FastBuild: Accelerating Docker Image Building for
Efficient Development and Deployment of Container

Zhuo Huang!, Song Wu'*, Song Jiang? and Hai Jin!
' National Engineering Research Center for Big Data Technology and System

LServices Computing Technology and System Lab, Cluster and Grid Computing Lab

LSchool of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China

2Department of Computer Science and Engineering, University of Texas at Arlington, Texas 76019, U.S

Y Lhuangzhuo, wusong, hjin}@hust.edu.cn 2song.jiang@uta.edu

Abstract—Docker containers have been increasingly adopted
on various computing platforms to provide a lightweight vir-
tualized execution environment. Compared to virtual machines,
this technology can often reduce the launch time from a few
minutes to less than 10 seconds, assuming the Docker image
has been locally available. However, Docker images are highly
customizable, and are mostly built at runtime from a remote
base image by running instructions in a script (the Dockerfile).
During the instruction execution, a large number of input files
may have to be retrieved via the Internet. The image building
may be an iterative process as one may need to repeatedly modify
the Dockerfile until a desired image composition is received. In
the process, every input file required by an instruction has to be
remotely retrieved, even if it has been recently downloaded. This
can make the process of building of an image and launching of
a container unexpectedly slow.

To address the issue, we propose a technique, named FastBuild,
that maintains a local file cache to minimize the expensive file
downloading. By non-intrusively intercepting remote file requests,
and supplying files locally, FastBuild enables file caching in a
manner transparent to image building. To further accelerate the
image building, FastBuild overlaps operations of instructions’
execution and writing intermediate image layers to the disk. We
have implemented FastBuild. And experiments with images and
Dockerfiles obtained from Docker Hub show that the system can
improve building speed by up to 10 times, and reduce downloaded
data by 72%.

Index Terms—Docker, container, image building.

I. INTRODUCTION

Container, such as Docker [16], has become increasingly
popular. It is a lightweight kernel virtualization technology
as an alternative to traditional virtual machines [1], [2], [13],
[14], [19]-[22], [32]. The process of launching a container
entails creation of an isolated process space, allocation of
required resources, and mounting image data. Because Docker
container shares the system kernel with the host machine, its
initialization of namespace for virtualization and Cgroup for
resource restriction is fast [1], [3], [6], [10], [18], [19]. As
a result, launching a container instance can be expected to
take only a few seconds, or even as low as less than one
second, much faster than that for virtual machines, which
may take several minutes. This makes quick deployment of a
large number of container instances possible. Such efficiency

is especially desired in a DevOps environment where frequent
deployments occur. In the meantime, DevOps also requires
repeated adjustments and testing of container images. An
image is often iteratively re-built before and after a container is
launched from it. To support flexible customization of images,
Docker adopts a mechanism to build images at the client side.
An image can be built by running a Dockerfile, which is
a script containing instructions for building an image, from
a base image that provides basic and highly customizable
execution environment. Base images are collected at Docker
Hub, the official container image registry, and are available
for downloading.

Therefore, to truly enable fast launching of Docker contain-
ers Docker must allow efficient building of user-customized
images. However, even after a base image has been down-
loaded, image building can be much slower than expected.
When instructions in the Dockerfile are executed at a local
server, often a large number of input files are required, and
these files have to be retrieved from remote servers from the
Internet. For example, running instructions in a Dockerfile
named “docker—dev” available in the Docker Hub to build a
Docker image from the base image named “ubuntu:14.04”
requires retrieval of 486 remote files with a total size of 1.9GB,
which takes 283 seconds, or 77% of the entire image building
time as measured in our experiments (the experiment setup
will be detailed in Section II).

Apparently, in many cases when images need to be built
before their deployment, remote retrieval of input files is a ma-
jor source of inefficiency in the image building process. With
wide adoption of Dockerfiles for on-site creation of images for
deployment and the need of iterative image development in the
DevOps environment, image building if often on the critical
path of launching a Docker instance. Therefore, it is important
to minimize the expensive file retrieval operations. If the image
building can be accelerated, there will be significant benefits,
including that containers can be upgraded instantly [11], [12],
[26], [28], [30], that image updates can be completed quickly
when there is a security issue [3], [14], [35], and that users can
easily build containerized applications [14], [25], [29], [34].

In this paper we will show that during building of images

there exist a large number of re-used input files, which
warrants use of local buffer to cache recently accessed files to
avoid unnecessary remote file retrievals. While this approach,
named FastBuild, has its substantial potential to improve
efficiency of image building, there is a significant challenge
in its design. As a new feature of containers, represented
by Docker, FastBuild does not run within Docker’s instance,
while execution of Dockerfile’s instructions is within the
instance, which generates requests for input files. As Docker
does not generate the file requests, it cannot make the critical
knowledge on what input files are requested available to
FastBuild. Instead, FastBuild has to non-intrusively obtain it
for caching files and redirecting requests to the cache should
hits are detected.
In this paper we make three major contributions.

1) We extensively study how frequently input files are re-
accessed in the building of Docker images and reveal
opportunity of maintaining a local file cache for accel-
erating the process.

2) We propose and design FastBuild, a file caching function
seamlessly integrated in Docker to transparently inter-
cept and redirect requests for input files to minimize
remote file access. FastBuild ensures that the buffer will
supply only up-to-date files. To further accelerate image
building, FastBuild overlaps the image writing operation
and instruction execution, and enables local building of
base images.

3) We prototype FastBuild in Docker 17.12 and extensively
evaluate its impact on speed of Docker image building.
The experiment results show that almost 72% of the du-
plicated data can be avoided for downloading, improving
image building speed by 3.1-7.0x with a high network
bandwidth, up to 10.6x with a low network bandwidth.

The rest of this paper is organized as follows. Section II
elaborates the background and motivation of building images
for Docker. Design of FastBuild is described in Section III.
Section IV evaluates the FastBuild. Section V discusses the
related work. And Section VI conclusions.

