
SDF: Software-Defined Flash
for Web-Scale Internet Storage Systems

Jian Ouyang Shiding Lin
Baidu, Inc.

{ouyangjian, linshiding}@baidu.com

Song Jiang ∗

Peking University and
Wayne State University

sjiang@wayne.edu

Zhenyu Hou Yong Wang
Yuanzheng Wang

Baidu, Inc.
{houzhenyu, wangyong03,

wangyuanzheng}@baidu.com

Abstract
In the last several years hundreds of thousands of SSDs have
been deployed in the data centers of Baidu, China’s largest
Internet search company. Currently only 40% or less of the
raw bandwidth of the flash memory in the SSDs is delivered
by the storage system to the applications. Moreover, because
of space over-provisioning in the SSD to accommodate non-
sequential or random writes, and additionally, parity coding
across flash channels, typically only 50-70% of the raw
capacity of a commodity SSD can be used for user data.
Given the large scale of Baidu’s data center, making the most
effective use of its SSDs is of great importance. Specifically,
we seek to maximize both bandwidth and usable capacity.

To achieve this goal we propose software-defined flash
(SDF), a hardware/software co-designed storage system to
maximally exploit the performance characteristics of flash
memory in the context of our workloads. SDF exposes in-
dividual flash channels to the host software and eliminates
space over-provisioning. The host software, given direct ac-
cess to the raw flash channels of the SSD, can effectively
organize its data and schedule its data access to better real-
ize the SSD’s raw performance potential.

Currently more than 3000 SDFs have been deployed in
Baidu’s storage system that supports its web page and im-
age repository services. Our measurements show that SDF
can deliver approximately 95% of the raw flash bandwidth
and provide 99% of the flash capacity for user data. SDF

∗ This work was performed during his visiting professorship at Peking
University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPLOS ’14, March 01 - 05 2014, Salt Lake City, UT, USA.
Copyright c© 2014 ACM 978-1-4503-2305-5/14/03. . . $15.00.
http://dx.doi.org/10.1145/2541940.2541959

increases I/O bandwidth by 300% and reduces per-GB hard-
ware cost by 50% on average compared with the commodity-
SSD-based system used at Baidu.

Categories and Subject Descriptors B.3.2 [Memory Struc-
tures]: Design Styles - mass storage (e.g., magnetic, optical,
RAID)

Keywords Solid-State Drive (SSD), Flash Memory, Data
Center.

1. Introduction
To accommodate ever-increasing demand on I/O perfor-
mance in Internet data centers, flash-memory-based solid-
state drives (SSDs) have been widely deployed for their
high throughput and low latency. Baidu was one of the first
large-scale Internet companies to widely adopt SSDs in their
storage infrastructures and has installed more than 300,000
SSDs in its production system over the last seven years to
support I/O requests from various sources including index-
ing services, online/offline key-value storage, table storage,
an advertisement system, mySQL databases, and a content
delivery network. Today SSDs are widely used in data cen-
ters, delivering one order of magnitude greater through-
put, and two orders of magnitude greater input/output op-
erations per second (IOPS), than conventional hard disks.
Given SSD’s much higher acquisition cost per unit capac-
ity, achieving its full performance and storage potential is of
particular importance, but we have determined that both raw
bandwidth and raw storage capacity of commodity SSDs, in
a range of performance categories, are substantially under-
utilized.

In the investigation of bandwidth utilization we chose
three commodity SSDs—Intel 320, Huawei Gen3, and
Memblaze Q520—as representative low-end, mid-range,
and high-end SSD products currently on the market. The
raw bandwidth of an SSD is obtained by multiplying its
channel count, number of flash planes in each channel, and
each plane’s bandwidth. The raw bandwidth of each plane
is mainly determined by the flash feature size and was dis-

SSD Type Interface NAND Type Channels Planes/ NAND speed Raw R/W Measured R/W
channel Bandwidths (MB/s) Bandwidths (MB/s)

Low-end SATA 2.0 25nm MLC 10 4 ONFI 2.x 300/300 219/153
Mid-range PCIe 1.1 x8 25nm MLC 44 4 40MHz async 1600/950 1200/460
High-end PCIe 1.1 x8 34nm MLC 32 16 ONFI1.x async 1600/1500 1300/620

Table 1. Specifications and bandwidths of different types of SSDs. “NAND speed” specifies the NAND flash interface, which
indicates the flash speed.

