved by
caching previously used input files.

C. Locality of Input Files

Once a majority of inputs can be accessed locally, building
an container image instance would require only a small amount
of Internet access and becomes faster. The success of the
caching strategy relies on existence of substantial locality in
the access of input files for building different images.

To investigate the locality, we pulled 137 most downloaded
official basic images by June 21, 2018 (each downloaded
more than 100,000 times at Docker Hub [15]). They are
categorized into six groups, as shown in Table I. We also
collected all certified images (a total of 2746) that are built
iteratively based on these base images from Docker Hub, then
divided these images into 137 groups according to the base
images they are built on. An image group usually comes
with 13-30 Dockerfiles, each representing a version of the
images derived from a base image. For example, the php
base image has 20 versions, such as 5.0, 5.6, and 6.0. There
are two scenarios for the locality to occur during the use of
the Dockerfiles. One is that a user needs to iteratively re-
configure a Dockerfile after the initial image building and
instant launching for customization to his preferred setup.
For example, an instruction in an Dockerfile for changing the
network port is EXPOSE 80. A user may want to change
it to EXPOSE 8080 network setup, and re-build the image
after the editing. In another scenario, a user may need to
change the working directory of the container. Accordingly,
he changes the instruction “WORKDIR /usr/local” to
“WORKDIR /var” and re-builds the image. This kind of
Dockerfile changes can be minor, and the set of its input files
rarely change. At the granularity of image layer, the access
locality may not show up at all. However, input files accessed
in the initial building are very likely to be reused in the re-
rebuilding process. And A very strong locality is expected in
the file accesses.

Another representative scenario for the locality to occur
is that users need to upgrade his image version or choose
a preferred version among a few with repeated testings. To
get an idea on how strong the locality can be, for a series
of versions of a base image’s Dockerfiles we sequentially
build the corresponding images in the ascending order of their
version numbers. We assume existence of a cache to collect
input files requested during building of previous versions, and

TABLE I
137 MOST POPULAR BASE IMAGES IN THE DOCKER HUB CATEGORIZED IN

SIX DIFFERENT USE GROUPS

Categories Images’ Name

Linux Distro alpine, busybox, amazonlinux,
centos, mageia, oraclelinux,
cirros, crux, debian, fedora,
opensuse, neurodebian,
ubuntu, ubuntu-debootstrp,
ubuntu-upstart, ros, clearlinux,
sourcemage, photon

Database influxdb, arangodb, orientdb,
cassandra,elasticsearch,
memcached, crate, neo4j,
mariadb, couchdb, couchbase,
mongo-express, mysql, percona,
postgres, redis, rethinkdb,
mongo, aerospike

Language clojure, gcc, groovy, bash,
golang, jruby, python
haskell, hylang, java, openjdk,
julia, mono, perl, php, pypy,
r-base, rakudo-star, ruby, thrift,
ibmjava, swift, haxe, julialang,
fsharp, erlang, elixir, rust,

Web Component nginx, kong, glassfish, tomee,
websphere-liberty, httpd, iojs,
jetty, php-zendserver, tomcat,
django, kibana, node, rails,
storm, rapidoid, lightstreamer,
redmine, haproxy, telegraf,
kapacitor, zookeeper, flink,
irssi, celery, hipache, notary,
traefik, eclipse-mosquitto,

Application Platform mediawiki, known, nuxeo,
gazebo, backdrop, xwiki
plone, geonetwork, convertigo,
ghost, joomla, rocket.chat,
wordpress, drupal, mextcloud,
owncloud, jenkins, rabbitmq,
odoo, nats, nats-streaming,
solr, sonarqube, piwik,

Other znc, bonita, eggdrop, spiped,
composer, docker, gradle,
kaazing-gateway, vault, registry,
logstash, swarm, buildpack-deps,
maven, docker-dev, voice-gateway,
chronograf, sentry

measure the hit ratio of the cache for building the image with
the highest version number. Figure 1 shows the hit ratio in
terms of file count and amount of data in the hit files for
each of the 137 image groups’ Dockerfiles. As shown in the
figure, there are around 80-90% of the data in the input files
are hit in the cache, suggesting that most of the input file data
are locally available during building of the image. In another
assumed scenario, the median version is built when input files
of its four previous versions have been stored in the cache. The
hit ratios are shown in Figure 2. As shown, with input files for
building only four previous versions of images are available
in the cache, the hit ratio in terms of data amount is around
60-80%, which is still significant. We also measure overlap of
input files for building two Dockerfiles’ images from different
groups. We find that even in these unrelated images, there
is often around 30% overlap of input data. Apparently for a

server where many images have been built, it is likely that
most of input files required for building a new image can be
locally available if a cache is maintained to store all the history
input files.

表格 1

Data Amount Number Count
1 72 54.1
2 81.7 57.7
3 84.6 59.9
4 93.2 61.3
5 94.1 64.5
6 83.8 66.8
7 85.1 77.7
8 85.7 66
9 87 71.7
10 89.9 68.9
11 86.6 65.4
12 85.5 61.1
13 86.6 67
14 85 69
15 87 73
16 76 68
17 92 78
18 81 69
19 82 70
20 77 65.7
21 78 67.8
22 91 69
23 86.4 73.2
24 86.7 71.1
25 82.7 70.6
26 91.8 71.7
27 85.1 61.1
28 88.4 67.1
29 83.8 63.1
30 85.3 69.1
31 85.5 65.9
32 86.6 63.7
33 83.9 67.8
34 86 61.1
35 83 63.5
36 90.1 67.7
37 87.8 57.8
38 90 66.3
39 88 70.1
40 88.8 71.2
41 86.9 73.7
42 85.6 56.6
43 85.9 59.8
44 86 77.6
45 89.2 58.8
46 84.7 57.7
47 84.3 56
48 89 64.2
49 87 70.1
50 88.4 69.7
51 81.1 68.31
52 82.7 62.6
53 89.9 63.2
54 88 60.7
55 89 62.1
56 90 62
57 84.5 68
58 86.9 63
59 89 63
60 86 68
61 89 69.6
62 84 72.1
63 87.7 63.1
64 83.1 66
65 85.5 65.6
66 82.2 68.8
67 85.3 70.1
68 82.2 65
69 88 68.9
70 86.6 69.3
71 87.7 67.6
72 85.9 67.9
73 82 69.8
74 89 67
75 86 64.4
76 83.4 68.1
77 84.3 69.3
78 83.1 61
79 89.1 62.9
80 86.5 70
81 84.1 62.3
82 86.2 68.9
83 85.9 66.6
84 82 62.3
85 83.3 61.5
86 84.4 63.3
87 87.3 62.1
88 89 68
89 86.5 65
90 82.7 60
91 84.1 63
92 83.3 72
93 82.7 78
94 84.1 68
95 87.6 70
96 88 69
97 86.5 67
98 83.3 69
99 81.5 71
100 86.3 72
101 85.2 69
102 83.9 69.3
103 86.6 67.9
104 90 68.6
105 89 65.8
106 87.9 65.1
107 82.2 63.7
108 86.5 67.9
109 87.9 66.4
110 83.1 63
111 85.7 65
112 86.9 69.7
113 88.8 66
114 83.7 63.6
115 88 67.1
116 82.1 68.3
117 84.7 69.3
118 87.9 68
119 80.9 65.5
120 86 62.4
121 87 63.6
122 82 69
123 89.2 68.9
124 86.1 67.8
125 89.1 68.7
126 84 69.6
127 86.3 65.8
128 89 65.9
129 83.3 66.6
130 81.9 69.6
131 89 70
132 82.8 69.5
133 81 66.3
134 80 68
135 83.6 69.3
136 83.3 69.9
137 82.1 71.2

H
it

R
at

io
 (%

)

50

60

70

80

90

100

Base Images
1 11 21 31 41 51 61 71 81 91 101 111 121 131

 Data Amount
File Count

Fig. 1. Hit ratios in terms of file count and data amount for the highest
version among all versions for each of the 137 base images’ Dockerfiles.

表格 1

Data Amount Number Count
1 52 44.1
2 51.7 47.7
3 54.8 49.9
4 53.2 43.1
5 64.1 44.5
6 63.8 46.8
7 65.1 47.7
8 55.7 46
9 57 41.7
10 59.9 48.9
11 56.6 45.5
12 55.5 51.1
13 56.9 47
14 65 49
15 67 53
16 76 48
17 72 47.8
18 71 49
19 72 50
20 67 55.7
21 68 57.8
22 71 49
23 66.5 43.2
24 67 51.1
25 62.7 50.6
26 71.8 51.7
27 65 53.1
28 68.4 47.3
29 63.8 43.1
30 55.3 49.1
31 57 45.9
32 66 43.7
33 69 47.8
34 73 52.1
35 68 53.5
36 70 47.7
37 77 48.7
38 73 46.3
39 68 50
40 66.9 51.2
41 69.9 53.7
42 65.6 56.6
43 75.9 49.8
44 71.8 47.6
45 72.8 48.8
46 74.4 47.7
47 74.3 56
48 69 54.2
49 67 50.1
50 68 49.7
51 71 48.3
52 77.2 42.6
53 65 53.2
54 71 50.7
55 69 42.1
56 75 43
57 74 46
58 73 43
59 68 49
60 66 50
61 69 49.6
62 65 52.1
63 63.7 53.1
64 63.1 46
65 65.5 45
66 62.2 48.8
67 65.8 50.1
68 68.8 55
69 61 41.9
70 62.5 43.9
71 57.7 47.6
72 59.6 49.7
73 62 51.8
74 69 57
75 66 44.4
76 63.2 41.8
77 64.3 49.3
78 61.2 45
79 69.8 42.9
80 76.5 54.8
81 74.1 52.3
82 72.6 51.8
83 71.5 46.6
84 72 42.3
85 73.3 41.5
86 64.4 43.3
87 70.7 52.1
88 69 48
89 73 55
90 72.7 50
91 74.1 53
92 73.3 52
93 62.7 52
94 64.1 48
95 67.8 50
96 77 49
97 75 47
98 73 50
99 71.5 51
100 73.6 52
101 72.5 41
102 73.5 43.9
103 66.6 47.9
104 75 42.8
105 72 48.5
106 69 41.5
107 62.2 47.9
108 65 43.7
109 67 44.6
110 63.6 53
111 65.7 55
112 68.9 47.9
113 66.8 44
114 63.7 43.6
115 68 47.9
116 65.2 43.8
117 63.8 49.3
118 69.7 48
119 70.9 45.5
120 76 44.2
121 77 53.6
122 68 49
123 69 49.9
124 66 47.1
125 71 51
126 72 53.3
127 76 52.3
128 69 51.2
129 73.3 55.5
130 71.9 53.6
131 69 50
132 62.8 53
133 71 55.3
134 65 48
135 66.6 49.9
136 63.3 51
137 72.1 53.2

H
it

R
at

io
 (%

)

40

50

60

70

80

90

100

Base Images
1 11 21 31 41 51 61 71 81 91 101 111 121 131

 Data Amount
File Count

Fig. 2. Hit ratios in terms of file count and data amount for the median version
among all versions for each of the 137 base images’ Dockerfiles assuming
input files for building its four previous versions of images are in the cache

To understand implication of substantial reuse of the input
files, we measure and compare the time used for building an
image and that for retrieving all required remote input files.
As shown in Figure 3, consistently more than 60%, 71% by
average, of the image building time is spent on the remote
input file access. By removing a majority of the remote file
access, we expect a significant improvement of the image
building time.