II. BACKGROUND AND MOTIVATION
A. Building of Docker Image

To launch a Docker container instance, a user needs a
locally available Docker image. Docker users often use the
official Docker container image registry, Docker Hub [15],
to obtain and share images. There are two manners for an
image to be presented and shared at the hub. One is in
the form of a set of fully-built ready-to-use image files. A
Docker image is composed of multiple layers by using union
mounting technology [33]. And each file corresponds to a
layer. An image layer file is produced when a user completes
his operations in a container instance, and saves the instance
by using the “commit” command.

The other is in the form of “recipe” and “ingredients”.
The recipe is named Dockerfile, which is a text file with
lines of instructions. Docker provides 17 commands in Docker

v17.12 [16] to create various instructions with selected argu-
ments. In the process of building a customized Docker image,
the instructions are executed in container instances line by
line. Execution of each line of instruction(s) produces a branch
(or a directory) in the instance’s overlay file system, such as
Unionfs [33]. Each corresponds to a layer in the container’s
image. In particular, in the layered image structure, the later
generated layers are laid on top of earlier generated layers.
And their data, in the form of files in one of instance’s
directories, overlaps corresponding data in the lower layers.
The layer at the bottom is named base image layer, and
presented in the Docker Hub as a tar file. In addition to
the recipe, ingredients are needed to build an image. They
consist of the base image and input files. During execution
of an instruction in a container instance, a substantial number
of input files may be requested. For successfully building of
an image, the files have to be available and up-to-date. The
current practice is to specify these files’ locations at some
well-maintained servers on the Internet, and to retrieve them
directly from the Internet at runtime. This can significantly
slow up an image’s building process.

The second manner is the most popular way to obtain and
share Dockers images, as it clearly discloses an image’s com-
position, makes sure the most up-to-date images are generated
at user sites, and allows users to conveniently customize an
image with easy adjustments, such as editing environment
variables or instruction arguments. In this approach Docker’s
containers can be both lightweight and highly configurable. In
fact, this is Docker’s officially recommended way of obtaining
images from its Docker Hub [15].

B. Reducing Remote File Access

As both ingredients are remotely retrieved, it can take a long
time period to make image locally available and its container
instance ready for use. When image provisioning becomes a
bottleneck for starting a Docker container, one of container
technology’s major advantages, which is fast launching of
Docker container instances, is weakened. Google Borg reveals
that the file-system provisioning time takes about 80% of the
total container deploying time. And the median provisioning
time is approximately 25 seconds [17]. To ameliorate the issue,
Docker has allowed reuse of image layers, as long as the layer
to be built is exactly the same as an image layer that is locally
available. The reusable layer is identified by knowing that
their immediately lower layers are the same and their lines
of instruction(s) in the Dockerfile to generate the next layers
are the same. However, when one instruction is modified,
the corresponding layer and any layers above it cannot take
advantage of the reuse mechanism.

Recognizing severity of the issue, a recent work, Slacker,
attempts to leave most of remote file retrieval and image
building out of the critical path of an instant launching
process [1]. It sets up a container file system according to
an image on a Tintri VMstore server and makes it accessible
over the network. To start the image launching process, one
only needs a small set of data in an image. Slacker modifies

the Docker image structure by identifying and marking these
data, so that only the data will be retrieved to make the instance
quickly launched. Additional image data will be lazily pulled
from the VMstore only when they are requested. Though this
approach can significantly reduce container launching time,
it is not compatible with the Docker Hub framework, and
thus is not a general-purpose solution. It requires specialized
image formats, and the support of a particular VMstore to
leverage its file cloning and snapshotting mechanisms. In this
work, we aim to provide a generic solution that well fits in
the Docker’s environment by making most input files required
in an image building locally available. This is achieved by
caching previously used input files.

C. Locality of Input Files

Once a majority of inputs can be accessed locally, building
an container image instance would require only a small amount
of Internet access and becomes faster. The success of the
caching strategy relies on existence of substantial locality in
the access of input files for building different images.

To investigate the locality, we pulled 137 most downloaded
official basic images by June 21, 2018 (each downloaded
more than 100,000 times at Docker Hub [15]). They are
categorized into six groups, as shown in Table I. We also
collected all certified images (a total of 2746) that are built
iteratively based on these base images from Docker Hub, then
divided these images into 137 groups according to the base
images they are built on. An image group usually comes
with 13-30 Dockerfiles, each representing a version of the
images derived from a base image. For example, the php
base image has 20 versions, such as 5.0, 5.6, and 6.0. There
are two scenarios for the locality to occur during the use of
the Dockerfiles. One is that a user needs to iteratively re-
configure a Dockerfile after the initial image building and
instant launching for customization to his preferred setup.
For example, an instruction in an Dockerfile for changing the
network port is EXPOSE 80. A user may want to change
it to EXPOSE 8080 network setup, and re-build the image
after the editing. In another scenario, a user may need to
change the working directory of the container. Accordingly,
he changes the instruction “WORKDIR /usr/local” to
“WORKDIR /var” and re-builds the image. This kind of
Dockerfile changes can be minor, and the set of its input files
rarely change. At the granularity of image layer, the access
locality may not show up at all. However, input files accessed
in the initial building are very likely to be reused in the re-
rebuilding process. And A very strong locality is expected in
the file accesses.

Another representative scenario for the locality to occur
is that users need to upgrade his image version or choose
a preferred version among a few with repeated testings. To
get an idea on how strong the locality can be, for a series
of versions of a base image’s Dockerfiles we sequentially
build the corresponding images in the ascending order of their
version numbers. We assume existence of a cache to collect
input files requested during building of previous versions, and