closed to us by the respective vendors. To obtain a device’s
peak read and write bandwidths we read or write data se-
quentially in erase-block units. Table 1 lists specifications
and read/write bandwidths of the SSDs with 20% over-
provisioning. As shown, the measured bandwidths range
from 73% to 81% for read, and 41% to 51% for write, of
the corresponding raw bandwidths. Interestingly, these ra-
tios are relatively constant ranging from the low-end drive
with the SATA 2.0 interface with maximum transfer rate of
300 MB/s, to the mid-range and high-end drives that cost
4-8 times more per unit capacity and use the PCIe 1.1 x8
interface with maximum transfer rate of 1.6GB/s. In prac-
tice the effective bandwidth received at the storage system
serving real-world workloads can be much lower because
I/O requests from upper-level software, such as file systems,
databases, and key-value stores, are usually not optimized to
generate SSD-friendly access patterns. The consequence is
that the realized I/O bandwidth of Baidu’s storage system is
only 50% of the raw bandwidth of the flash hardware.

Another challenge in Baidu’s web-scale storage system
is the large amount of reserved flash space unavailable for
storing user data. Space is reserved for two purposes: storing
parity coding across channels for data loss protection, which
accounts for approximately 10% of the flash space, and over-
provisioning for accommodating random writes. In the con-
ventional SSD architecture the amount of over-provisioned
space can be critical to performance. Figure 1 shows ran-
dom write throughput as a function of the over-provisioning
ratio for the low-end SSD that has been widely deployed in
Baidu’s data centers. Though 50% over-provisioning seems
to be excessive, 25% over-provisioning may be justified in
this SSD architecture because it can improve throughput
by 21% relative to 7% over-provisioning and by more than
400% relative to 0% over-provisioning. In our production
system the over-provisioning is usually configured between
10% and 40% depending on the workload characteristics
and performance requirements. For a workload with mixed
random writes and sequential reads, raising the ratio from
22% to 30% can result in an increase of sustained through-
put from less than 100MB/s to 400MB/s (more than 400%)
because the read throughput can be greatly degraded by
random writes triggering more frequent garbage collection
when there is less over-provisioning.

0

2

4

6

8

10

12

0% 7% 25% 50%

Th
ro

ug
hp

ut
 (

M
B

/s
)

Over-provisioning Ratio

Figure 1. Throughput of the low-end SSD (Intel 320) with
random writes of 4KB pages when various fractions of its
raw capacity are allocated as over-provisioned space.

Significant under-utilization of resources in a large data
center with hundreds of thousands of servers can have se-
vere implications in terms of both initial and recurring costs.
First, the hardware cost increases substantially because ad-
ditional device acquisition is required to make up for un-
exploited performance and capacity potential. Second, the
energy cost associated with additional hardware, such as
servers and cooling equipment, increases. Third, physical
space requirement increases. Finally, all of these contribute
to increased maintenance costs.

In building a large-scale data center on a limited budget
the common practice at major Internet companies such as
Google, Facebook, and Baidu has been to use a large number
of inexpensive commodity parts and servers that collectively
meet the performance and storage requirements. With in-
creasing performance requirements the system is expanded
by adding more parts and servers and consequently push-
ing hardware, energy, and maintenance costs ever higher. A
more economical strategy is to better exploit existing (and
future) resources wherever possible. This is especially ef-
fective for devices that are relatively expensive and whose
potential is significantly under-exploited, such as the SSD.
However, current software, including system software, usu-
ally has been extensively optimized for managing the de-
vices and extracting their maximum potentials as far as their
standard interfaces allow. To unlock their full potential the
devices need to be modified to provide an interface such
that the software can more directly access the devices’ in-

ternal operations, and interact with the devices in a manner
more friendly to their performance characteristics. This cus-
tomization has a cost barrier because new design and man-
ufacturing are needed. However, if the device is deployed in
large numbers (100,000+), the additional cost could be eas-
ily recouped. Accordingly, we should rethink the design and
implementation of SSDs used in a data center with its partic-
ular workload characteristics as opposed to general-purpose
use in, e.g., desktop and portable devices.

Baidu’s Software Defined Flash (SDF) project is such an
effort. By exposing the channels in commodity SSD hard-
ware to software and requiring the write unit to be of the
flash erase-block size, we can match the workload concur-
rency with the hardware parallelism provided by the multi-
ple channels and minimize the interference in a flash channel
serving requests from different threads, thereby exploiting
individual flash’s raw bandwidth. SDF requires the software
to explicitly initiate block erasure operations, and requires
the software erasure of a block before writing into it so that
the drive does not need to reserve space for internal garbage
collection. At the same time the system software can sched-
ule the erasures during a flash’s idle period to minimize their
effect on the service quality of regular requests. In addition,
we remove the parity coding across channels and, to min-
imize the possibility of data loss, rely on the system-level
data replication that is already in place for data persistence.
Together these make almost all raw flash space available for
storing user data.