III. DESIGN OF FASTBUILD

We use our findings to design a new caching component,
named FastBuild, that can seamlessly fit into the Docker
framework to enable fast image building without requiring
any special hardware supports or modification of stock Docker
images. FastBuild includes three components to accelerate
the process of image building. First, it uses a fine-grained
caching mechanism. Instead of using image layer caching,

FastBuild caches input files to make full use of local image
data aiming to significantly remove remote file retrieval time
from image building time. Second, FastBuild overlaps opera-
tions of instructions’ execution to further accelerate the image
building. Third, instead of pulling base images from Docker
Hub, FastBuild quickly builds base images locally by taking
advantage of locally available input files.

Ti
m

e
(S

)

0

50

100

150

200

250

300

Distro Dbase Language Web Platform Other

Downloading Time
Building Time

Fig. 3. Comparison of the times for image building and for retrieving remote
input files. Each time is an average over all the times for different Dockerfile
versions of different base images in a base image group

A. The Design Challenge

While the idea of setting up a local cache for collecting
input files when they are retrieved from the Internet and then
supplying them locally when they are requested again for
image building is straightforward, a major challenge is to
implement it in the existing Docker’s framework in a non-
intrusive manner. In particular, the solution should not require
any changes of content and format of Docker images, and
Dockerfiles, layered union file system, or the image building
process.

The key technique is to obtain requests for input files and
re-direct them to FastBuild for processing transparently in the
existing image building process. The Docker image building
process is orchestrated by the Docker Daemon, which retrieves
the base image and a Dockerfile. It will build the image layer
by layer, starting from the base image. A new layer is built on
top of an existing layer, which corresponds to an image file. To
build the new layer, the Daemon creates a container instance
using the image layer file. It also reads the corresponding line
of instruction(s) from the Dockerfile and runs the instruction(s)
in the container. For example, if the line is “RUN apt-get
install gcc” for installing gcc software packages, the
Daemon sends the instruction “apt-get install gcc”
to the container and runs it. Requests for input files are
generated in the container executing the instruction. When the
execution is completed, the Daemon commits the container
to an image file about the new layer and the container is
destroyed. These steps are repeated for each line of the
Dockerfile to produce the corresponding image layer.

We can see that the Docker Daemon is only responsible for
initializing an instruction execution environment (the container

instance) and writing back an image layer. It does not know
what input files are requested in the execution.

To obtain the knowledge about input files, one seems to have
to understand and be involved in the instruction execution.
However, once such a facility was built into the execution
environment, FastBuild would not be a generic solution, and
it would leave footprints in the file system and pollute contents
of the resulting image file. To address the issue, we need to be
minimally involved in the container environment as long as the
requests for input files can be obtained. Therefore, FastBuild
only has its presence in the container’s network component.

B. Interception of Requests for Input Files
A Docker container isolates its resources into different

Linux namespaces, including Mount, UTS, IPC, PID, User,
and Network namespaces. Among them, the Network names-
pace isolates the container’s virtual network device and IP
address from the server’s physical network device. By having
a FastBuild process in a namespace that is independent of
other namespaces, such as the Mount namespace for isolation
of file system, FastBuild cannot access the image data in the
file system.

FastBuild has one daemon process in the entire system and
communicates with the Docker Daemon. Whenever the Docker
Daemon launches a container to build an image, FastBuild’s
daemon generates the aforementioned process and places it
into the container’s Network namespace. To this end, FastBuild
obtains the container’s name and resolves the name to get
the id of the main process (init) in the container by using
the Docker API interface (Step 1 in Figure 4). By reading
the process’s proc file system (Step 2), FastBuild knows the
container’s Network namespace. It then forks a child process
and attaches it to the namespace by calling the setns()
system call (Step 3).

Container

N
et

w
o

rk
N

am
es

p
ac

e

Host
Process

1
2

3
FastBuild

cloudCloud

4 5

BackendBackend

6 7

Fig. 4. Steps for FastBuild to redirect requests for input files and to access
the cache

Requests for input files generated by the instruction exe-
cution in a container are sent to the virtual network device
file (veth0) in its Network namespace. The FastBuild child
process then intercepts the network requests by listening to
the file using system library libpcap, and passes them to
the FastBuild daemon process running outside of the container
network namespace to serve requests. Sending data between
FastBuild’s daemon and child processes is enabled by using a
shared Unix pipe file.

When the daemon process receives the redirected requests,
it gets requested files’ URLs. For each requested file, it then
searches FastBuild’s local cache to see whether it is in the
cache (Steps 6-7). If it is, FastBuild will first read its last
modification time. It also generates a request for the file’s last
modification time at the server on the Internet specified by
its URL (Steps 4-5). Only when the two modification times
match, indicating the file in the cache is up to date, will the
file be retrieved from the cache and sent to the child process,
which will deliver it to the process running the instruction(s)
in the container using libpcap. If the file is not in the cache
or the modification times do not match, the file is remotely
retrieved as usual. After receiving the file, FastBuild daemon
stores it into the local cache, possibly overwriting the out-of-
date file in the cache, and delivers it via the child process.

C. Overlapping Instruction Execution and Image Commitment

With a local cache for supplying input files from the
local disks, the image building process may become much
faster. With the reduced time of instruction execution, another
operation, which is to commit the data to the disk as a new
image file, can become substantial. In addition, repeatedly
launching and shutting-down containers, each for an image
layer, can be expensive. Especially, the average number of
instruction lines in a Dockerfile in the Docker Hub, or number
of layers in an image, is large (about 23). And the container
launching/shutting-down operation takes about 12% of the
total image rebuilding time.

Instructions

Execute LayerCommit

CommitExecute Layer

1

2

snapshot

snapshot

Fig. 5. Overlapping instruction execution and image commitment operations
and building multiple layers of an image in one container instance

To further reduce image building time, FastBuild overlaps
the instruction execution and image commitment times, and
uses only one container instance throughout the process of
building an image with a Dockerfile. To this end, the FastBuild
daemon intercepts the commit signal, which is sent from the
Docker Daemon upon completion of a line of instruction(s)
in the Dockerfile. After the FastBuild daemon takes over
the image building, it accesses the Dockerfile and issues the
remaining lines of instructions to the container for execution
and commitment.

As execution of the next instruction will be in parallel with
the image commitment, the daemon first makes a snapshot of
the data in the top layer (read-write layer) of the container’s
union file system by using the mksnap_ffs command.
To send the next instruction to the container for execution,
FastBuild identifies all namespaces, as it does for the Network

namespace, and sets the /proc/self/exe argument to
execute the instruction. In the meantime, the last layer of
the image is committed, as illustrated in Figure 5. Instruction
execution can proceed without being synchronized with the
commitment. Now all instructions are executed at the same
layer of the union file system. As a line of instruction(s) in
the Dockerfile corresponds to a layer in the image, FastBuild
takes a snapshot after executing each line of instruction(s).

D. Quickly Obtaining Base Image

Building one Docker image requires a base image. Docker
Hub hosts various base images as compressed files for faster
downloading. However, it needs to be decompressed after
downloading at a user’s server. For a typical base image size
of 500MB, it may take around 5 seconds for the decom-
pression with the CPU being fully occupied. Alternatively, a
base image can be made available faster by leveraging the
previously described optimization techniques (caching input
files and overlapped instruction execution/image commitment)
to locally build it. Fortunately, in Docker Hub each base
image comes with its Dockerfile. FastBuild can download the
Dockerfile, instead of the base image itself, and build the
image.

IV. EVALUATION

In this section, we evaluate performance of the FastBuild
system, in particular, the performance impact of techniques
of caching input files and overlapping instruction execu-
tion and image commitment operations. All the performance
measurements are made on a host machine with 2.3 GHz
Xeon CPUs(E5-2620), 64GB RAM and one Intel Gigabit
CT PCIE Network Adapter (EXPI9301CTBLK), and a hard
disk (West Digital WD60PURX) with its write and read
throughput of 190MB/s and 240MB/s, respectively. All images
and Dockerfiles were obtained from the official Docker Hub
and during the time period from 12/5/2018 to 12/8/2018
when the experiment measurements reported in the paper were
collected. The server was connected to the Internet via China
Education and Research Network (CERNET) with a measured
download bandwidth of 930.23Mbps and upload bandwidth of
820.08Mbps.

FastBuild is prototyped by instrumenting source code of
Docker 17.12. It is implemented using about 2600 lines of
Go code. Among them, approximately 300 LoC are in the
Docker server module for redirecting the Dockerfile instruc-
tions. About 500 LoC are responsible for optimizing container
runtime in the Docker core engine module. Rest of the code
is for cache lookup and matching. In the implementation, to
obtain environment variable info, such as init process id
and namespace id, we use Linux’s system syscalls, rather than
Docker’s APIs for similar functionalities, for higher portability
as Docker’s API is likely to be updated.

A. Build and Launch Time

Each of the 137 popular base images listed in Table I has
a set of about 13-30 Dockerfiles. Each Dockerfile in a set has

a version number. For a set of the Dockerfiles, in the order
of their version numbers one at a time, we build an image
by executing a Dockerfile and launching the corresponding
container. In the experiments about FastBuild the base image
is also built using its Dockerfile, instead of being directly
downloaded. In contrast, for the stock Docker the base images
are downloaded. At the beginning of the series of experiments
for a base image’s Dockerfiles, we always clear the cache to
give it a clean start. Figure 6 shows the aggregate build and
launch times for the sequence of Dockerfiles in a set for a base
image with the stock Docker and with FastBuild for each of the
137 image groups. To understand contribution of FastBuild’s
individual techniques, the figure also shows the times for
FastBuild with only input file caching and that with only
overlapping of instruction execution and image commitment.

As shown, though the time for different image group’s
Dockerfiles can be very different (from 63 seconds to 208
seconds), FastBuild consistently takes about only 25% of
the time, or is about 4X faster. For example, for the base
image Nginx with 27 Dockerfiles, the total build and launch
time for the stock Docker and FastBuild are 198 and 51
seconds, respectively. The improvements are significant. In
terms of individual techniques’ contributions, the figure shows
that caching contributes about 2/3 of the improvement and
overlapping contributes the remaining.