TABLE I
137 MOST POPULAR BASE IMAGES IN THE DOCKER HUB CATEGORIZED IN
SIX DIFFERENT USE GROUPS

Categories Images” Name

Linux Distro alpine, busybox, amazonlinux,
centos, mageia, oraclelinux,
cirros, crux, debian, fedora,
opensuse, neurodebian,
ubuntu, ubuntu-debootstrp,
ubuntu-upstart, ros, clearlinux,
sourcemage, photon

influxdb, arangodb, orientdb,
cassandra,elasticsearch,
memcached, crate, neo4j,
mariadb, couchdb, couchbase,
mongo-express, mysql, percona,
postgres, redis, rethinkdb,
mongo, aerospike

clojure, gcc, groovy, bash,
golang, jruby, python

haskell, hylang, java, openjdk,
julia, mono, perl, php, pypy,
r-base, rakudo-star, ruby, thrift,
ibmjava, swift, haxe, julialang,
fsharp, erlang, elixir, rust,
nginx, kong, glassfish, tomee,
websphere-liberty, httpd, iojs,
jetty, php-zendserver, tomcat,
django, kibana, node, rails,
storm, rapidoid, lightstreamer,
redmine, haproxy, telegraf,
kapacitor, zookeeper, flink,
irssi, celery, hipache, notary,
traefik, eclipse-mosquitto,
mediawiki, known, nuxeo,
gazebo, backdrop, xwiki
plone, geonetwork, convertigo,
ghost, joomla, rocket.chat,
wordpress, drupal, mextcloud,
owncloud, jenkins, rabbitmgq,
odoo, nats, nats-streaming,
solr, sonarqube, piwik,

znc, bonita, eggdrop, spiped,
composer, docker, gradle,
kaazing-gateway, vault, registry,
logstash, swarm, buildpack-deps,
maven, docker-dev, voice-gateway,
chronograf, sentry

Database

Language

Web Component

Application Platform

Other

measure the hit ratio of the cache for building the image with
the highest version number. Figure 1 shows the hit ratio in
terms of file count and amount of data in the hit files for
each of the 137 image groups’ Dockerfiles. As shown in the
figure, there are around 80-90% of the data in the input files
are hit in the cache, suggesting that most of the input file data
are locally available during building of the image. In another
assumed scenario, the median version is built when input files
of its four previous versions have been stored in the cache. The
hit ratios are shown in Figure 2. As shown, with input files for
building only four previous versions of images are available
in the cache, the hit ratio in terms of data amount is around
60-80%, which is still significant. We also measure overlap of
input files for building two Dockerfiles’ images from different
groups. We find that even in these unrelated images, there
is often around 30% overlap of input data. Apparently for a

server where many images have been built, it is likely that
most of input files required for building a new image can be
locally available if a cache is maintained to store all the history
input files.

100
© Data Amount
S 4 File Count
920 o 2 00 o 2
Pboo LI % .!"'. e s B J \
— R '] gof RS X
§ W V% L
2 $ oYy 158 y |
i) 1é
T |
T 20| " ' TR :
= (244 8 i : {
) Y,
I y 1'1 "" " d Y ‘ ’D Ty
60 !
-
50
1 11 21 3 41 51 61 71 81 91 101 111 121 131
Base Images

Fig. 1. Hit ratios in terms of file count and data amount for the highest
version among all versions for each of the 137 base images’ Dockerfiles.

100
© Data Amount

File Count
90

80

70 ME ol YRl

Hit Ratio (%)

60

50 B Al LAAAR QAL A W
1S \ v “"‘ N

AR\ N
91 101 111 121 131

40
1 11 21 31 41 51 61 71 81

Base Images

Fig. 2. Hitratios in terms of file count and data amount for the median version
among all versions for each of the 137 base images’ Dockerfiles assuming
input files for building its four previous versions of images are in the cache

To understand implication of substantial reuse of the input
files, we measure and compare the time used for building an
image and that for retrieving all required remote input files.
As shown in Figure 3, consistently more than 60%, 71% by
average, of the image building time is spent on the remote
input file access. By removing a majority of the remote file
access, we expect a significant improvement of the image
building time.

III. DESIGN OF FASTBUILD

We use our findings to design a new caching component,
named FastBuild, that can seamlessly fit into the Docker
framework to enable fast image building without requiring
any special hardware supports or modification of stock Docker
images. FastBuild includes three components to accelerate
the process of image building. First, it uses a fine-grained
caching mechanism. Instead of using image layer caching,

FastBuild caches input files to make full use of local image
data aiming to significantly remove remote file retrieval time
from image building time. Second, FastBuild overlaps opera-
tions of instructions’ execution to further accelerate the image
building. Third, instead of pulling base images from Docker
Hub, FastBuild quickly builds base images locally by taking
advantage of locally available input files.

@200 §
O 150 §
ig100 § % § §
\ R R R
o NE B B B

Platform Other

Distro

Dbase Language Web

Fig. 3. Comparison of the times for image building and for retrieving remote
input files. Each time is an average over all the times for different Dockerfile
versions of different base images in a base image group

A. The Design Challenge

While the idea of setting up a local cache for collecting
input files when they are retrieved from the Internet and then
supplying them locally when they are requested again for
image building is straightforward, a major challenge is to
implement it in the existing Docker’s framework in a non-
intrusive manner. In particular, the solution should not require
any changes of content and format of Docker images, and
Dockerfiles, layered union file system, or the image building
process.

The key technique is to obtain requests for input files and
re-direct them to FastBuild for processing transparently in the
existing image building process. The Docker image building
process is orchestrated by the Docker Daemon, which retrieves
the base image and a Dockerfile. It will build the image layer
by layer, starting from the base image. A new layer is built on
top of an existing layer, which corresponds to an image file. To
build the new layer, the Daemon creates a container instance
using the image layer file. It also reads the corresponding line
of instruction(s) from the Dockerfile and runs the instruction(s)
in the container. For example, if the line is “RUN apt-get
install gcc” for installing gcc software packages, the
Daemon sends the instruction “apt-get install gcc”
to the container and runs it. Requests for input files are
generated in the container executing the instruction. When the
execution is completed, the Daemon commits the container
to an image file about the new layer and the container is
destroyed. These steps are repeated for each line of the
Dockerfile to produce the corresponding image layer.

We can see that the Docker Daemon is only responsible for
initializing an instruction execution environment (the container

instance) and writing back an image layer. It does not know
what input files are requested in the execution.

To obtain the knowledge about input files, one seems to have
to understand and be involved in the instruction execution.
However, once such a facility was built into the execution
environment, FastBuild would not be a generic solution, and
it would leave footprints in the file system and pollute contents
of the resulting image file. To address the issue, we need to be
minimally involved in the container environment as long as the
requests for input files can be obtained. Therefore, FastBuild
only has its presence in the container’s network component.