In addition to the concerns about the performance and
cost of SSD, the SDF project is also motivated and enabled
by a significant workload characteristic in data centers sup-
porting Internet-wide services. Specifically, most write re-
quests are sequential and are issued in a unit much larger
than what conventional block devices assume (e.g., 4KB).
At one extreme, write requests by some major services can
be naturally sequential. For example, there are over 10,000
servers at Baidu for generating a large volume of index data
that is not subject to later modification, and sequentially
writing it to storage. At the other extreme, because serving
small write requests can be unacceptably slow and subse-
quent reads can be expensive due to an unmanageably large
body of metadata in a conventional file system, a common
practice is to direct small-write traffic to a storage system
managed as a log-structured merge (LSM) tree [16] such as
Google’s BigTable or Baidu’s CCDB. In such systems writes
are served in a unit as large as several megabytes. As a con-
sequence, imposing a write unit of erase-block size in SDF
does not demand significant software changes to accommo-
date the device’s new interface.

In summary, in this paper we make three major contribu-
tions:

• We propose SDF (Software Defined Flash), an SSD de-
vice with a customized architecture and interface sup-
ported by an FPGA-based controller, to allow the soft-

ware to realize its raw bandwidth and storage capacity.
This represents an effort to customize hardware to specif-
ically meet the requirements of the data center with re-
spect to system performance, cost, and maintenance, and
is distinct from today’s common practice of relying only
on the large number of commodity devices for system ca-
pability.

• To ensure that the raw bandwidth and space are fully
delivered to the applications, we deploy SDF mainly to
serve a major class of workloads involving large writes,
including dumping sequential index files into storage and
accessing storage for LSM-tree-style data management.
We demonstrate that for these major applications the
potential I/O performance can be attained with unso-
phisticated request scheduling strategies. Because of the
high concurrency exhibited by the workloads the exposed
multiple channels in SDF can be effectively exploited
for much higher bandwidth. In this sense SDF is moti-
vated by, and receives its name from, the software-shaped
workloads.

• We have implemented the SDF controller using the
Xilinx Spartan-6 FPGA in place of the commodity SSD
flash translation layer (FTL), and using the Xilinx virtex-
5 to implement its PCIe interface. SDF is installed in
more than 3000 servers now running in Baidu’s data cen-
ter and supporting the web page and image repository
services. Measurements on the production system show
that the SDF can deliver up to 95% of the raw bandwidth
while the commodity SSDs with a similar configuration
can only deliver less than 50% on these real-world work-
loads, and that the bandwidth is comparable to that of the
high-end PCIe-interfaced SSDs. In addition, SDF pro-
vides 99% of the raw flash capacity for user data, and
its per-GB cost is about 50% less than that of high-end
commodity SSDs used at Baidu.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the SDF design, including the hardware and
interface designs. Section 3 presents and analyzes experi-
mental results. Related work is presented in Section 4 and
Section 5 concludes.

2. Design of SDF
Each SDF consists of a customized flash device wrapped
with a layer of software providing an asymmetric block ac-
cess interface (8 MB write/erase unit and 8 KB read unit).
While the device provides multiple independent channels for
parallel access, it is the software layer that makes this func-
tionality accessible to applications and translates the hard-
ware parallelism into significantly improved throughput de-
livered to the applications. Next we describe SDF’s hardware
structure including its FPGA-based controller design, design
choices to reduce hardware cost, the design of the SDF in-
terface, and the use of SDF in Baidu’s storage system.

PCIEx8

Virtex-5

Spartan-6 Spartan-6 Spartan-6 Spartan-6

11 channels 11 channels 11 channels 11 channels

Figure 2. The hardware architecture of SDF.

Figure 3. Photograph of the SDF board.

2.1 SDF Hardware Structure
The SDF controller is composed of five FPGAs. A Xilinx
Virtex-5 FPGA is used as a data path controller to implement
PCIe DMA and chip-to-chip bridging as shown in Figure 2.
It connects to four Xilinx Spartan-6 FPGAs. Each Spartan-
6 FPGA implements an independent flash translation layer
(FTL) for each of its 11 channels. Each of the 44 channels
controls two Micron 25nm MLC flash chips—mainstream
NAND chips currently used in a wide range of commodity
SSDs. Each flash chip has two planes supporting parallel
access, and each chip has 8 GB capacity giving the SDF
device a raw capacity of 704GB.