表格 1

Stock Docker Overlapping Caching FastBuild(Caching&Overlapping)
1 64.1 50 36.5 16.12903226
2 67.7 51 38.5 16.4516129
3 79.9 60 54.65137903 19.35483871
4 81.3 61.5 46.7 19.83870968
5 84.5 63.64 49 20.52903226
6 86.8 66 50.8 29.3
7 93.1 70.26 53.7 22.66451613
8 88 66.3 50 21.38709677
9 97 72 53.3 28.6
10 99 75 56.3 24.19354839
11 105.4 79.22 59.5 25.55483871
12 101.1 76.29 55.8 24.60967742
13 107 80.3 58.5 25.90322581
14 119 88.2 79.52875 33.5
15 123 93.38 68 30.12258065
16 138 105.82 77 34.13548387
17 120 92.38 66.7 29.8
18 129 99 71.8 31.93548387
19 127 97 70.79 31.29032258
20 135.7 104.25 75.1 33.62903226
21 147.8 111.4 77.8 40.99
22 129 99.2 72 32
23 113.2 89.82 66.29 42
24 137 105.77 76 34.11935484
25 140.6 109 77.98 35.16129032
26 151.7 117 84.39 37.74193548
27 141 109.3 78.19 35.25806452
28 147.8 113.57 82.27 36.63548387
29 153.1 118 85.12 38.06451613
30 159.1 123 88.46 39.67741935
31 155.5 120 86.29 38.70967742
32 153.8 118 85.78 38.06451613
33 167.8 129.15 93 41.66129032
34 161.1 123.3 89.32 39.77419355
35 163.5 125.37 89.72 40.44193548
36 176.7 135.34 97.36 55.7
37 157.8 121.29 87.13 39.12580645
38 166.3 128.65 92.11 41.5
39 170.1 130 94 41.93548387
40 153.8 118 85.13 38.06451613
41 136.7 107.53 79 50
42 165.6 127.67 91.82 41.18387097
43 185.9 142.3 103.23 45.90322581
44 177.6 135.62 98.7 43.7483871
45 185 142.8 102.26 46.06451613
46 177 137.1 98 44.22580645
47 156 122.2 89.13 55
48 164 127.8 94 58
49 170 130 94.29 41.93548387
50 179 137.96 98.82 44.50322581
51 186 142.6 103 46
52 166 127.4 91.61 41.09677419
53 163 126.8 91.2 55
54 176 136.33 98.59 59
55 182.1 137 123.119 51.7
56 163 125.3 90.27 40.41935484
57 170 132.2 120.587 60.8
58 187 141.6 99.45 54.3
59 173 132.8 95.38 42.83870968
60 159 122.6 88 39.5483871
61 146 113 82 49
62 132 102.6 75 45.6
63 163 125.87 91.2 53.8
64 165 125.2 90 51.6
65 140 107.6 77.7 34.70967742
66 158 121.6 87.26 39.22580645
67 167 128.3 92.12 41.38709677
68 165 127.6 93 55
69 138 107 78.75 47.5
70 169 129.3 93.87 41.70967742
71 207.8 156.6 109.26 57.6
72 167 128.38 93.12 41.41290323
73 158.9 122.53 88 39.52580645
74 147 111.11 79 43.8
75 134.4 106.5 80 52
76 156.1 120.89 86.45 38.99677419
77 159.6 122.57 88.45 39.53870968
78 166 126 89.59 50.3
79 176.9 135.75 88.35 43.79032258
80 166 128.3 92.88 55
81 163 125.8 91 53
82 178 137 89.22 44.19354839
83 156.6 123.22 92.44 59
84 143 111.8 81.52 49.9
85 155 119.52 86 38.55483871
86 133 103.6 75.4 46
87 142.8 109.86 79 35.43870968
88 158 121.97 87.2 39.34516129
89 183.9 140.97 101.3 45.47419355
90 176 135.4 98 58
91 153 119.5 88 55
92 161 123.7 89 39.90322581
93 173 132.58 95.24 42.76774194
94 162 124.5 88 49
95 141 109.6 79.8 48
96 159 122.9 88 39.64516129
97 140 109 80.2 50
98 162 124.7 89.4 40.22580645
99 179 137.74 98.81 44.43225806
100 184 140.35 99.85 56.1
101 147 113.6 81.7 36.64516129
102 146 113.5 82 49
103 179 137 98.8 44.19354839
104 160 123 89 39.67741935
105 155.8 123.2 90 55.3
106 150 115.48 82.57 37.2516129
107 155 119.5 86 38.5483871
108 147.9 114.3 82 36.87096774
109 156.4 117.45 82.5 43.1
110 163 121.39 84 42.8
111 165 127.3 91.46 41.06451613
112 157.9 122.9 88.51 53.6
113 176 131.5 90.59 46.7
114 161.3 120.8 82.28 42.1
115 153 116 81.35 44.9
116 165 127 92.7 55
117 169.9 130 94.1 41.93548387
118 148.7 112.3 78 43.4
119 155.1 119 85 38.38709677
120 136.4 105 75.43 33.87096774
121 156.3 120 86.5 38.70967742
122 146 110 76.4 40.6
123 138.9 108 78.1 48
124 146 111.11 78.5 43.1
125 156.8 119 84 47.2
126 151 114 80 43.7
127 145.8 111 78.25 44.3
128 135.6 103 72.64 40
129 146.6 111.3 78 43
130 139.6 107 77.4 34.51612903
131 137 104 72.59 40
132 135.9 105 75.51 45
133 136.6 103.8 73.64 41
134 128 97 69.2 39
135 123 94 66.7 30.32258065
136 129 99 72.3 43.2
137 147 112.6 79.69 45.4

Bu
ild

 &
 L

au
nc

h
Ti

m
e

(S
)

0

50

100

150

200

250

Base Images
1 11 21 31 41 51 61 71 81 91 101 111 121 131

Stock Docker
Overlapping
Caching
FastBuild(Caching&Overlapping)

Fig. 6. The build and launch time for each sequence of Dockerfiles associated
with a base image. The times for each of the 137 base images are shown for
the stock Docker, FastBuild with only overlaping technique, FastBuild with
only caching technique, and FastBuild with both techniques. The base images
are shown in the order as they appear in Table I

To further understand the contribution made by removing
remote access of input files, we show the build and launch
time for each Dockerfile in the set of Dockerfiles with the
zookeeper image. The experiment is carried out in order of
their version numbers, so are the times presented in the Fig-
ure 7. As expected, time reduction (or the time gap between the
two curves in the figure) keeps increasing. When more images
are built, more input files are added into the cache. When the
cache warms up, it has a higher hit ratio and removes more
remote file access out of the critical path. Another observation
is that major portion of the performance benefit from caching
is achieved after execution of only a few Dockerfiles. For

表格 1

Stock Docker FastBuild
1 40.1384083 30.4621581
2 60.89965398 35
3 78.89273356 44
4 94.80968858 48
5 105 55
6 119 63
7 130 68
8 142 71
9 157 72
10 165 73
11 183 77
12 196 78
13 205 79
14 223 80
15 230 82
16 239 83
17 258 84
18 269 86
19 288 88
20 306 89.85699355
21 324 90.74919065
22 335 91
23 353 92.40612812
24 368 93
25 376 94
26 386 95
27 397 97

Bu
ild

 &
 L

au
nc

h
Ti

m
e

(S
)

0

80

160

240

320

400

Image Versions
1 3 5 7 9 11 13 15 17 19 21 23 25 27

Stock Docker
FastBuild

Fig. 7. The build and launch times of the stock Docker and FastBuild for
the set of Dockerfiles associated with the zookeeper image.

example, after execution of six Dockerfiles, FastBuild is 3.2X
faster than the stock Docker. But after execution of twenty-
six Dockerfiles it is only 4X faster. This indicates that the
caching can become effective on the execution of a Dockerfile
after building only a few Dockerfiles belonging to the same
base image, which is a common scenario in the use of Docker
containers. To confirm this, in Figure 8 we further show the
time for the last Dockerfile in each sequence of Dockerfiles
associated with each of the 137 base files when only 1, 2,
4, 6, 8, or 10 Dockerfiles preceding to the last one have
been executed to warm up the cache. While only one or
two previous executions are not sufficient, execution of six or
more previous versions of Dockerfile obtains more than 90%
of the benefit. This is an encouraging result, demonstrating
that FastBuild’s performance advantage can be easily realized.
Note that if a Dockerfile is executed again after a small change,
the second execution is likely to receive almost of its requested
input files from the cache.