B. Interception of Requests for Input Files

A Docker container isolates its resources into different
Linux namespaces, including Mount, UTS, IPC, PID, User,
and Network namespaces. Among them, the Network names-
pace isolates the container’s virtual network device and IP
address from the server’s physical network device. By having
a FastBuild process in a namespace that is independent of
other namespaces, such as the Mount namespace for isolation
of file system, FastBuild cannot access the image data in the
file system.

FastBuild has one daemon process in the entire system and
communicates with the Docker Daemon. Whenever the Docker
Daemon launches a container to build an image, FastBuild’s
daemon generates the aforementioned process and places it
into the container’s Network namespace. To this end, FastBuild
obtains the container’s name and resolves the name to get
the id of the main process (init) in the container by using
the Docker API interface (Step 1 in Figure 4). By reading
the process’s proc file system (Step 2), FastBuild knows the
container’s Network namespace. It then forks a child process
and attaches it to the namespace by calling the setns ()

system call (Step 3).

of e

ol s |
- FastBuild
® (@)

Fig. 4. Steps for FastBuild to redirect requests for input files and to access
the cache

Container

®
®

Network
Namespace

Host
Process

Requests for input files generated by the instruction exe-
cution in a container are sent to the virtual network device
file (vethO0) in its Network namespace. The FastBuild child
process then intercepts the network requests by listening to
the file using system library 1ibpcap, and passes them to
the FastBuild daemon process running outside of the container
network namespace to serve requests. Sending data between
FastBuild’s daemon and child processes is enabled by using a
shared Unix pipe file.

When the daemon process receives the redirected requests,
it gets requested files’ URLs. For each requested file, it then
searches FastBuild’s local cache to see whether it is in the
cache (Steps 6-7). If it is, FastBuild will first read its last
modification time. It also generates a request for the file’s last
modification time at the server on the Internet specified by
its URL (Steps 4-5). Only when the two modification times
match, indicating the file in the cache is up to date, will the
file be retrieved from the cache and sent to the child process,
which will deliver it to the process running the instruction(s)
in the container using 1ibpcap. If the file is not in the cache
or the modification times do not match, the file is remotely
retrieved as usual. After receiving the file, FastBuild daemon
stores it into the local cache, possibly overwriting the out-of-
date file in the cache, and delivers it via the child process.

C. Overlapping Instruction Execution and Image Commitment

With a local cache for supplying input files from the
local disks, the image building process may become much
faster. With the reduced time of instruction execution, another
operation, which is to commit the data to the disk as a new
image file, can become substantial. In addition, repeatedly
launching and shutting-down containers, each for an image
layer, can be expensive. Especially, the average number of
instruction lines in a Dockerfile in the Docker Hub, or number
of layers in an image, is large (about 23). And the container
launching/shutting-down operation takes about 12% of the
total image rebuilding time.

Instructions

snapshot

1 | Execute ——> Commit ——— | Layer

—r

N .
N |
4 i

T snapshot
2 — Execute ————{ Commit —» Layer

R S

Fig. 5. Overlapping instruction execution and image commitment operations
and building multiple layers of an image in one container instance

To further reduce image building time, FastBuild overlaps
the instruction execution and image commitment times, and
uses only one container instance throughout the process of
building an image with a Dockerfile. To this end, the FastBuild
daemon intercepts the commit signal, which is sent from the
Docker Daemon upon completion of a line of instruction(s)
in the Dockerfile. After the FastBuild daemon takes over
the image building, it accesses the Dockerfile and issues the
remaining lines of instructions to the container for execution
and commitment.

As execution of the next instruction will be in parallel with
the image commitment, the daemon first makes a snapshot of
the data in the top layer (read-write layer) of the container’s
union file system by using the mksnap_ffs command.
To send the next instruction to the container for execution,
FastBuild identifies all namespaces, as it does for the Network

namespace, and sets the /proc/self/exe argument to
execute the instruction. In the meantime, the last layer of
the image is committed, as illustrated in Figure 5. Instruction
execution can proceed without being synchronized with the
commitment. Now all instructions are executed at the same
layer of the union file system. As a line of instruction(s) in
the Dockerfile corresponds to a layer in the image, FastBuild
takes a snapshot after executing each line of instruction(s).

D. Quickly Obtaining Base Image

Building one Docker image requires a base image. Docker
Hub hosts various base images as compressed files for faster
downloading. However, it needs to be decompressed after
downloading at a user’s server. For a typical base image size
of 500MB, it may take around 5 seconds for the decom-
pression with the CPU being fully occupied. Alternatively, a
base image can be made available faster by leveraging the
previously described optimization techniques (caching input
files and overlapped instruction execution/image commitment)
to locally build it. Fortunately, in Docker Hub each base
image comes with its Dockerfile. FastBuild can download the
Dockerfile, instead of the base image itself, and build the
image.

IV. EVALUATION

In this section, we evaluate performance of the FastBuild
system, in particular, the performance impact of techniques
of caching input files and overlapping instruction execu-
tion and image commitment operations. All the performance
measurements are made on a host machine with 2.3 GHz
Xeon CPUs(ES-2620), 64GB RAM and one Intel Gigabit
CT PCIE Network Adapter (EXPI9301CTBLK), and a hard
disk (West Digital WD60PURX) with its write and read
throughput of 190MB/s and 240MB/s, respectively. All images
and Dockerfiles were obtained from the official Docker Hub
and during the time period from 12/5/2018 to 12/8/2018
when the experiment measurements reported in the paper were
collected. The server was connected to the Internet via China
Education and Research Network (CERNET) with a measured
download bandwidth of 930.23Mbps and upload bandwidth of
820.08Mbps.

FastBuild is prototyped by instrumenting source code of
Docker 17.12. It is implemented using about 2600 lines of
Go code. Among them, approximately 300 LoC are in the
Docker server module for redirecting the Dockerfile instruc-
tions. About 500 LoC are responsible for optimizing container
runtime in the Docker core engine module. Rest of the code
is for cache lookup and matching. In the implementation, to
obtain environment variable info, such as init process id
and namespace id, we use Linux’s system syscalls, rather than
Docker’s APIs for similar functionalities, for higher portability
as Docker’s API is likely to be updated.