To expose individual flash channels as independent de-
vices to applications, each flash channel has a dedicated
channel engine providing FTL functionality including block-
level address mapping, dynamic wear leveling, and bad
block management, as well as logic for the flash data path.
The block mapping table and erase count table for dynamic
wear leveling are stored in an on-chip SRAM exclusively ac-
cessed by the FPGA. A lookup into the block mapping table
requires only one clock cycle. The SRAM memory consists
of four SRAM banks that can be independently accessed.
Because the operation on the erase-count table is a time-
consuming search for the smallest count value, we distribute
the table across the banks to allow a parallel search. Figure 3
is a photograph of an SDF hardware board.

LB_IF
DDR
CTRL

DDR3

BCH

CH1_ENGINE
DDR3

Data_Path NAND_CTRL

LA2PA BBM DWL

CH0_ENGINE

CH9_ENGINE

CH10_ENGINE

NAND

......

NAND

NAND

NAND

Figure 4. Logic diagram of a Spartan-6 FPGA for accessing
a group of 11 channels in an SDF.

Figure 4 shows the logic diagram of the Spartan-6 FPGA
that manages the data path between the NAND flash and the
SDF interface. As shown, the local bus interface (“LB IF”)
is a chip-to-chip bus connecting to the Virtex-5 FPGA chip-
to-chip bridge. The bandwidth of the chip-to-chip bus is 16
times that available from each of the 11 channel engines.
To fully utilize the chip-to-chip bandwidth all the channel
engines share the same high-bandwidth data path, and data
into and out of each channel is buffered in a DRAM to
give more leeway in data transmission scheduling. Specif-
ically, we have two 512 MB DDR3 16-bit DRAMs run-
ning at 533 MHz under the management of a DDR mem-
ory controller between the LB IF and the channel engine. In
each channel’s dedicated controller (“CH ENGINE”) there
are modules for translating logical addresses to physical ad-
dresses (“LA2PA”), bad block management (“BBM”), and
dynamic wear leveling (“DWL”). To support applications de-
manding high IOPS, SDF adopts an interrupt reduction tech-
nique to reduce CPU load and thereby improve IOPS. SDF
merges interrupts for channel engines in the same Spartan-6
and then merges interrupts from all of the Spartan-6s in the
Virtex-5. With this merging, the rate of interrupts is only 1/5
to 1/4 of the maximum IOPS.

In the SDF, 59% of the logic area of each Spartan-6 is
used to implement its functionalities, of which 42% (25%
of total) is used for BCH codec for individual flash chips.
The Huawei Gen3 is a conventional SSD whose structure
is the same as that of SDF as described in Figure 2 and so
can be considered the predecessor of SDF. In comparison,
the Huawei Gen3 uses 70% of the logic area of the Spartan-
6. By removing logic for garbage collection, inter-chip par-
ity coding, and static wear leveling, SDF reduces the use of
logic space on the Spartan-6 FPGAs by 16%. The remaining
FPGA logic capacity in our design can be used for “comput-
ing in storage” as demonstrated elsewhere [17].

2.2 Reducing Hardware Cost
We have expended significant effort to reduce the hardware
cost of the SDF device by including features and function-
alities only when they are proven truly necessary in the en-
vironment for which they were designed. This is in contrast
with the design of commodity SSD intended for serving vari-
ous workloads covering a large spectrum of characteristics in
terms of request operation (read or write), request size, and
request locality. In particular, because of flash’s out-of-place
data update, in the design of commodity SSD substantial at-
tention has been paid to the optimization of logic for effec-
tively serving small writes, which are associated with ex-
pensive garbage collection operations and carry a significant
performance implication. In favor of reduced cost, stream-
lined design, and much improved performance over versa-
tility, we omit a number of features implemented by con-
ventional SSDs from the SDF design. This simplification
also enabled a complete production-quality design in only
seven months by two engineers. These simplifications and
their motivation are detailed following.

The capacity provided by the SDFs is small relative to
the total storage requirement, so the SDFs are mainly used
as cache for hard disks. For this reason, data that is rarely
accessed is not expected to reside in the cache for a long
period of time, so the SDF does not conduct static wear
leveling wherein blocks that have experienced relatively few
writes have their data migrated elsewhere within the device
to free them for future writes. This not only simplifies the
hardware design but also reduces the performance variation
caused by the associated sporadic data movement.

The SDF hardware does not include a DRAM cache.
Conventional SSDs usually include a large DRAM cache
for reducing access latency. However, with DRAM cache
data consistency can be compromised by a power failure
so a battery or capacitor must be employed to prevent data
loss. The cache and the battery (or capacitor) add to the
hardware cost. In Baidu’s storage infrastructure, recently
accessed data have been cached in the host memory, and
the access patterns experienced by a storage device are not
expected to have such strong temporal locality that reused
data is likely to be retained in an SSD’s internal DRAM
cache. Therefore SDF does not provide such a cache at all
to save cost. Write requests are acknowledged only after the
data is actually stored on the flash so all writes in SDF are
effectively synchronous operations.