表格 1

Fastbuild(1) FastBuild(2) FastBuild(4) FastBuild(6) FastBuild(8) FastBuild(10) FastBuild(all)
1 47.52 41.04 21.6 20.95419355 20.83425806 20.742 20.67741935
2 67.26 52.5 28.3 23.77709677 22.93712903 22.291 21.83870968
3 61.1 57.5 25.5 25.69193548 25.72758065 25.755 25.77419355
4 65.66 65 28.3 26.84806452 26.57841935 26.371 26.22580645
5 77 57 29 27.78064516 27.55419355 27.38 27.25806452
6 61 56 33 30.41 29.929 29.559 29.3
7 67.12 54 27.6 29.30258065 29.61877419 29.862 30.03225806
8 86.04 59 34.2 30.13096774 29.37529032 28.794 28.38709677
9 69.46 62 31.3 29.41 29.059 28.789 28.6
10 72.58 73 30.9 31.62483871 31.75945161 31.863 31.93548387
11 100.1 85.2 40.5 35.95 35.105 34.455 34
12 105.6 90.2 44 36.02903226 34.54870968 33.41 32.61290323
13 119.4 101.8 49 38.86129032 36.9783871 35.53 34.51612903
14 94.4 79.8 36 34.25 33.925 33.675 33.5
15 90 77 38 39.17419355 39.39225806 39.56 39.67741935
16 119.6 101.2 46 44.96129032 44.7683871 44.62 44.51612903
17 130.2 110.4 51 42.39677419 40.79903226 39.57 38.70967742
18 112 99 44 42.32903226 42.01870968 41.78 41.61290323
19 101.6 95 40 40.67741935 40.80322581 40.9 40.96774194
20 117.56 88 45 44.14193548 43.98258065 43.86 43.77419355
21 102.96 86 43.6 41.773 41.4337 41.1727 40.99
22 117.9 85 49.5 43.97903226 42.95370968 42.165 41.61290323
23 99.56 100 45 42.9 42.51 42.21 42
24 119.12 101.24 47.6 45.21548387 44.77264516 44.432 44.19354839
25 127.54 109.08 53.7 47.8583871 46.77351613 45.939 45.35483871
26 136.8 115.6 52 49.85483871 49.45645161 49.15 48.93548387
27 142.2 120.4 55 48.33870968 47.1016129 46.15 45.48387097
28 149.6 127.2 60 51.37419355 49.77225806 48.54 47.67741935
29 127.22 123 52.1 50.20096774 49.84829032 49.577 49.38709677
30 143.88 122.76 59.4 53.74580645 52.69574194 51.888 51.32258065
31 152.4 129.8 62 53.71290323 52.17387097 50.99 50.16129032
32 144.6 123.2 59 52.42903226 51.20870968 50.27 49.61290323
33 145.44 123.08 56 54.69032258 54.44709677 54.26 54.12903226
34 148.24 126.18 60 54.37741935 53.33322581 52.53 51.96774194
35 153.8 126 61 55.21935484 54.14580645 53.32 52.74193548
36 147.6 125.2 58 56.39 56.091 55.861 55.7
37 144.26 122.52 57.3 52.82225806 51.99067742 51.351 50.90322581
38 147.56 121 57.8 54.8916129 54.35148387 53.936 53.64516129
39 149.54 119 59.7 56.31967742 55.69190323 55.209 54.87096774
40 137.78 117.56 56.9 51.79903226 50.85170968 50.123 49.61290323
41 141.4 119.8 55 51.5 50.85 50.35 50
42 144.28 122.96 59 55.09354839 54.36806452 53.81 53.41935484
43 163 130 63 60.87741935 60.48322581 60.18 59.96774194
44 156.6 134.2 67 60.20322581 58.94096774 57.97 57.29032258
45 160.6 136.2 63 60.67419355 60.24225806 59.91 59.67741935
46 163.732 138.464 62.66 58.76574194 58.04252258 57.4862 57.09677419
47 153 133 57 55.6 55.34 55.14 55
48 156.2 132.4 61 58.9 58.51 58.21 58
49 155.34 131.68 60.7 56.59709677 55.83512903 55.249 54.83870968
50 147.76 125.52 58.8 58.05935484 57.92180645 57.816 57.74193548
51 148.96 123 56.8 59.04 59.456 59.776 60
52 153.6 124 60 55.48387097 54.64516129 54 53.5483871
53 143.6 127 66 58.3 56.87 55.77 55
54 145.4 130 63 60.2 59.68 59.28 59
55 162.62 133 57.1 53.32 52.618 52.078 51.7
56 164.6 136 63 55.70645161 54.35193548 53.31 52.58064516
57 156.76 139 63.8 61.7 61.31 61.01 60.8
58 160 135 60 56.01 55.269 54.699 54.3
59 150 127 58 56.46451613 56.17935484 55.96 55.80645161
60 142.66 121.32 57.3 53.09322581 52.31196774 51.711 51.29032258
61 131 112 55 50.8 50.02 49.42 49
62 116.52 122 50.6 47.1 46.45 45.95 45.6
63 144.22 100 57.1 54.79 54.361 54.031 53.8
64 148 126 60 54.12 53.028 52.188 51.6
65 134.6 114.2 53 47.51290323 46.49387097 45.71 45.16129032
66 138.3225806 116.6451613 51.61290323 51.16129032 51.07741935 51.01290323 50.96774194
67 146.78 124.56 57.9 55.07967742 54.55590323 54.153 53.87096774
68 143 105 55 55 55 55 55
69 124.7 121 47.5 47.5 47.5 47.5 47.5
70 149.5612903 126.1225806 55.80645161 54.90322581 54.73548387 54.60645161 54.51612903
71 184.32 130 57.6 57.6 57.6 57.6 57.6
72 172.56 126 66.8 57.74967742 56.06890323 54.776 53.87096774
73 138.32 117.74 56 52.68064516 52.06419355 51.59 51.25806452
74 132.76 110.52 43.8 43.8 43.8 43.8 43.8
75 133.6 113.2 52 52 52 52 52
76 143.2 121.4 56 52.0483871 51.31451613 50.75 50.35483871
77 147.6 125.2 58 53.43870968 52.5916129 51.94 51.48387097
78 143.8 121.6 55 51.71 51.099 50.629 50.3
79 158.8 134.6 62 58.54516129 57.90354839 57.41 57.06451613
80 140 125 60 56.5 55.85 55.35 55
81 141.6 120.2 56 53.9 53.51 53.21 53
82 152.6 124 63 59.09354839 58.36806452 57.81 57.41935484
83 145 130 61 59.6 59.34 59.14 59
84 128.2 109.4 53 50.83 50.427 50.117 49.9
85 137.4 106 55 51.5 50.85 50.35 50
86 122.8 104.6 50 47.2 46.68 46.28 46
87 125.8 116 49 46.94516129 46.56354839 46.27 46.06451613
88 144 122 56 52.47741935 51.82322581 51.32 50.96774194
89 164 139 64 60.72580645 60.11774194 59.65 59.32258065
90 154 131 62 59.2 58.68 58.28 58
91 139.6 125 58 55.9 55.51 55.21 55
92 147.8 119 59 54.05483871 53.13645161 52.43 51.93548387
93 138.8 117.6 54 55.26451613 55.49935484 55.68 55.80645161
94 140.8 116 56 51.1 50.19 49.49 49
95 124.6 108.2 59 51.3 49.87 48.77 48
96 125.8 106.6 49 50.60322581 50.90096774 51.13 51.29032258
97 125 107 53 50.9 50.51 50.21 50
98 135.48 114.96 53.4 52.60064516 52.45219355 52.338 52.25806452
99 152.6 134 59 58.11935484 57.95580645 57.83 57.74193548
100 159.8 125 59 56.97 56.593 56.303 56.1
101 130.4 105 52 48.79354839 48.19806452 47.74 47.41935484
102 127.6 113 54 50.5 49.85 49.35 49
103 155.6 119 62 59.01935484 58.46580645 58.04 57.74193548
104 153.6 130.2 60 54.12903226 53.03870968 52.2 51.61290323
105 139.6 133 58 56.11 55.759 55.489 55.3
106 135 115 55 50.37096774 49.51129032 48.85 48.38709677
107 131.4 111.8 53 50.9 50.51 50.21 50
108 129.32 114 55 49.89677419 48.94903226 48.22 47.70967742
109 137.4 101 47 44.27 43.763 43.373 43.1
110 145.6 121.2 48 44.36 43.684 43.164 42.8
111 152 129 60 55.25806452 54.37741935 53.7 53.22580645
112 137.52 125 56 54.32 54.008 53.768 53.6
113 150.6 117 49 47.39 47.091 46.861 46.7
114 146 121 46 43.27 42.763 42.373 42.1
115 139.6 117.2 50 46.43 45.767 45.257 44.9
116 146.2 124.4 59 56.2 55.68 55.28 55
117 150 103 58 55.76451613 55.34935484 55.03 54.80645161
118 125.2 106.4 50 45.38 44.522 43.862 43.4
119 135.08 115.06 55 51.52258065 50.87677419 50.38 50.03225806
120 122.6 105.2 53 46.7 45.53 44.63 44
121 135.44 114.58 52 50.89354839 50.68806452 50.53 50.41935484
122 129.4 105 47 42.52 41.688 41.048 40.6
123 125 107 53 49.5 48.85 48.35 48
124 126.2 109 47 44.27 43.763 43.373 43.1
125 143.2 120.4 52 48.64 48.016 47.536 47.2
126 129.8 116 45 44.09 43.921 43.791 43.7
127 137.4 114.8 47 45.11 44.759 44.489 44.3
128 128.2 107.4 45 41.5 40.85 40.35 40
129 126.48 110 46 43.9 43.51 43.21 43
130 128.6 109.2 51 46.82258065 46.04677419 45.45 45.03225806
131 129 108 45 41.5 40.85 40.35 40
132 121.2 103.4 50 46.5 45.85 45.35 45
133 118.6 100.2 45 42.2 41.68 41.28 41
134 112.8 105 44 40.5 39.85 39.35 39
135 113.8 100 45 41.27419355 40.58225806 40.05 39.67741935
136 115.2 107 48 44.64 44.016 43.536 43.2
137 132.4 111.8 50 46.78 46.182 45.722 45.4

Bu
ild

 &
 L

au
nc

h
Ti

m
e

(S
)

0

40

80

120

160

200

Base Images
1 11 21 31 41 51 61 71 81 91 101 111 121 131

Fastbuild(1) FastBuild(2)
FastBuild(4) FastBuild(6)
FastBuild(8) FastBuild(10)
FastBuild(all)

Fig. 8. The build and launch time for the last Dockerfile in each sequence
of Dockerfiles associated with each of the 137 base files when only 1, 2, 4,
6, 8, or 10 Dockerfiles preceding to the last one have been executed.

B. Remotely Downloaded Data

In the stock Docker, building an image needs to download
base images and input files. With FastBuild, base image is
not downloaded any more, and only input files missing in
the cache are. Figure 9 shows the amount of data down-
loaded in the stock Docker and FastBuild for executing each
sequence of Dockerfiles with each of the base images. As
mentioned Docker supports image-layer caching. A image-
layer file can be re-used (without rebuilding it) if both the
lower-layer image and the instruction for building the current
layer match. However, such a reuse may be unsafe as the
execution outcome may also rely on the execution environment
(e.g., RUN apt-get update) that may change. Using an
out-of-date image layer may lead to unexpected execution
behavior. To this end, some users may opt to turn off the
Docker’s caching option. Therefore, Figure 9 also includes
results for Docker without the caching function.

As shown in Figure 9, FastBuild can significantly reduce
amount of remotely downloaded data. This reduction is pos-
itively correlated to the improvement of the container’s build
and launch time shown in Figure 7. The average amount of
downloaded data for building one image with the stock Docker
is 784.6 MB. If its image-layer caching function is turned off,
the amount increases to 1073.2MB. When FastBuild is used,
the amount reduces to only 220.5MB, representing 71.9% and
79.5% reduction, respectively.

表格 1

 Stock
Docker(No
Cache)

Stock Docker FastBuild

1 96.2 74 25
2 81.9 63 19
3 245.7 189 56
4 250.9 193 66
5 260 200 72
6 267.8 206 80
7 294 192 92
8 288 187 79
9 266 233 100

10 244 222 106
11 256.1 197 160
12 266.5 205 150
13 278 199 134.9
14 338 235 125
15 302 260 173
16 399 270 180
17 351 307 168
18 333 288 189
19 366 310 178.11
20 388 365.7 199
21 481 447 203
22 666 573 252
23 691 609 234
24 877 622 250
25 808 675 300
26 1008 688 278
27 894 776 324
28 950 750 356
29 988 731 356
30 1054 796 319
31 1034 811 300
32 1023 763 324
33 1001 787 312
34 990 770 319
35 1131 870 326
36 1164.8 896 333
37 990.6 762 324
38 903 670 300
39 888 695 316
40 866 675 278
41 819 680 330
42 847 630 302
43 861.9 663 250
44 1177 810 306
45 1005 852 300
46 988 760 280
47 897 690 320
48 876 769 289
49 999 790 310
50 1003 674 306
51 1027 772 300
52 1038.7 799 321
53 1090.7 839 308
54 1211 869 350
55 1039 932 332
56 998.4 768 325
57 1124 792 333
58 1084 821 360
59 1067 834 378
60 1055 792 350
61 1024 865 389
62 1016.6 782 311
63 998.4 768 299
64 945.1 727 320
65 1038 777 308
66 1000 799 356
67 999 705 310
68 931 769 336
69 1098 793 302
70 1030 845 337
71 1010.1 777 318
72 958.1 737 324
73 975 700 316
74 945.1 727 326
75 940 750 320
76 934.7 719 299
77 1022 810 300
78 1040 800 346
79 1196 920 358
80 1261 970 389
81 1298.7 999 370
82 1370 977 380
83 1422 940 377
84 1366 920 366
85 1238 910 369
86 1590 1300 400
87 1458 1033 359
88 1366 1122 388
89 1690 1300 400
90 1774.5 1365 499
91 1804 1100 408
92 1467 1388 433
93 1931.8 1486 470
94 1170 1069 440
95 1389 900 393
96 1422 1288 472
97 1677 1079 477
98 1444 1366 463
99 1531 1088 509

100 1289 1178 400
101 1399 925 426
102 1950 1500 570
103 1820 1288 500
104 1688 1400 411
105 1700 1377 567
106 1777 1370 467
107 1300 1000 484
108 1891 1625 455.6
109 1898 1460 433.7
110 1999 1570 511.5
111 1644.5 1265 453
112 1466 1280 471
113 1300 1000 489
114 1532 1322 500
115 1718 1179 470
116 1782.3 1371 485
117 1652 1171 541
118 1531 1271 458
119 2021.5 1555 568
120 1466 970 421
121 1346.8 1036 422
122 1313 970 469
123 1274 900 379
124 1113 980 399
125 1189 1010 465
126 1300 1000 400
127 1118 860 510
128 1242 956 322
129 937 799 362
130 1038 721 377
131 1053 771 333
132 1034.8 796 370
133 1124.5 865 350
134 1108.9 853 338
135 1067 744 378
136 1038.7 799 350
137 936 720 359

D
at

a
Si

ze
 (M

B)

0

500

1000

1500

2000

2500

Base Images
1 11 21 31 41 51 61 71 81 91 101 111 121 131

Stock Docker(No Cache)
Stock Docker
FastBuild

Fig. 9. The amount of data downloaded in the stock Docker and FastBuild
for executing each sequence of Dockerfiles with each of the 137 base images.
For the stock Docker, results for turning off its option of image-layer caching
are also presented as “Stock Docker NoCache”.