A. Build and Launch Time

Each of the 137 popular base images listed in Table I has
a set of about 13-30 Dockerfiles. Each Dockerfile in a set has

a version number. For a set of the Dockerfiles, in the order
of their version numbers one at a time, we build an image
by executing a Dockerfile and launching the corresponding
container. In the experiments about FastBuild the base image
is also built using its Dockerfile, instead of being directly
downloaded. In contrast, for the stock Docker the base images
are downloaded. At the beginning of the series of experiments
for a base image’s Dockerfiles, we always clear the cache to
give it a clean start. Figure 6 shows the aggregate build and
launch times for the sequence of Dockerfiles in a set for a base
image with the stock Docker and with FastBuild for each of the
137 image groups. To understand contribution of FastBuild’s
individual techniques, the figure also shows the times for
FastBuild with only input file caching and that with only
overlapping of instruction execution and image commitment.

As shown, though the time for different image group’s
Dockerfiles can be very different (from 63 seconds to 208
seconds), FastBuild consistently takes about only 25% of
the time, or is about 4X faster. For example, for the base
image Nginx with 27 Dockerfiles, the total build and launch
time for the stock Docker and FastBuild are 198 and 51
seconds, respectively. The improvements are significant. In
terms of individual techniques’ contributions, the figure shows
that caching contributes about 2/3 of the improvement and
overlapping contributes the remaining.

250

Stock Docker

Overlapping

Caching

200 FastBuild(Caching&Overlapping)

150

100

50

Build & Launch Time (S)

0

1 11 21 31 41 51 61 71 81
Base Images

91 101 111 121 131

Fig. 6. The build and launch time for each sequence of Dockerfiles associated
with a base image. The times for each of the 137 base images are shown for
the stock Docker, FastBuild with only overlaping technique, FastBuild with
only caching technique, and FastBuild with both techniques. The base images
are shown in the order as they appear in Table I

To further understand the contribution made by removing
remote access of input files, we show the build and launch
time for each Dockerfile in the set of Dockerfiles with the
zookeeper image. The experiment is carried out in order of
their version numbers, so are the times presented in the Fig-
ure 7. As expected, time reduction (or the time gap between the
two curves in the figure) keeps increasing. When more images
are built, more input files are added into the cache. When the
cache warms up, it has a higher hit ratio and removes more
remote file access out of the critical path. Another observation
is that major portion of the performance benefit from caching
is achieved after execution of only a few Dockerfiles. For

400
. Stock Docker
& .
D 0 FastBuild
(0]
£
|_
= 240
[}
[
3
| 160
o
2 8
= 0
m

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Image Versions

Fig. 7. The build and launch times of the stock Docker and FastBuild for
the set of Dockerfiles associated with the zookeeper image.

example, after execution of six Dockerfiles, FastBuild is 3.2X
faster than the stock Docker. But after execution of twenty-
six Dockerfiles it is only 4X faster. This indicates that the
caching can become effective on the execution of a Dockerfile
after building only a few Dockerfiles belonging to the same
base image, which is a common scenario in the use of Docker
containers. To confirm this, in Figure 8 we further show the
time for the last Dockerfile in each sequence of Dockerfiles
associated with each of the 137 base files when only 1, 2,
4, 6, 8, or 10 Dockerfiles preceding to the last one have
been executed to warm up the cache. While only one or
two previous executions are not sufficient, execution of six or
more previous versions of Dockerfile obtains more than 90%
of the benefit. This is an encouraging result, demonstrating
that FastBuild’s performance advantage can be easily realized.
Note that if a Dockerfile is executed again after a small change,
the second execution is likely to receive almost of its requested
input files from the cache.

200

Fastbuild(1) FastBuild(2)
FastBuild(4) FastBuild(6)
— FastBuild(8) — FastBuild(10)

160 |=—-FastBuild(all)

120

80

© A MN\N AV 4 \/\LVW\}WWW\/

o~
e

Build & Launch Time (S)

1 11 21 31 41 51 61 71 81 91 101 111 121 131

Base Images

Fig. 8. The build and launch time for the last Dockerfile in each sequence
of Dockerfiles associated with each of the 137 base files when only 1, 2, 4,
6, 8, or 10 Dockerfiles preceding to the last one have been executed.

B. Remotely Downloaded Data

In the stock Docker, building an image needs to download
base images and input files. With FastBuild, base image is
not downloaded any more, and only input files missing in
the cache are. Figure 9 shows the amount of data down-
loaded in the stock Docker and FastBuild for executing each
sequence of Dockerfiles with each of the base images. As
mentioned Docker supports image-layer caching. A image-
layer file can be re-used (without rebuilding it) if both the
lower-layer image and the instruction for building the current
layer match. However, such a reuse may be unsafe as the
execution outcome may also rely on the execution environment
(e.g., RUN apt-get update) that may change. Using an
out-of-date image layer may lead to unexpected execution
behavior. To this end, some users may opt to turn off the
Docker’s caching option. Therefore, Figure 9 also includes
results for Docker without the caching function.

As shown in Figure 9, FastBuild can significantly reduce
amount of remotely downloaded data. This reduction is pos-
itively correlated to the improvement of the container’s build
and launch time shown in Figure 7. The average amount of
downloaded data for building one image with the stock Docker
is 784.6 MB. If its image-layer caching function is turned off,
the amount increases to 1073.2MB. When FastBuild is used,
the amount reduces to only 220.5MB, representing 71.9% and
79.5% reduction, respectively.

2500

Stock Docker(No Cache)
Stock Docker

2000 FastBuild

1500

1000

Data Size (MB)

500

o
1 11 21 31 41 51 61 71 81 91

Base Images

101 111 121 131

Fig. 9. The amount of data downloaded in the stock Docker and FastBuild
for executing each sequence of Dockerfiles with each of the 137 base images.
For the stock Docker, results for turning off its option of image-layer caching
are also presented as “Stock Docker NoCache”.