SSDs consist of multiple NAND flash chips, and conven-
tional SSDs provide data protection by using RAID 5 parity
coding across the flash chips in addition to powerful BCH
ECC protection within individual flash chips for fault de-
tection and correction with attendant cost, complexity, and
reduced flash space available for user data. However, in our
large-scale Internet service infrastructure, data reliability is
provided by data replication across multiple racks. There-
fore SDF excludes the parity-based data protection and re-

lies on BCH ECC and software-managed data replication.
Our experience has shown that even without the parity-based
protection, failures reported by SDF are rare in our system:
during the six months since over 2000 704GB SDFs were
deployed in Baidu’s storage system there has been only one
data error that could not be corrected by BCH ECC on the
flash chips and had to be reported to the software for data
recovery. Besides the benefits of smaller controller logic
and removed performance penalty, elimination of the par-
ity code also saves substantial space. For example, assuming
that every 10 flash channels are protected by one flash chan-
nel storing parity in a conventional SSD, SDF increases the
usable flash capacity by 10% relative to conventional prac-
tice. In Baidu’s previous SSD-based storage system, over-
provisioning was usually about 25% to maintain sustained
throughput for the regular workloads. However, when the
SSD was almost full and served very intensive writes, it
was sometimes necessary to raise over-provisioning to 40%.
By removing the over-provisioned space and other hard-
ware costs, SDF achieves 20% to 50% cost reduction per
unit capacity, mainly as a function of the amount of over-
provisioning in systems used for comparison. In Baidu’s
CCDB storage systems, where most SDFs are currently em-
ployed to support performance-critical services such as on-
line construction of inverted indices for hot webpages, the
cost reduction is around 50% after eliminating the need of
having 40% over-provisioning space in its SSD devices.

2.3 SDF Interface Design
A major concern in the effort to tap the raw performance
of SSD is the cost of write amplification and its associated
cost for garbage collection operations. In flash data cannot
be over-written in place. Instead, logically over-written data
is first invalidated and the space later reclaimed by garbage
collection. Then the data needs to be erased before the space
can be re-used for writing new data. There is an asymmetry
in the flash’s read/write/erase operations, where read and
write are in the unit of page size, usually 8 KB, and erase is
in the unit of block size, usually 2 MB, i.e., 256 times larger.
To reclaim a block, the FTL must copy all of the valid data
in a block to an erased block before the erase operation can
be carried out, resulting in amplified write operations. It is
well known that amplified writes, though necessary with the
asymmetry between write and erase units, can significantly
degrade the device’s performance and demand a substantial
portion of the device’s raw space to accommodate out-of-
place writes to achieve acceptable performance, as well as
reduce the life of the flash by the amplification factor. This
effect is more strongly exhibited when a workload contains
a large number of small random writes. To alleviate these
negative effects on SSD’s performance and longevity we
make three optimizations in the SDF interface, as follows.

First, we expose the asymmetry in the read/write/erase
operations to the software. Current SSDs provide a symmet-
ric interface, where both read and write use the same unit

............Flash
ch_0

Flash
CH_0

Flash
ch_0

Flash
CH_1

Flash
ch_0

Flash
CH_N

SSD Controller

/dev/sda

Flash
ch_0

Flash
CH_0

Flash
ch_0

Flash
CH_1

Flash
ch_0

Flash
CH_N

SSD Ctrl

/dev/sda0 ～/dev/sdaN

Conventional SSDConventional SSD SDFSDF

SSD Ctrl SSD Ctrl

Figure 5. Comparison of (a) conventional SSD’s structure
(b) and SDF’s structure.

size, which is one or a few flash pages (usually 4 KB). We
keep the small read unit but greatly increase the write unit
size to be a multiple of the flash erase block size and require
write addresses to be block-aligned. Thus write amplifica-
tion is eliminated because no flash block can contain both
valid and invalided data pages at the time of garbage collec-
tion.