Figure 10 shows the amount of remotely downloaded data
when the last Dockerfile in each base image’s Dockerfile
sequence is executed, assuming different number of preceding
Dockerfiles have been executed. These results correspond to
those about build and launch time presented in Figure 8.
Results in the two figures are consistent. As long as there are
six or more previous versions of the Dockerfile have been built
to warm up the cache, a majority amount of downloaded data
can be obtained locally. The high cache hit ratio indicates high
redundancy among input files of building different images,

which suggests that space demand on the cache is limited.
For example, after we build all eight Dockerfiles associated
with the popular base files listed in Table I, the cache size
is 9.59GB. Considering the abundant space in today’s disks,
we do not impose a size limit on the cache. If indeed there is
such a need, it will be a minor effort by applying a replacement
algorithm such as LRU to enforce a space limit.

表格 1

FastBuild(1) FastBuild(2) FastBuild(4) FastBuild(6) FastBuild(8) FastBuild(10) FastBuild(all)
1 64.2 54.4 25 22 21.6 21.24 21
2 54.2 45.4 19 16.2 15.6 15.24 15
3 162.4 135.8 56 50 42.4 40.96 40
4 167.6 142.2 66 47 46.45 44.38 43
5 174.4 155 72 60.8 58.4 56.96 56
6 180.8 148 80 58 68.1 66.84 66
7 172 152 92 64 60.55 57.22 55
8 165.4 143.8 79 69 61.15 59.26 58
9 206.4 179.8 100 79.7 75.35 72.74 71
10 198.8 182 106 80 60.3261 55.49004 52.266
11 189.6 175 160 86.99 71.345 61.958 55.7
12 194 173 150 70 60.75 51.3 45
13 186.18 183 134.9 71.2 57.55 49.36 43.9
14 213 191 125 73.9 62.95 56.38 52
15 242.6 225.2 173 93.9 76.95 66.78 60
16 252 234 180 100.8146 83.8463 73.66532 66.878
17 279.2 248 168 108 86.58445 77.96398 72.217
18 268.2 251 189 137 80.65815 69.18666 61.539
19 283.622 257.244 178.11 106.542 91.206 82.0044 75.87
20 332.36 299.02 199 131.63319 117.197445 108.535998 102.7617
21 398.2 349.4 203 138.81 125.055 116.802 111.3
22 508.8 444.6 252 166 147.45 136.38 129
23 534 473 234 177 151.55 142.82 137
24 547.6 459 250 187 173.5 165.4 160
25 600 525 300 221.90702 205.17281 195.132284 188.4386
26 606 524 278 230 176 165.2 158
27 685.6 570 324 247.8722 231.5591 221.77124 215.246
28 671.2 592.4 356 246.8 223.4 209.36 200
29 656 600 356 255.2 233.6 220.64 212
30 700.6 605.2 319 248 231.52565 222.26366 216.089
31 708.8 606.6 300 245 235.84115 229.04786 224.519
32 675.2 602 324 241.9712 224.3936 213.84704 206.816
33 692 597 312 232.9 215.95 205.78 199
34 679.8 622 319 221.7 200.85 188.34 180
35 761.2 652.4 326 267.65045 255.146975 247.64489 242.6435
36 783.4 670.8 333 246 259.42145 251.63078 246.437
37 674.4 511 324 272 229.40945 219.39398 212.717
38 596 522 300 227.9 212.45 203.18 197
39 619.2 503 316 212.4 190.2 176.88 168
40 595.6 496 278 228.3 217.65 211.26 207
41 610 540 330 219 234.13105 223.98022 217.213
42 564.4 458 302 255 202.12891 191.554324 184.5046
43 580.4 497.8 250 190.5 177.75 170.1 165
44 709.2 631 306 236 221 212 206
45 741.6 600 300 238 221.8 213.52 208
46 664 568 280 233.03959 222.976645 216.938878 212.9137
47 616 542 320 236 214.2396 203.04144 195.576
48 673 537 289 216 203.15 194.06 188
49 694 536 310 233 216.5 206.6 200
50 600.4 526.8 306 224.8 207.4 196.96 190
51 677.6 583.2 300 203 217.55 208.82 203
52 703.4 607.8 321 239.8 222.4 211.96 205
53 732.8 626.6 308 258 223 214 208
54 765.2 661.4 350 260.4 241.2 229.68 222
55 812 616 332 266.9 252.95 244.58 239
56 679.4 590.8 325 254 230.99255 221.03882 214.403
57 700.2 636 333 247 220.8 208.92 201
58 728.8 608 360 254.3 231.65 218.06 209
59 742.8 615 378 272.9237 250.40735 236.89754 227.891
60 703.6 651 350 257 259.3441 249.74524 243.346
61 769.8 674.6 389 281.9 258.95 245.18 236
62 687.8 580 311 269 260 254.6 251
63 674.2 593 299 238 216.55 207.82 202
64 645.6 564.2 320 249 226.5 216.6 210
65 683.2 589.4 308 242.2 228.1 219.64 214
66 710.4 512 356 262.9 242.95 230.98 223
67 626 547 310 251 228.4 219.76 214
68 682.4 595.8 336 230 217 204.4 196
69 694.8 588 302 245.7963 233.75265 226.52646 221.709
70 743.4 641.8 337 266.1313 250.94515 241.83346 235.759
71 685.2 593.4 318 254 230.6591 221.41124 215.246
72 654.4 571.8 324 246 239.44115 230.48786 224.519
73 623.2 566 316 260 248 240.8 236
74 646.8 555 326 248.6689 232.09795 222.15538 215.527
75 664 550 320 245 225.7044 215.72016 209.064
76 635 578 299 243.9128 232.1084 225.02576 220.304
77 708 606 300 242 234.40805 227.46302 222.833
78 709.2 618.4 346 273.1587 257.54985 248.18454 241.941
79 807.6 695.2 358 286.5937 271.29235 262.11154 255.991
80 853.8 758 389 307.499 290.0345 279.5558 272.57
81 873.2 747.4 370 304 275.95855 266.00122 259.363
82 857.6 720 380 285 288.44565 278.75166 272.289
83 827.4 714.8 377 297.2112 280.1136 269.85504 263.016
84 809.2 698.4 366 296 275.35855 265.76122 259.363
85 801.8 693.6 369 290.6805 273.89775 263.8281 257.115
86 1120 940 400 319.6505 302.43275 292.1021 285.215
87 898.2 828 359 291 282.5 274.4 269
88 975.2 763 388 333 337.1768 331.79552 328.208
89 1120 940 400 346 319.25 310.7 305
90 1191.8 1018.6 499 372.3 345.15 328.86 318
91 961.6 823.2 408 388 339.15 331.86 327
92 1197 1079 433 395 348.425 339.47 333.5
93 1282.8 1006 470 378 376.5 366.6 360
94 943.2 817.4 440 391 380.5 374.2 370
95 798.6 961 393 392.3 392.15 392.06 392
96 1124.8 797 472 400 373.90065 363.51366 356.589
97 958.6 838.2 477 391 383.5 373.6 367
98 1185.4 1004.8 463 374.1 355.05 343.62 336
99 972.2 856.4 509 366.2 335.6 317.24 305
100 1022.4 866.8 400 324.05 307.775 298.01 291.5
101 825.2 725.4 426 326.6 305.3 292.52 284
102 1314 1128 570 414 383 363.2 350
103 1130.4 1053 500 486 396.3 385.32 378
104 1202.2 1040 411 333.3756 316.7418 306.76152 300.108
105 1215 1022 567 478.7223 459.80565 448.45566 440.889
106 1189.4 1008.8 467 369.2555 348.31025 335.7431 327.365
107 896.8 793.6 484 345 368.4 356.16 348
108 1391.12 1157.24 455.6 378 370.6 361.6 355.6
109 1254.74 1146 433.7 398 388.055 383.222 380
110 1358.3 1049 511.5 441.5 426.5 417.5 411.5
111 1102.6 956 453 411 402 396.6 393
112 1118.2 933 471 401 386 377 371
113 897.8 795.6 489 396.6 376.8 364.92 357
114 1157.6 888 500 430 415 406 400
115 1037.2 895.4 470 400 385 376 370
116 1193.8 1016.6 485 414.5856 399.4968 390.44352 384.408
117 1045 970 541 470.9223 455.90565 446.89566 440.889
118 1108.4 945.8 458 386.8156 371.5618 362.40952 356.308
119 1357.6 1160.2 568 495.9385 480.49675 471.2317 465.055
120 860.2 790 421 351 336 327 321
121 913.2 769 422 359.7 346.35 338.34 333
122 869.8 734 469 382.2 363.6 352.44 345
123 795.8 691.6 379 309 294 285 279
124 863.8 747.6 399 345.1 333.55 326.62 322
125 901 711 465 349.5 324.75 309.9 300
126 880 760 400 316.5033 298.61115 287.87586 280.719
127 790 720 510 377 348.5 331.4 320
128 829.2 702.4 322 252 237 228 222
129 711.6 624.2 362 283 259.15 248.26 241
130 652.2 593 377 270 263.95 251.98 244
131 683.4 588 333 256 239.5 229.6 223
132 710.8 659 370 272 251 238.4 230
133 762 625 350 273 256.5 246.6 240
134 750 647 338 268.595 253.7225 244.799 238.85
135 670.8 597.6 378 302.4 286.2 276.48 270
136 709.2 619.4 350 291.2 278.6 271.04 266
137 647.8 630 359 296 282.5 274.4 269

D
at

a
Si

ze
 (M

B)

0

300

600

900

1200

1500

Base Images
1 11 21 31 41 51 61 71 81 91 101 111 121 131

FastBuild(1)
FastBuild(2)
FastBuild(4)
FastBuild(6)
FastBuild(8)
FastBuild(10)
FastBuild(all)

Fig. 10. The amount of data remotely downloaded during building the last
Dockerfile in each sequence of Dockerfiles associated with each of the 137
base files when only 1, 2, 4, 6, 8, or 10 Dockerfiles preceding to the last one
have been executed.

C. Impact of Network Bandwidth

For a software system whose performance heavily depends
on the Internet performance, the network can have a major
impact. Current process of building and launching of a Docker
image is sensitive to the network performance, as often
hundreds of megabytes or even a few gigabytes of data for
input files and a base image have to be retrieved from the
Internet. The environment where a Docker image is built and
launched varies. It can be a well-equipped data center with
1 Gbps or multi-Gbps Internet access. It may be a small lab
or office environment with under 1Gbps bandwidth. It can
even be mobile computing devices at the edge of Internet
with the bandwidth usually less than 20Mbps. Actually with
increasingly more applications hosted on smartphones and
with the accelerated development of the Internet of Things, the
container-based lightweight virtualization technology is gradu-
ally being adopted in the devices [42]–[44], [46]. Accordingly
mobile devices with limited Internet access bandwidth can
be a common use environment for the container techniques.
Therefore, we evaluate the bandwidth’s impact on FastBuild’s
relative performance advantage by varying the speed of the
network. The actual bandwidth is around 1Gbps. To vary the
bandwidth, we use the tc command to limit the bandwidth
on the server’s network device.