Figure 10 shows the amount of remotely downloaded data
when the last Dockerfile in each base image’s Dockerfile
sequence is executed, assuming different number of preceding
Dockerfiles have been executed. These results correspond to
those about build and launch time presented in Figure 8.
Results in the two figures are consistent. As long as there are
six or more previous versions of the Dockerfile have been built
to warm up the cache, a majority amount of downloaded data
can be obtained locally. The high cache hit ratio indicates high
redundancy among input files of building different images,

which suggests that space demand on the cache is limited.
For example, after we build all eight Dockerfiles associated
with the popular base files listed in Table I, the cache size
is 9.59GB. Considering the abundant space in today’s disks,
we do not impose a size limit on the cache. If indeed there is
such a need, it will be a minor effort by applying a replacement
algorithm such as LRU to enforce a space limit.

1500

FastBuild(1)
FastBuild(2)
FastBuild(4)
1200 FastBuild(6)
— FastBuild(8)
— FastBuild(10)
900 | — FastBuild(all)

600

| fr SR

1 11 21 31 4 51 61 71 81

Data Size (MB)

0
91 101 111 121 131

Base Images

Fig. 10. The amount of data remotely downloaded during building the last
Dockerfile in each sequence of Dockerfiles associated with each of the 137
base files when only 1, 2, 4, 6, 8, or 10 Dockerfiles preceding to the last one
have been executed.

C. Impact of Network Bandwidth

For a software system whose performance heavily depends
on the Internet performance, the network can have a major
impact. Current process of building and launching of a Docker
image is sensitive to the network performance, as often
hundreds of megabytes or even a few gigabytes of data for
input files and a base image have to be retrieved from the
Internet. The environment where a Docker image is built and
launched varies. It can be a well-equipped data center with
1 Gbps or multi-Gbps Internet access. It may be a small lab
or office environment with under 1Gbps bandwidth. It can
even be mobile computing devices at the edge of Internet
with the bandwidth usually less than 20Mbps. Actually with
increasingly more applications hosted on smartphones and
with the accelerated development of the Internet of Things, the
container-based lightweight virtualization technology is gradu-
ally being adopted in the devices [42]-[44], [46]. Accordingly
mobile devices with limited Internet access bandwidth can
be a common use environment for the container techniques.
Therefore, we evaluate the bandwidth’s impact on FastBuild’s
relative performance advantage by varying the speed of the
network. The actual bandwidth is around 1Gbps. To vary the
bandwidth, we use the tc command to limit the bandwidth
on the server’s network device.

Figure 11(a) shows the build and launch time for a sequence
of Dockerfiles associated with a base image. As expected, with
a higher bandwidth, the impact of the remote file downloading
is reduced and the stock Docker’s time becomes smaller. Fast-
Build’s relative performance advantage accordingly reduces.
For example, in terms of the time averaged over all the base

images, FastBuild is 3.1X faster than the stock FastBuild on
the 1Gbps network. In contrast, it is 4.9X and 7.0X faster
on the 100Mbps and 20Mps bandwidths, respectively. If very
low bandwidths (10Mbps or SMbps) are assumed (for mobile
devices), FastBuild can be 8.2X and 10.6X faster, respectively.
For the 5Mbps case, FastBuild reduces the average build
and launch time for one Dockerfile from 651 seconds to 62
seconds. This makes use of lightweight containers a viable
choice on bandwidth-constrained devices or Internet-limited
use environments.

1000

Stock-20Mbps Stock-100Mbps Stock-1Gbps
FastBuild-20Mbps — FastBuild-100Mbps — FastBuild-1Gbps

800

—
) 600
=
[}
S
= 400
200 i
i AR
0
1 11 21 31 41 51 61 71 81 91 101 111 121 131
Base Images
(a) Higher Network Bandwidth
5000
Stock-5Mbps Stock-10Mbps
FastBuild-5Mbps FastBuild-10Mbps
4000
—
) 3000
=
[}
S
j= 2000
1000

0
1 11 21 31 4 51 61 71 81

Base Images

91 101 111 121 131

(b) Low Network Bandwidth

Fig. 11. Build and launch time for a sequence of Dockerfiles associated with
each of the 137 base images with different network speeds

V. RELATED WORK

As container is designed to be a lightweight virtual machine
technology, its performance is more sensitive to the cost
of downloading images and other data from the network.
Accordingly substantial efforts have been made to reduce the
cost to make it truly lightweight.

Among the efforts, Slacker aims to move the cost of
downloading image data out of the critical path of launching
a container as much as possible [1]. By observing that only a
small set of data are needed to launch a container instance and
much of other data are required only after the instance starts to
run, Slack modifies the image format and marks the essential

set of data. With support of dedicated image server, where
a full union file system associated each image is maintained,
Slacker leverages the lazy downloading technique to signifi-
cantly reduce the time for an instance to become available.
However, future data access may become slower as they will
be on-demand retrieved from the Internet. This technique is
not compatible with the Docker Hub framework and requires
support of specialized image server. In contrast, FastBuild is
fully compatible with the existing Docker container build and
launch framework, and can be readily adopted by existing
users. Furthermore, as most input files can be locally available,
especially if they are also buffered in the memory, the on-line
access of image data can be very fast and the lazy access
technique becomes less necessary.

The Docker Hub can become a performance bottleneck
when many users attempt to download images from it simul-
taneously. The FID scheme introduces a peer-to-peer (P2P)
technique to make downloaded images be shared across users.
However, as using Dockerfiles to build images on site is the
preferred method to launch containers, most of downloading is
for input files, rather than the base images and Dockerfiles, and
cannot be accelerated. Similarly, to ameliorate the performance
bottleneck at Docker Hub, the Anwar scheme prefetches base
images that are likely to be accessed from the disk to the
memory in the Docker Hub server, so that they can be quickly
supplied [36]. In contrast, with FastBuild only Dockerfiles,
which are very small, are downloaded from the Docker Hub,
making it less likely to be a performance bottleneck. In
addition, it avoids downloading (most) input files via Internet.