Second, we expose the device’s internal parallelism to the
workloads. As mentioned, each of the 44 channels of an SDF
has its own controller or FTL engine. As shown in Figure 5,
unlike a conventional SSD where there is only one controller
for the entire device, and the device is software mounted as a
single logical device (such as /dev/sda—partitioning a con-
ventional SSD is only notional), SDF presents each chan-
nel to the applications as an independent device, such as
/dev/sda0 through /dev/sda43. This exposure of parallelism
is an innovation in maintaining high service concurrency to
exploit the device’s raw bandwidth without losing the benefit
of writing in the erase-block unit in individual flash chips for
minimal garbage collection overhead. In a conventional SSD
service concurrency is maintained by striping data across the
channels so that one request can be served by multiple chan-
nels. However, using this approach to achieving high band-
width is in conflict with the goal of eliminating write ampli-
fication, which requires writes into individual flash chips to
be in the unit of erase block units. There are two flash chips,
or four planes, in a channel, and each channel needs an 8 MB
write in service of one request to exploit the in-channel par-
allelism. To have high service concurrency in the whole de-
vice, a request would have to be excessively long (tens of
MB). This requirement on workloads would be too demand-
ing and unlikely to be met in a data center environment. By
exposing SDF’s 44 channels individually to the software we
can leave the task of exploiting the parallelism on the chan-
nels to the software, which can employ multiple threads to
concurrently issue requests to different channels. To exploit
the parallelism (four flash planes) within one channel, we set
SDF’s write unit at 8 MB and data are striped over the flash

chips in a channel with a stripe size of 2 MB, the per-chip
erase unit size.

Third, we expose the erase operation as a new command
to the device that is invoked by the software. The erase oper-
ation is much more expensive than read or write: for exam-
ple, erasing a 2 MB block takes approximately 3 ms. When
an erase operation is in process in a channel the servic-
ing of regular requests to the channel can be significantly
delayed. Erase operations scheduled by an SSD’s internal
logic at times unknown to the applications can cause unpre-
dictable service quality variation, which is especially prob-
lematic for performance-critical workloads. Furthermore, if
the erase operation were not exposed, SDF would still need
to over-provision space to accommodate out-of-place over-
writing of data. To be ready to quickly serve bursts of writes,
SDF would have to provision a high percentage of raw space
for this purpose. By providing applications the erase com-
mand, SDF does not need to reserve any space for out-of-
place writes and garbage collection. Instead, SDF exposes all
of its raw space to the software and moves the responsibility
for garbage collection to the software. Either programs or an
I/O scheduler are required to conduct an erase operation on
a block before it can write data into it. With the software in
control of the garbage collection operation it can schedule
these operations in the background, or at lower priority than
the servicing of high-priority requests.

2.4 SDF in Baidu’s Storage System
Baidu’s data centers store hundreds of petabytes of data with
a daily data processing volume reaching dozens of petabytes.
With an ever-increasing performance requirement on the
storage system, hard disks, and even conventional SSDs, are
becoming inadequate. SDF represents Baidu’s latest effort
to increase performance. There are different types of data in
Baidu’s storage systems, including web pages and their in-
dices, images, data in cloud storage, and various system log
data. For operational convenience and efficiency, applica-
tions prefer to present and access different data to the storage
system in a variety of formats including database tables, files
in a file system, or simple key-value pairs. Accordingly, the
storage system includes three data management subsystems,
namely Table, FS, and KV, to serve the aforementioned data
formats. Internally all three are treated as key-value pairs. In
the Table system, the key is the index of a table row, and the
value is the remaining fields of the row. In the FS system,
the path name of a file is the key and the data or a segment
of data of the file is the value.

Each of the subsystems is hosted on a cluster of storage
servers. According to their keys, requests from clients are
hashed into different hash buckets called slices in our sys-
tem. A slice uses Baidu’s CCDB system to manage its KV
pairs using a log-structured merge (LSM) tree [16]. Simi-
larly to Google’s BigTable [5], CCDB uses a container for
receiving KV items arriving in write requests. The container
has a maximum capacity of 8 MB. Data that are being accu-

11
1
11
11
1
11
11
1
11
11
1
11
1
11
11
11
1
11
1
11
11
1
11
11
1
11
1
11
11
11
1
11

VFSVFS

Generic Block LayerGeneric Block Layer

IO SchedulerIO Scheduler

P
C

IE

SCSI Mid-layer

SATA and SAS Translation

Block DeviceFile System

Low Level Device Driver

 Conventional SSD

User Space

IOCTRLIOCTRLKernel SpaceKernel Space

User SpaceUser Space

Buffered IOBuffered IODirect IODirect IO

(a) (b)

PCIE Driver

SDF

Page
Cache

1

Figure 6. Comparison of (a) conventional SSD’s I/O stack
and (b) SDF’s I/O stack supporting its block interfaces.

mulated in the in-memory container are immediately saved
in a log in an SSD or a hard disk to prevent data loss. When
a container is full, a patch is formed, and the patch is written
into the SDF device on the server. Patches on the storage ex-
perience multiple merge-sorts, or multiple reads and writes
before they are placed in the final large log. All write re-
quests in CCDB are to store patches to the SDF and match
the 8 MB SDF write unit. By managing data in the LSM
tree, all metadata of the KV pairs can be accommodated
in DRAM memory, and a read request from clients can be
served with only one SDF read.