Figure 11(a) shows the build and launch time for a sequence
of Dockerfiles associated with a base image. As expected, with
a higher bandwidth, the impact of the remote file downloading
is reduced and the stock Docker’s time becomes smaller. Fast-
Build’s relative performance advantage accordingly reduces.
For example, in terms of the time averaged over all the base

images, FastBuild is 3.1X faster than the stock FastBuild on
the 1Gbps network. In contrast, it is 4.9X and 7.0X faster
on the 100Mbps and 20Mps bandwidths, respectively. If very
low bandwidths (10Mbps or 5Mbps) are assumed (for mobile
devices), FastBuild can be 8.2X and 10.6X faster, respectively.
For the 5Mbps case, FastBuild reduces the average build
and launch time for one Dockerfile from 651 seconds to 62
seconds. This makes use of lightweight containers a viable
choice on bandwidth-constrained devices or Internet-limited
use environments.

表格 1

Stock-20Mbps Stock-100Mbps Stock-1Gbps FastBuild-20Mb
ps

FastBuild-100M
bps

FastBuild-1Gbp
s

1 222 119.1047297 64.1 57.16212458 22.86484983 20.67741935
2 301 125.7939189 67.7 48.8131257 24.40656285 21.83870968
3 337 148.4628378 79.9 59.2625139 29.63125695 25.77419355
4 347 151.0641892 81.3 64 30.23081201 26.22580645
5 389 157.0101351 84.5 63.20244716 31.60122358 27.25806452
6 423 161.2837838 86.8 65 34.31206897 29.3
7 460 162.5 93.1 70.56840934 35.28420467 30.03225806
8 476 172.5 88 73 33.10011123 28.38709677
9 488 180.2364865 97 74 33.38275862 28.6
10 518 198.75 99 75.621802 37.810901 31.93548387
11 510 195.8445946 105.4 81.10344828 40.55172414 34
12 600 187.8547297 101.1 77.42046719 38.71023359 32.61290323
13 487 198.8175676 107 82.47385984 41.23692992 34.51612903
14 466 221.1148649 119 79.77586207 39.88793103 33.5
15 476 172.5 123 96.17797553 48.08898776 39.67741935
16 556 256.4189189 138 109.025584 54.51279199 44.51612903
17 500 222.972973 120 93.60845384 46.80422692 38.70967742
18 476 235 129 101.3170189 50.65850945 41.61290323
19 600 241.25 127 99.60400445 49.80200222 40.96774194
20 603 252.1452703 135.7 107.0556174 53.52780868 43.77419355
21 539 274.6283784 147.8 99.66310345 49.83155172 40.99
22 495 239.6959459 129 101.3170189 50.65850945 41.61290323
23 506 253.75 113.2 102.3448276 51.17241379 42
24 536 210 137 108.1690768 54.08453838 44.19354839
25 528 261.25 140.6 111.2525028 55.62625139 45.35483871
26 551 281.875 151.7 120.759733 60.37986652 48.93548387
27 619 261.9932432 141 111.5951057 55.79755284 45.48387097
28 739 274.6283784 147.8 117.4193548 58.70967742 47.67741935
29 800 250 153.1 121.9588432 60.97942158 49.38709677
30 822 295.625 159.1 127.0978865 63.54894327 51.32258065
31 873 263.75 155.5 124.0144605 62.00723026 50.16129032
32 877 285.777027 153.8 122.5583982 61.27919911 49.61290323
33 866 287.5 167.8 134.5494994 67.27474972 54.12903226
34 678 299.3412162 161.1 128.810901 64.4054505 51.96774194
35 786 303.8006757 163.5 130.8665184 65.43325918 52.74193548
36 825 328.3277027 176.7 138.7206897 69.36034483 55.7
37 769 293.2094595 157.8 125.9844271 62.99221357 50.90322581
38 688 287.5 166.3 133.2647386 66.6323693 53.64516129
39 706 316.0641892 170.1 136.5194661 68.25973304 54.87096774
40 757 285.777027 153.8 122.5583982 61.27919911 49.61290323
41 806 254.0033784 136.7 123.5862069 61.79310345 50
42 852 345 165.6 132.6651835 66.33259177 53.41935484
43 860 287.5 185.9 150.0522803 75.02614016 59.96774194
44 683 330 177.6 142.9432703 71.47163515 57.29032258
45 822 343.75 185 149.2814238 74.6407119 59.67741935
46 726 328.8851351 177 142.429366 71.21468298 57.09677419
47 763 289.8648649 156 136.862069 68.43103448 55
48 787 304.7297297 164 144.8275862 72.4137931 58
49 805 315.8783784 170 136.4338154 68.21690768 54.83870968
50 850 332.6013514 179 144.1423804 72.07119021 57.74193548
51 777 312.5 186 150.137931 75.06896552 60
52 676 308.4459459 166 133.0077864 66.50389321 53.5483871
53 684 302.8716216 163 136.862069 68.43103448 55
54 732 327.027027 176 147.4827586 73.74137931 59
55 804 315 182.1 128.1 64.05 51.7
56 848 302.8716216 163 130.4382647 65.21913237 52.58064516
57 740 337.5 170 152.262069 76.13103448 60.8
58 743 321.25 187 135.0034483 67.50172414 54.3
59 754 346.25 173 139.003337 69.50166852 55.80645161
60 672 295.4391892 159 127.0122358 63.50611791 51.29032258
61 634 271.2837838 146 120.9310345 60.46551724 49
62 620 245.2702703 132 111.9034483 55.95172414 45.6
63 689 302.8716216 163 133.6758621 66.83793103 53.8
64 655 306.5878378 165 127.8344828 63.91724138 51.6
65 666 310 140 110.7385984 55.36929922 45.16129032
66 699 293.5810811 158 126.1557286 63.07786429 50.96774194
67 716 260 167 133.8642937 66.93214683 53.87096774
68 690 306.5878378 165 136.862069 68.43103448 55
69 710 256.4189189 138 116.9482759 58.47413793 47.5
70 702 314.0202703 169 135.5773081 67.78865406 54.51612903
71 624 260 207.8 143.7655172 71.88275862 57.6
72 708 295 167 133.8642937 66.93214683 53.87096774
73 744 310 158.9 126.9265851 63.46329255 51.25806452
74 655.5405405 273.1418919 147 107.1241379 53.56206897 43.8
75 666 277.5 134.4 128.8965517 64.44827586 52
76 740 290.0506757 156.1 124.5283648 62.26418242 50.35483871
77 711.7297297 296.5540541 159.6 127.5261402 63.76307008 51.48387097
78 690 308.4459459 166 124.3827586 62.19137931 50.3
79 792 330 176.9 142.3437152 71.17185762 57.06451613
80 780 325 166 136.862069 68.43103448 55
81 720 300 163 131.5517241 65.77586207 53
82 690 287.5 178 143.2858732 71.6429366 57.41935484
83 630 262.5 156.6 147.4827586 73.74137931 59
84 637.7027027 265.7094595 143 123.3206897 61.66034483 49.9
85 622 250 155 123.5862069 61.79310345 50
86 611 247.1283784 133 112.9655172 56.48275862 46
87 600 265.3378378 142.8 113.1368187 56.56840934 46.06451613
88 704.5945946 293.5810811 158 126.1557286 63.07786429 50.96774194
89 783 326.25 183.9 148.3392659 74.16963293 59.32258065
90 719 341.25 176 144.8275862 72.4137931 58
91 682.2972973 284.2905405 153 136.862069 68.43103448 55
92 690 321.25 161 128.7252503 64.36262514 51.93548387
93 722 287.5 173 139.003337 69.50166852 55.80645161
94 682 301.0135135 162 120.9310345 60.46551724 49
95 771 261.9932432 141 118.2758621 59.13793103 48
96 709.0540541 295.4391892 159 127.0122358 63.50611791 51.29032258
97 722 332.5 140 123.5862069 61.79310345 50
98 798 301.0135135 162 129.5817575 64.79087875 52.25806452
99 624 260 179 144.1423804 72.07119021 57.74193548
100 639 278.75 184 139.7827586 69.89137931 56.1
101 655.5405405 273.1418919 147 116.7341491 58.36707453 47.41935484
102 651.0810811 271.2837838 146 120.9310345 60.46551724 49
103 660 332.6013514 179 144.1423804 72.07119021 57.74193548
104 798 275 160 127.868743 63.93437152 51.61290323
105 694.7837838 289.4932432 155.8 137.6586207 68.82931034 55.3
106 702 292.5 150 119.3036707 59.65183537 48.38709677
107 741 312.5 155 123.5862069 61.79310345 50
108 755 308.75 147.9 117.5050056 58.75250278 47.70967742
109 797 290.6081081 156.4 105.2655172 52.63275862 43.1
110 726.8918919 302.8716216 163 104.4689655 52.23448276 42.8
111 705 293.75 165 132.1512792 66.0756396 53.22580645
112 704.1486486 293.3952703 157.9 133.1448276 66.57241379 53.6
113 717 298.75 176 114.8241379 57.41206897 46.7
114 690 287.5 161.3 102.6103448 51.30517241 42.1
115 682.2972973 284.2905405 153 110.0448276 55.02241379 44.9
116 660 275 165 136.862069 68.43103448 55
117 757.6621622 315.6925676 169.9 136.3481646 68.17408231 54.80645161
118 690 287.5 148.7 106.062069 53.03103448 43.4
119 663 276.25 155.1 123.6718576 61.83592881 50.03225806
120 608.2702703 253.4459459 136.4 107.6551724 53.82758621 44
121 630 262.5 156.3 124.6996663 62.34983315 50.41935484
122 651.0810811 271.2837838 146 98.62758621 49.3137931 40.6
123 619.4189189 258.0912162 138.9 118.2758621 59.13793103 48
124 648 270 146 105.2655172 52.63275862 43.1
125 672 280 156.8 116.1517241 58.07586207 47.2
126 711 296.25 151 106.8586207 53.42931034 43.7
127 650.1891892 270.9121622 145.8 108.4517241 54.22586207 44.3
128 604.7027027 251.9594595 135.6 97.03448276 48.51724138 40
129 653.7567568 272.3986486 146.6 105 52.5 43
130 622.5405405 259.3918919 139.6 110.3959956 55.19799778 45.03225806
131 630 262.5 137 97.03448276 48.51724138 40
132 606.0405405 252.5168919 135.9 110.3103448 55.15517241 45
133 645 268.75 136.6 99.68965517 49.84482759 41
134 570.8108108 237.8378378 128 94.37931034 47.18965517 39
135 600 250 123 96.17797553 48.08898776 39.67741935
136 575.2702703 239.6959459 129 105.5310345 52.76551724 43.2
137 596 258 147 111.3724138 55.6862069 45.4

Ti
m

e
(S

)
0

200

400

600

800

1000

Base Images
1 11 21 31 41 51 61 71 81 91 101 111 121 131

Stock-20Mbps Stock-100Mbps Stock-1Gbps
FastBuild-20Mbps FastBuild-100Mbps FastBuild-1Gbps