As an extension of Docker’s caching function for image
layers, the CoMICon [37] scheme makes the layers be shared
across servers in a cluster. By leveraging the cluster as a larger
and cooperative cache more data can be retrieved from the
local cluster. The Wharf scheme adopts a similar strategy [46].
It is a middleware in Docker to allow Docker image layers to
be shared among different Docker Daemons in a distributed
storage system. However, as we have shown, the hit ratio
in terms of image layer is usually low. Once one layer is
modified, all layers above it will be different. In contrast,
FastBuild exploits locality at the granularity of individual input
files, and makes rich opportunity of data reuse available to
enable fast local data access.

Because building an image from a base image can be
slow due to reasons such as downloading many input files,
the CNTR scheme separates core functionality data from the
image into a slim image, and leaves the remaining data in
a fat image [41]. In this way it can build a container from
a slim image, which can be much faster. However, if the
fat image is modified, the entire image has to be rebuilt
from the base image and the separation operation has to be
carried out again. In contrast, effectiveness of FastBuild only
depends on existence of locality of input files, which has been
demonstrated to be common.

VI. CONCLUSIONS

To retain container’s major advantage of being lightweight,
we propose FastBuild, a technique to transparently accelerate
Docker image’s building and launching process. An in-depth
analysis of the set of popular images in Docker Hub shows that
input files used in the image building represent a significant
build cost and are also likely to be reused. FastBuild is moti-
vated by the observation. Without changing the Docker’s sys-
tem architecture, it maintains a local cache and non-intrusively
intercepts and redirects request for the input files to the cache.
With real-world Docker base images and Dockerfiles, we
experiment with a FastBuild prototype system and show that
a significant percentage of remote access of input files can be
removed once a few previous versions of the image have been
built to warm up the cache. FastBuild also incorporates the
technique for overlapping execution of Dockerfile instructions
and writing back image layers to further improve efficiency
of image building. Experiment results show that compared
with the stock Docker, FastBuild can speed up the build and
launch process by up to 10x and remove 72% of remote data
downloading for the most popular images at Docker Hub.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their valuable
feedback. This work was supported by National Key Re-
search and Development Program of China under Grant
2016 YFB1000501 and National Science Foundation of China
under Grant No.61732010.

REFERENCES

[1] T. Harter, B. Salmon, R. Liu, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Slacker: fast distribution with lazy docker containers,” in
Proceedings of USENIX Conference on File and Storage Technologies
(FAST’16), pp. 181-195, 2016.

[2] M. Dirk,“Docker: lightweight linux containers for consistent develop-
ment and deployment,”, Linux Journal, 2014, pp.2.

[3] Z. Jun, Z. Jiang, and X. Zhen, “Twinkle: A fast resource provisioning
mechanism for internet services,” in Proceedings of IEEE International
Conference on Computer Communications (INFOCOM’11), pp. 802-
810, 2011.

[4] S. Constantine, C. Ramesh, P. Ben, C. Jim, L. Monica, and R. Mendel,
“Optimizing the migration of virtual computers,” in ACM SIGOPS
Operating Systems Review, vol. 36, pp. 377-390, 2012.

[5] E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter, A. C. Arpaci-
Dusseau, and R.H. Arpaci-Dusseau, “SOCK: Rapid Task Provisioning
with Serverless-Optimized Containers,” in Proceedings of USENIX
Annual Technical Conference, 2018.

[6] N. Bogdan, B. John, K. Kate, and A. Gabriel, “Going back and forth:
Efficient multideployment and multisnapshotting on clouds,” in Pro-
ceedings of International Symposium on High Performance Distributed
Computing (HPDC’11), pp. 147-158, 2011.

[71 Q. Chen, L. Liang, Y. Xia, H. Chen, and K. Hyunsoo, “Mitigating
Sync Amplification for Copy-on-write Virtual Disk,” in Proceedings of
USENIX Conference on File and Storage Technologies (FAST’16), pp.
241-247, 2016.

[8] K. Jayaram, C. Peng, Z. Zhang, M. Kim, H. Chen, and H. Lei,
“An empirical analysis of similarity in virtual machine images,” in
Proceedings of the Middleware Industry Track Workshop, 2011.

[9]1 A. Sergei, T. Bohdan, G. Franz, K. Thomas, M. Andre, P. Christian,
L. Joshua, M. Divya, O’K. Dan, and S. Mark, “SCONE: Secure Linux
Containers with Intel SGX,” in Proceedings of 12th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI’16), vol.
16, pp. 689-703, 2016.

[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

H. Stephen, D. Ayush, L. Aaron, M. Sean, M. Jose, Y. Yang, S. R.
Seelam, and T. Michela, “Resource Management for Running HPC
Applications in Container Clouds,” in Proceedings of International
Conference on High Performance Computing (HPC’16), pp. 261-278,
2016.

R. Kaveh and K. Thilo, “Scalable virtual machine deployment using VM
image caches,” in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis (SC’13),
2013.

C. Peng, M. Kim, Z. Zhang, and H. Lei “VDN: Virtual machine image
distribution network for cloud data centers,” in Proceedings of IEEE In-
ternational Conference on Computer Communications (INFOCOM’12),
pp. 181-189, 2012.

D. Rajdeep, A.R. Raja, and K. Dharmesh, “Virtualization vs container-
ization to support paas,” in Proceedings of 2014 IEEE International
Conference on Cloud Engineering (IC2E’14), pp. 610-614, 2014.

B. Tak, C. Isci, S. Duri, N. Bila, S. Nadgowda, and J. Doran, “Under-
standing Security Implications of Using Containers in the Cloud,” in
Proceedings of 2017 USENIX Annual Technical Conference (ATC’17),
Santa Clara, CA, pp. 313-319, 2017.

“Docker Hub,” https://hub.docker.com, 2018.

“Docker Docs,” https://docs.docker.com, 2018.

V. Abhishek, P. Luis, K. Madhukar, O. David, T. Eric, and W. John,
“Large-scale cluster management at Google with Borg,” in Proceedings
of European Conference on Computer Systems (EUROSYS’15), 2015.
V. Ben, G. Anoop, and R. Mendel, “Performance isolation: sharing
and isolation in shared-memory multiprocessors,” in ACM SIGPLAN
Notices, pp. 181-192, 1998.

M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, L. Timoteo, D.
Rose, and A. F. Cesar, “Performance evaluation of container-based virtu-
alization for high performance computing environments,” in Proceedings
of 21st Euromicro International Conference on Parallel, Distributed and
Network-Based Processing, pp. 233-240, 2013.