Underneath the slice abstraction is a unified user-space
block layer for processing and passing I/O requests from the
slices to the SDF device. Currently this layer dictates a fixed
8 MB write size and requires that each write request arrive
with a 128-bit ID. At this time only the low 64 bits of an
ID is used to uniquely identify a write or the block of data
involved in a write. A client requests the 64-bit part of an
ID, to serve as a key, from a server that maintains a counter
for generating unique IDs. The block layer uniformly hashes
the ID to determine a channel to serve the write. Specifically,
blocks with consecutive IDs are written to the 44 channels
in a round-robin fashion. This arrangement abstracts the
tasks of managing storage space, such as determining which
channels to write, what physical spaces have been erased and
are ready for receiving new data, and what spaces are not. In
future work we will introduce more intelligent scheduling
policies to balance the load across the channels should a
skewed workload occur, and coordinate timings for the SDF
to serve different types of requests so that on-demand reads
take priority over writes and erasures.

For Google’s BigTable, a distributed file system (GFS [9])
is responsible for its I/O requests as well as data replication
for reliability. For Baidu’s CCDB, data is replicated over
slices. Since slices reside on individual server nodes, a ques-

CPU Intel E5620x2 2.4 GHz
Memory 32 GB

OS Linux 2.6.32 kernel
NIC Intel 82599

Table 2. Client and server node configuration.

tion arises of whether we should retain the local file system
between the slices and the SDF. A general-purpose operat-
ing system such as Linux, as well as the file system part of it,
performs functionalities such as access authorization, name
parsing, address space protection between different users,
and data caching and prefetching. On our servers operations
in this software layer impose as much as 12µs additional
time spent on a single I/O request. This overhead can be
substantial relative to the high-speed flash data access. Cur-
rently SDF is used exclusively by the CCDB data manage-
ment software on a local server, so most of the file system’s
functionalities are unnecessary. For efficiency, we open the
device as a raw device file and use the IOCTRL interface
to largely bypass the kernel and directly access its low-level
PCIE driver. Some basic file system functionalities, such as
block allocation and logical-to-physical address translation,
are implemented in the block layer. A comparison of the I/O
stacks of SDF and a conventional SSD is depicted in Fig-
ure 6. The resulting latency of SDF’s software stack is only
about 2-4µs, which is mostly used for handling message
signaled interrupts (MSIs) from the PCIe interface.

3. Performance Evaluation
In this section we evaluate SDF’s performance in Baidu’s
storage infrastructure. Currently there are more than 3000
SDFs deployed in the production system. The SDFs have
been in use for over six months and a large amount of per-
formance data has been collected from the monitoring and
profiling system. We first describe the experimental setup,
then the evaluation results for both microbenchmarks and
Baidu’s production workloads.

3.1 Experimental Setup
For the experiments we set up a number of client nodes to
send KV read and write requests to a server node. The client
and server nodes have the same configuration as described in
Table 2, and are in the same cluster. The server is connected
to a switch by two 10 Gbps NICs, and the clients each use
one 10 Gbps NIC. The SDF is installed on the server, and
its specification is given in Table 3. The specification of the
Huawei Gen3, the predecessor of SDF, is the same. In the
evaluation we use the Huawei Gen3 and the SATA-based In-
tel 320 for comparison. We will focus our comparison pri-
marily on the Huawei Gen3 to examine the performance im-
plications of SDF’s architectural changes. In the experiment
we leave 25% of the raw capacity of the Huawei Gen3 as
over-provisioned space for internal use such as garbage col-

Host Interface PCIe 1.1x8
Channel Count 44

Flash Chips per Channel 2
Planes per Flash Chip 2

Channel Interface Asynchronous 40 MHz
Flash Capacity per Channel 16 GB

NAND Type 25 nm MLC
Page Size 8 KB
Block Size 2 MB

Table 3. Device configuration for both the Baidu SDF and
the Huawei Gen3.

lection. In the Huawei Gen3 data is striped over its 44 chan-
nels with a striping unit size of 8 KB. The Intel 320 uses
25 nm MLC NAND flash and the SATA 2.0 interface. The
Intel 320 has 10 channels, and 20 GB (12.5%) of its raw
capacity of 160 GB is reserved for internal use including
garbage collection.

3.2 Experiments with Microbenchmarks
SDF is designed to deliver I/O service with high throughput
and low latency to applications with high concurrency. To
reveal the storage devices’ performance, in the evaluation
we first generate synthetic workloads on the server. For SDF
we send requests to the SDF as a raw device, bypassing the
kernel I/O stack. For the Intel and Huawei SSDs the requests
are sent to the respective devices via the Linux I/O stack.