(a) Higher Network Bandwidth表格 1

Stock-5Mbps Stock-10Mbps FastBuild-5Mbp
s

FastBuild-10Mb
ps

1 1399.007937 1059.603175 57.7709315 95.28378378
2 1400 1091.031746 81.81805002 100.6351351
3 1743.849206 1197.539683 115.8666183 118.7702703
4 1774.404762 1209.761905 119.7738311 120.8513514
5 1844.246032 1237.698413 128.7046031 125.6081081
6 1894.444444 1257.777778 146.3707865 129.027027
7 1800 1312.777778 152.7060529 130
8 1920.634921 1268.253968 138.472635 138
9 2117.063492 1346.825397 140.3146067 144.1891892
10 2160.714286 1364.285714 169.1721638 159
11 2300.396825 1420.15873 187.0337079 156.6756757
12 2206.547619 1382.619048 175.032983 150.2837838
13 2335.31746 1434.126984 191.4990939 159.0540541
14 2597.222222 1538.888889 182.7078652 176.8918919
15 2684.52381 1573.809524 236.152954 138
16 2518 1704.761905 278.0159478 205.1351351
17 2619.047619 1547.619048 227.7803552 178.3783784
18 2815 1626.190476 252.8981515 188
19 2771.825397 1608.730159 247.316419 193
20 2961.706349 1684.68254 271.5969554 201.7162162
21 3000 1790.31746 247.5089888 219.7027027
22 2815.47619 1626.190476 252.8981515 191.7567568
23 2870 1588 256.247191 203
24 2990.079365 1696.031746 275.2250816 199
25 3068.650794 1727.460317 285.2722001 209
26 3310.912698 1824.365079 316.2508155 225.5
27 3077.380952 1730.952381 286.3885466 209.5945946
28 3225.793651 1790.31746 305.3664371 219.7027027
29 3341.468254 1836.587302 320.1580283 200
30 3472.420635 1888.968254 336.9032258 236.5
31 3393.849206 1857.539683 326.8561073 211
32 3356.746032 1842.698413 322.1116347 228.6216216
33 3662.301587 1964.920635 361.1837622 230
34 3516.071429 1906.428571 342.4849583 239.472973
35 3568.452381 1927.380952 349.1830373 243.0405405
36 3856.547619 2042.619048 374.7752809 262.6621622
37 3444.047619 1877.619048 333.2750997 234.5675676
38 3629.563492 1951.825397 356.9974628 230
39 3712.5 1985 367.6027546 252.8513514
40 3356.746032 2042 322.1116347 228.6216216
41 3838 2111 325.4606742 263
42 3614.285714 1945.714286 355.0438565 276
43 4057.34127 2122.936508 411.6984415 230
44 4000 2050.47619 388.5342515 264
45 3800 2115.079365 409.1866618 275
46 3863.095238 2045.238095 386.8597318 263.1081081
47 3404.761905 1861.904762 368.7191011 231.8918919
48 3579.365079 1931.746032 394.6741573 243.7837838
49 3710.31746 1984.126984 367.323668 252.7027027
50 3906.746032 2062.698413 392.4414643 266.0810811
51 4059.52381 2123.809524 411.9775281 250
52 3623.015873 1949.206349 356.160203 246.7567568
53 3557.539683 1923.015873 368.7191011 242.2972973
54 3841.269841 2036.507937 403.3258427 261.6216216
55 3974.404762 2089.761905 340.1685393 252
56 3557.539683 1923.015873 347.7876042 242.2972973
57 3710.31746 1984.126984 418.8988764 270
58 4081.349206 2132.539683 362.6629213 257
59 3775.793651 2010.31746 375.6962668 277
60 3470.238095 1852 336.6241392 236.3513514
61 3186.507937 1774.603175 316.8089888 217.027027
62 2880.952381 1899 287.3932584 196.2162162
63 3557.539683 1923.015873 358.3370787 242.2972973
64 3601.190476 1940.47619 339.3033708 245.2702703
65 3055.555556 1722.222222 283.5976803 248
66 3011 1879.365079 333.8332729 234.8648649
67 3288 1957.936508 358.9510692 208
68 3601.190476 1940.47619 368.7191011 245.2702703
69 3644 1887 303.8314607 205.1351351
70 3688.492063 1975.396825 364.5328017 251.2162162
71 4535.31746 2314.126984 391.2134831 208
72 4022 1957.936508 358.9510692 236
73 3468.055556 1887.222222 336.3450526 248
74 3708 2038 271.8202247 238
75 3933 1936 342.7640449 242
76 3406.944444 1862.777778 328.530627 232.0405405
77 3483.333333 1893.333333 338.2986589 237.2432432
78 3623.015873 1949.206349 328.0561798 246.7567568
79 3860.912698 2044.365079 386.5806452 264
80 3623.015873 1949.206349 368.7191011 260
81 3557.539683 1923.015873 351.4157303 240
82 3884.920635 2053.968254 389.650598 230
83 3417.857143 1867.142857 403.3258427 210
84 3121.031746 1748.412698 324.5955056 212.5675676
85 3382.936508 1853.174603 325.4606742 200
86 3904 1761 290.8539326 197.7027027
87 3116.666667 1746.666667 291.4121058 212.2702703
88 3448.412698 1879.365079 333.8332729 234.8648649
89 4013.690476 2105.47619 406.116709 261
90 3841.269841 2036.507937 394.6741573 273
91 3339.285714 1835.714286 368.7191011 227.4324324
92 3513.888889 1905.555556 342.2058717 257
93 3775.793651 2010.31746 375.6962668 230
94 3535.714286 1914.285714 316.8089888 240.8108108
95 3377 1730.952381 308.1573034 209.5945946
96 3470.238095 1888.095238 336.6241392 236.3513514
97 3600 1722.222222 325.4606742 266
98 3535.714286 1774 344.9967379 240.8108108
99 3906.746032 1783 392.4414643 208
100 4015.873016 1866 378.2359551 223
101 3208.333333 1931 303.1337441 218.5135135
102 3186.507937 2033 316.8089888 217.027027
103 3906.746032 2106 392.4414643 266.0810811
104 3492.063492 1896.825397 339.4150054 220
105 3200 1860.15873 371.3146067 231.5945946
106 3273.809524 1809.52381 311.5063429 234
107 3382.936508 1853.174603 325.4606742 250
108 3227.97619 1791.190476 305.6455237 247
109 3413.492063 1865.396825 265.7640449 232.4864865
110 3557.539683 1923.015873 263.1685393 242.2972973
111 3601.190476 1940.47619 353.3693367 235
112 3446.230159 1878.492063 356.6067416 234.7162162
113 3841.269841 2036.507937 296.9101124 239
114 3520.436508 1908.174603 257.1123596 230
115 3339.285714 1835.714286 281.3370787 227.4324324
116 3601.190476 1940.47619 368.7191011 220
117 3708.134921 1983.253968 367.0445814 252.5540541
118 3245.436508 1690 268.3595506 230
119 3385.119048 1788 325.7397608 221
120 3500 1833 273.5505618 202.7567568
121 3411.309524 1864.52381 329.0888003 210
122 3186.507937 1774.603175 244.1348315 217.027027
123 3031.547619 1712.619048 308.1573034 206.472973
124 3186.507937 1774.603175 265.7640449 216
125 3422.222222 1868.888889 301.2359551 224
126 3295.634921 1818.253968 270.9550562 237
127 3182.142857 1772.857143 276.1460674 216.7297297
128 3259 1683.809524 238.9438202 201.5675676
129 3199.603175 1779.84127 264.8988764 217.9189189
130 3046.825397 1718.730159 282.4813338 207.5135135
131 2990.079365 1696.031746 238.9438202 210
132 2966.071429 1686.428571 282.2022472 202.0135135
133 2981.349206 1692.539683 247.5955056 215
134 3039 1617.460317 230.2921348 190.2702703
135 3115 1735 236.152954 200
136 3136 1626.190476 266.6292135 191.7567568
137 3108 1783.333333 285.6629213 183

Ti
m

e
(S

)

0

1000

2000

3000

4000

5000

Base Images
1 11 21 31 41 51 61 71 81 91 101 111 121 131

Stock-5Mbps Stock-10Mbps
FastBuild-5Mbps FastBuild-10Mbps

(b) Low Network Bandwidth
Fig. 11. Build and launch time for a sequence of Dockerfiles associated with
each of the 137 base images with different network speeds

V. RELATED WORK

As container is designed to be a lightweight virtual machine
technology, its performance is more sensitive to the cost
of downloading images and other data from the network.
Accordingly substantial efforts have been made to reduce the
cost to make it truly lightweight.

Among the efforts, Slacker aims to move the cost of
downloading image data out of the critical path of launching
a container as much as possible [1]. By observing that only a
small set of data are needed to launch a container instance and
much of other data are required only after the instance starts to
run, Slack modifies the image format and marks the essential

set of data. With support of dedicated image server, where
a full union file system associated each image is maintained,
Slacker leverages the lazy downloading technique to signifi-
cantly reduce the time for an instance to become available.
However, future data access may become slower as they will
be on-demand retrieved from the Internet. This technique is
not compatible with the Docker Hub framework and requires
support of specialized image server. In contrast, FastBuild is
fully compatible with the existing Docker container build and
launch framework, and can be readily adopted by existing
users. Furthermore, as most input files can be locally available,
especially if they are also buffered in the memory, the on-line
access of image data can be very fast and the lazy access
technique becomes less necessary.

The Docker Hub can become a performance bottleneck
when many users attempt to download images from it simul-
taneously. The FID scheme introduces a peer-to-peer (P2P)
technique to make downloaded images be shared across users.
However, as using Dockerfiles to build images on site is the
preferred method to launch containers, most of downloading is
for input files, rather than the base images and Dockerfiles, and
cannot be accelerated. Similarly, to ameliorate the performance
bottleneck at Docker Hub, the Anwar scheme prefetches base
images that are likely to be accessed from the disk to the
memory in the Docker Hub server, so that they can be quickly
supplied [36]. In contrast, with FastBuild only Dockerfiles,
which are very small, are downloaded from the Docker Hub,
making it less likely to be a performance bottleneck. In
addition, it avoids downloading (most) input files via Internet.

As an extension of Docker’s caching function for image
layers, the CoMICon [37] scheme makes the layers be shared
across servers in a cluster. By leveraging the cluster as a larger
and cooperative cache more data can be retrieved from the
local cluster. The Wharf scheme adopts a similar strategy [46].
It is a middleware in Docker to allow Docker image layers to
be shared among different Docker Daemons in a distributed
storage system. However, as we have shown, the hit ratio
in terms of image layer is usually low. Once one layer is
modified, all layers above it will be different. In contrast,
FastBuild exploits locality at the granularity of individual input
files, and makes rich opportunity of data reuse available to
enable fast local data access.

Because building an image from a base image can be
slow due to reasons such as downloading many input files,
the CNTR scheme separates core functionality data from the
image into a slim image, and leaves the remaining data in
a fat image [41]. In this way it can build a container from
a slim image, which can be much faster. However, if the
fat image is modified, the entire image has to be rebuilt
from the base image and the separation operation has to be
carried out again. In contrast, effectiveness of FastBuild only
depends on existence of locality of input files, which has been
demonstrated to be common.