P. Max, F. Lena, and P. Andreas, “A Performance Survey of Lightweight
Virtualization Techniques,” in Proceedings of European Conference on
Service-Oriented and Cloud Computing (SOCA’17), pp. 3448, 2017.

B. David, “Containers and Cloud: From LXC to Docker to Kubernetes,”
in Proceedings of IEEE Cloud Computing, pp. 81-84, 2014.

M. Roberto, K. Jimmy, and K. Miika, “Hypervisors vs. lightweight
virtualization: a performance comparison,” in Proceedings of 2015 IEEE
International Conference on Cloud Engineering (IC2E’15), pp. 386393,
2015.

T. K. Kuppusamy, T. Santiago, D. Vladimir , and C. Justin, “Diplomat:
Using Delegations to Protect Community Repositories,” in Proceedings
of USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI’16), pp. 567-581, 2016.

A. Gulati, I. Ahmad, and A. W. Carl, “PARDA: Proportional Allo-
cation of Resources for Distributed Storage Access,” in Proceedings
of USENIX Conference on File and Storage Technologies (FAST’09),
2009.

W. Dietz, J, Cranmer, N. Dautenhahn, and S. A. Vikram, “Slipstream:
Automatic Interprocess Communication Optimization,” in Proceedings
of USENIX Annual Technical Conference (ATC’15), 2015.

R. Joshua, L. Oren, B. Eli, S. Alex, M. Vishal, N. Jason, and R. Dan,
“VMTorrent: scalable P2P virtual machine streaming,” in Proceedings
of International Conference on Emerging Networking Experiments and
Technologies (CoNEXT’12), pp. 289-300, 2012.

H. Yang, M. Song, and T. Li “Towards Full Containerization in Con-
tainerized Network Function Virtualization,” in Proceedings of Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS’17), pp. 467-481, 2013.

A. Samer, S. Dinesh, S. Prasenjit, and R. Matei, “VMFlock: virtual
machine co-migration for the cloud,” in Proceedings of International
Symposium on High Performance Distributed Computing (HPDC’11),
pp. 159-170, 2011.

M. Hibler, L. Stoller, J. Lepreau, R. Ricci, and C. Barb, “Fast, Scal-
able Disk Imaging with Frisbee,” in Proceedings of USENIX Annual
Technical Conference (ATC’03), 2003.

W. Romain, C. Tony, M. Belmiro, R. Ewan, G. Manuel, G. Sebastien,
and S. Ulrich, “Image distribution mechanisms in large scale cloud
providers,” in Proceedings of 2010 IEEE Second International Con-
ference on Cloud Computing Technology and Science (CloudCom’10),
2010.

(31]

(32]

[33]
[34]
[35]

[36]

[37]

(38]
[39]
[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

O. Steven, S. Dinesh, S. Gong, and N. Jason, “The design and imple-
mentation of Zap: A system for migrating computing environments,” in
ACM SIGOPS Operating Systems Review, vol. 36, pp. 361-376, 2002.
S. Stephen, P. Herbert, M. E. Fiuczynski, B. Andy, and P. Larry,
“Container-based operating system virtualization: a scalable, high-
performance alternative to hypervisors,” in ACM SIGOPS Operating
Systems Review, vol. 41, pp. 275-287, 2007.

“AUFS,” http://aufs.sourceforge.net/aufs.html, 2018.

P. John, “Nimda Worm Shows You Cant Always Patch Fast Enough,”
in Gartner FirstTake (FT-14-5524), vol. 19, 2001.

S. David, and M. D. Ernst, “An experimental evaluation of continuous
testing during development,” in ACM SIGSOFT Software Engineering
Notes, vol. 29, pp. 76-85, 2004.

A. Anwar, M. Mohamed, V. Tarasov, M. Littley , L. Rupprecht, Y.
Cheng, N. Zhao, D. Skourtis, A. Warke , H. Ludwig, D. Hildebrand, and
A. R. Butt, “Improving Docker Registry Design Based on Production
Workload Analysis,” in Proceedings of USENIX Conference on File and
Storage Technologies (FAST’18), 2018.

S. Nathan, R. Ghosh, T. Mukherjee, and K. Narayanan, “CoMICon:
A Co-Operative Management System for Docker Container Images,” in
Proceedings of 2017 IEEE International Conference on Cloud Engineer-
ing (IC2E’17), pp. 116-126, 2017.

“Kubernetes,” https://kubernetes.io, 2018.

“Mesos,” http://mesos.apache.org, 2018.

“Swarm,” https://docs.docker.com/engine/swarm, 2018.

J. Thalheim, P. Bhatotia, P. Fonseca, and B. Kasikci, “Cntr: Lightweight
OS Containers,” in Proceedings of USENIX Annual Technical Confer-
ence (ATC’17), 2018.

N. Chau and S. Jung, “Dynamic analysis with Android container:
Challenges and opportunities,” in Digital Investigation, 2018.

R. Morabito, “Virtualization on Internet of Things Edge Devices With
Container Technologies: A Performance Evaluation,” in IEEE Access,
vol. 5, pp. 8835-8850, 2017.

K. Lee, Y. Kim, and C. Yoo, “The Impact of Container Virtualization on
Network Performance of IoT Devices,” in Mobile Information Systems,
2018.

D. Abts, B. Felderman, “A Guided Tour of Datacenter Networking,” in
Communications of the ACM, vol. 55, pp. 44-51, 2012.

C. Zheng, L. Rupprecht, V. Tarasov, D. Thain M. Mohamed, D. Skourtis,
A. Warke, and D. Hildebrand, “Wharf: Sharing Docker Images in a
Distributed File System,” in Proceedings of ACM Symposium on Cloud
Computing (SoCC’18), 2018.

K. Wang, Y. Yang, Y. Li, H. Luo, and L. Ma, “FID: A Faster Image
Distribution System for Docker Platform,” in Proceedings of 2017 IEEE
2nd International Workshops on Foundations and Applications of Self*
Systems (FAS*W’17), pp. 191-198, 2017.