VI. CONCLUSIONS

To retain container’s major advantage of being lightweight,
we propose FastBuild, a technique to transparently accelerate
Docker image’s building and launching process. An in-depth
analysis of the set of popular images in Docker Hub shows that
input files used in the image building represent a significant
build cost and are also likely to be reused. FastBuild is moti-
vated by the observation. Without changing the Docker’s sys-
tem architecture, it maintains a local cache and non-intrusively
intercepts and redirects request for the input files to the cache.
With real-world Docker base images and Dockerfiles, we
experiment with a FastBuild prototype system and show that
a significant percentage of remote access of input files can be
removed once a few previous versions of the image have been
built to warm up the cache. FastBuild also incorporates the
technique for overlapping execution of Dockerfile instructions
and writing back image layers to further improve efficiency
of image building. Experiment results show that compared
with the stock Docker, FastBuild can speed up the build and
launch process by up to 10x and remove 72% of remote data
downloading for the most popular images at Docker Hub.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their valuable
feedback. This work was supported by National Key Re-
search and Development Program of China under Grant
2016YFB1000501 and National Science Foundation of China
under Grant No.61732010.

REFERENCES

[1] T. Harter, B. Salmon, R. Liu, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Slacker: fast distribution with lazy docker containers,” in
Proceedings of USENIX Conference on File and Storage Technologies
(FAST’16), pp. 181–195, 2016.

[2] M. Dirk,“Docker: lightweight linux containers for consistent develop-
ment and deployment,”, Linux Journal, 2014, pp.2.

[3] Z. Jun, Z. Jiang, and X. Zhen, “Twinkle: A fast resource provisioning
mechanism for internet services,” in Proceedings of IEEE International
Conference on Computer Communications (INFOCOM’11), pp. 802–
810, 2011.

[4] S. Constantine, C. Ramesh, P. Ben, C. Jim, L. Monica, and R. Mendel,
“Optimizing the migration of virtual computers,” in ACM SIGOPS
Operating Systems Review, vol. 36, pp. 377–390, 2012.

[5] E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter, A. C. Arpaci-
Dusseau, and R.H. Arpaci-Dusseau, “SOCK: Rapid Task Provisioning
with Serverless-Optimized Containers,” in Proceedings of USENIX
Annual Technical Conference, 2018.

[6] N. Bogdan, B. John, K. Kate, and A. Gabriel, “Going back and forth:
Efficient multideployment and multisnapshotting on clouds,” in Pro-
ceedings of International Symposium on High Performance Distributed
Computing (HPDC’11), pp. 147–158, 2011.

[7] Q. Chen, L. Liang, Y. Xia, H. Chen, and K. Hyunsoo, “Mitigating
Sync Amplification for Copy-on-write Virtual Disk,” in Proceedings of
USENIX Conference on File and Storage Technologies (FAST’16), pp.
241–247, 2016.

[8] K. Jayaram, C. Peng, Z. Zhang, M. Kim, H. Chen, and H. Lei,
“An empirical analysis of similarity in virtual machine images,” in
Proceedings of the Middleware Industry Track Workshop, 2011.

[9] A. Sergei, T. Bohdan, G. Franz, K. Thomas, M. Andre, P. Christian,
L. Joshua, M. Divya, O’K. Dan, and S. Mark, “SCONE: Secure Linux
Containers with Intel SGX,” in Proceedings of 12th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI’16), vol.
16, pp. 689–703, 2016.

[10] H. Stephen, D. Ayush, L. Aaron, M. Sean, M. Jose, Y. Yang, S. R.
Seelam, and T. Michela, “Resource Management for Running HPC
Applications in Container Clouds,” in Proceedings of International
Conference on High Performance Computing (HPC’16), pp. 261–278,
2016.

[11] R. Kaveh and K. Thilo, “Scalable virtual machine deployment using VM
image caches,” in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis (SC’13),
2013.

[12] C. Peng, M. Kim, Z. Zhang, and H. Lei “VDN: Virtual machine image
distribution network for cloud data centers,” in Proceedings of IEEE In-
ternational Conference on Computer Communications (INFOCOM’12),
pp. 181–189, 2012.

[13] D. Rajdeep, A.R. Raja, and K. Dharmesh, “Virtualization vs container-
ization to support paas,” in Proceedings of 2014 IEEE International
Conference on Cloud Engineering (IC2E’14), pp. 610–614, 2014.

[14] B. Tak, C. Isci, S. Duri, N. Bila, S. Nadgowda, and J. Doran, “Under-
standing Security Implications of Using Containers in the Cloud,” in
Proceedings of 2017 USENIX Annual Technical Conference (ATC’17),
Santa Clara, CA, pp. 313–319, 2017.

[15] “Docker Hub,” https://hub.docker.com, 2018.
[16] “Docker Docs,” https://docs.docker.com, 2018.
[17] V. Abhishek, P. Luis, K. Madhukar, O. David, T. Eric, and W. John,

“Large-scale cluster management at Google with Borg,” in Proceedings
of European Conference on Computer Systems (EUROSYS’15), 2015.

[18] V. Ben, G. Anoop, and R. Mendel, “Performance isolation: sharing
and isolation in shared-memory multiprocessors,” in ACM SIGPLAN
Notices, pp. 181–192, 1998.

[19] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, L. Timoteo, D.
Rose, and A. F. Cesar, “Performance evaluation of container-based virtu-
alization for high performance computing environments,” in Proceedings
of 21st Euromicro International Conference on Parallel, Distributed and
Network-Based Processing, pp. 233–240, 2013.

[20] P. Max, F. Lena, and P. Andreas, “A Performance Survey of Lightweight
Virtualization Techniques,” in Proceedings of European Conference on
Service-Oriented and Cloud Computing (SOCA’17), pp. 34–48, 2017.

[21] B. David, “Containers and Cloud: From LXC to Docker to Kubernetes,”
in Proceedings of IEEE Cloud Computing, pp. 81–84, 2014.

[22] M. Roberto, K. Jimmy, and K. Miika, “Hypervisors vs. lightweight
virtualization: a performance comparison,” in Proceedings of 2015 IEEE
International Conference on Cloud Engineering (IC2E’15), pp. 386–393,
2015.

[23] T. K. Kuppusamy, T. Santiago, D. Vladimir , and C. Justin, “Diplomat:
Using Delegations to Protect Community Repositories,” in Proceedings
of USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI’16), pp. 567–581, 2016.

[24] A. Gulati, I. Ahmad, and A. W. Carl, “PARDA: Proportional Allo-
cation of Resources for Distributed Storage Access,” in Proceedings
of USENIX Conference on File and Storage Technologies (FAST’09),
2009.

[25] W. Dietz, J, Cranmer, N. Dautenhahn, and S. A. Vikram, “Slipstream:
Automatic Interprocess Communication Optimization,” in Proceedings
of USENIX Annual Technical Conference (ATC’15), 2015.

[26] R. Joshua, L. Oren, B. Eli, S. Alex, M. Vishal, N. Jason, and R. Dan,
“VMTorrent: scalable P2P virtual machine streaming,” in Proceedings
of International Conference on Emerging Networking Experiments and
Technologies (CoNEXT’12), pp. 289–300, 2012.

[27] H. Yang, M. Song, and T. Li “Towards Full Containerization in Con-
tainerized Network Function Virtualization,” in Proceedings of Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS’17), pp. 467–481, 2013.

[28] A. Samer, S. Dinesh, S. Prasenjit, and R. Matei, “VMFlock: virtual
machine co-migration for the cloud,” in Proceedings of International
Symposium on High Performance Distributed Computing (HPDC’11),
pp. 159–170, 2011.

[29] M. Hibler, L. Stoller, J. Lepreau, R. Ricci, and C. Barb, “Fast, Scal-
able Disk Imaging with Frisbee,” in Proceedings of USENIX Annual
Technical Conference (ATC’03), 2003.

[30] W. Romain, C. Tony, M. Belmiro, R. Ewan, G. Manuel, G. Sebastien,
and S. Ulrich, “Image distribution mechanisms in large scale cloud
providers,” in Proceedings of 2010 IEEE Second International Con-
ference on Cloud Computing Technology and Science (CloudCom’10),
2010.

[31] O. Steven, S. Dinesh, S. Gong, and N. Jason, “The design and imple-
mentation of Zap: A system for migrating computing environments,” in
ACM SIGOPS Operating Systems Review, vol. 36, pp. 361–376, 2002.

[32] S. Stephen, P. Herbert, M. E. Fiuczynski, B. Andy, and P. Larry,
“Container-based operating system virtualization: a scalable, high-
performance alternative to hypervisors,” in ACM SIGOPS Operating
Systems Review, vol. 41, pp. 275–287, 2007.

[33] “AUFS,” http://aufs.sourceforge.net/aufs.html, 2018.
[34] P. John, “Nimda Worm Shows You Cant Always Patch Fast Enough,”

in Gartner FirstTake (FT-14-5524), vol. 19, 2001.
[35] S. David, and M. D. Ernst, “An experimental evaluation of continuous

testing during development,” in ACM SIGSOFT Software Engineering
Notes, vol. 29, pp. 76–85, 2004.

[36] A. Anwar, M. Mohamed, V. Tarasov, M. Littley , L. Rupprecht, Y.
Cheng, N. Zhao, D. Skourtis, A. Warke , H. Ludwig, D. Hildebrand, and
A. R. Butt, “Improving Docker Registry Design Based on Production
Workload Analysis,” in Proceedings of USENIX Conference on File and
Storage Technologies (FAST’18), 2018.

[37] S. Nathan, R. Ghosh, T. Mukherjee, and K. Narayanan, “CoMICon:
A Co-Operative Management System for Docker Container Images,” in
Proceedings of 2017 IEEE International Conference on Cloud Engineer-
ing (IC2E’17), pp. 116-126, 2017.

[38] “Kubernetes,” https://kubernetes.io, 2018.
[39] “Mesos,” http://mesos.apache.org, 2018.
[40] “Swarm,” https://docs.docker.com/engine/swarm, 2018.
[41] J. Thalheim, P. Bhatotia, P. Fonseca, and B. Kasikci, “Cntr: Lightweight

OS Containers,” in Proceedings of USENIX Annual Technical Confer-
ence (ATC’17), 2018.

[42] N. Chau and S. Jung, “Dynamic analysis with Android container:
Challenges and opportunities,” in Digital Investigation, 2018.

[43] R. Morabito, “Virtualization on Internet of Things Edge Devices With
Container Technologies: A Performance Evaluation,” in IEEE Access,
vol. 5, pp. 8835-8850, 2017.

[44] K. Lee, Y. Kim, and C. Yoo, “The Impact of Container Virtualization on
Network Performance of IoT Devices,” in Mobile Information Systems,
2018.

[45] D. Abts, B. Felderman, “A Guided Tour of Datacenter Networking,” in
Communications of the ACM, vol. 55, pp. 44–51, 2012.

[46] C. Zheng, L. Rupprecht, V. Tarasov, D. Thain M. Mohamed, D. Skourtis,
A. Warke, and D. Hildebrand, “Wharf: Sharing Docker Images in a
Distributed File System,” in Proceedings of ACM Symposium on Cloud
Computing (SoCC’18), 2018.

[47] K. Wang, Y. Yang, Y. Li, H. Luo, and L. Ma, “FID: A Faster Image
Distribution System for Docker Platform,” in Proceedings of 2017 IEEE
2nd International Workshops on Foundations and Applications of Self*
Systems (FAS*W’17), pp. 191-198, 2017.