In the experiments we first run microbenchmarks that is-
sue random read requests of different sizes (8 KB, 16 KB,
and 64 KB) and 8 MB write requests to each of the three de-
vices. For SDF we use 44 threads—one for each channel—
to exploit its hardware parallelism. For the other two devices
only one thread is used because they expose only one chan-
nel, and the thread issues asynchronous requests. For SDF all
requests are synchronously issued and the benchmarks issue
requests as rapidly as possible to keep all channels busy. The
results are reported in Table 4. Because SDF does not allow
writes smaller than 8 MB we use only 8 MB writes in the
test.

To put SDF’s performance in perspective we need to
know the throughout limits imposed by the PCIe interface
and the flash itself. The maximum PCIe throughputs when it
is used for data read and write are 1.61 GB/s and 1.40 GB/s,
respectively, and SDF’s aggregate flash raw read/write band-
widths are 1.67 GB/s and 1.01 GB/s, respectively. From the
table we can see that SDF enables throughput close to the
architectural limits: for read its 8 MB-request throughout of
1.59 GB/s is 99% of the bandwidth limit imposed by the
PCIe interface, and for write, 0.96 GB/s throughout is 94%
of the flash’s raw bandwidth. Even for reads with requests
as small as 8 KB the throughout is 76% or more of the PCIe
bandwidth limit. The expensive erasure operation can reach
a 40 GB/s throughput in SDF (not shown in the table).

0

200

400

600

800

1000

1200

1400

1600

4 8 12 16 20 24 28 32 36 40 44

Th
ro

u
gh

p
u

t
(M

B
/s

)

Channel Count
(a)

0

100

200

300

400

500

600

700

800

900

1000

4 8 12 16 20 24 28 32 36 40 44
Th

ro
u

gh
p

u
t

(M
B

/s
)

Channel Count
(b)

Figure 7. Throughputs of SDF with sequential reads (a) and
writes (b) when different numbers of channels are used.

Though the Huawei Gen3 has the same number of chan-
nels, type and count of flash chips, and FPGA controller
hardware, its throughput is consistently lower than that of
SDF. In particular, with a request size of 64 KB or smaller
its throughput is substantially lower. In SDF, as long as a re-
quest is not larger than 8 MB it is serviced by one channel.
In contrast, in the Huawei Gen3 the logical address space is
striped over 44 channels with an 8 KB striping unit. A large
request is split into multiple sub-requests, which are serviced
in different channels. Accordingly, requested data has to be
split (for write) or merged (for read) in the request service,
and each channel serves a larger number of smaller requests.
This adds to the overhead and reduces throughput.

We also experimented with the SDF when only limited
numbers of channels are concurrently accessed, still with
each channel receiving requests from a dedicated thread.
Figures 7(a) and 7(b) show the throughput of the SDF with
sequential 8 MB read and write requests when different num-
bers of channels are employed. As shown, the throughput
increases almost linearly with the number of channels be-
fore the PCIe’s bandwidth limit or the flash’s raw bandwidth
is reached, demonstrating that the SDF architecture scales
well.

Because performance predictability can be important in
a data center, especially for on-line service, we evaluate la-
tency variation for write requests on the Huawei Gen3 and

Operations 8 KB Read 16 KB Read 64 KB Read 8 MB Read 8 MB Write
Baidu SDF (GB/s) 1.23 1.42 1.51 1.59 0.96

Huawei Gen3 (GB/s) 0.92 1.02 1.15 1.20 0.67
Intel 320 (GB/s) 0.17 0.20 0.22 0.22 0.13

Table 4. Throughputs of the Baidu SDF, Huawei Gen3, and Intel 320 devices with different request sizes for read and write
operations. Because the SDF’s write unit is 8 MB, only write throughputs for 8 MB are reported.

.

0

100

200

300

400

500

600

700

800

900

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

1
4

1

1
4

8

1
5

5

1
6

2

1
6

9

1
7

6

1
8

3

1
9

0

1
9

7

La
te

n
cy

(m
s)

Time (# of Writes)

Huawei Gen3, 8MB Writes

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

1
4

1

1
4

8

1
5

5

1
6

2

1
6

9

1
7

6

1
8

3

1
9

0

1
9

7

La
te

n
cy

(m
s)

Time (# of Writes)

Huawei Gen3, 8*44MB Writes

0

100

200

300

400

500

600

700

800

900

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

1
4

1

1
4

8

1
5

5

1
6

2

1
6

9

1
7

6

1
8

3

1
9

0

1
9

7

La
te

n
cy

(m
s)

Time (# of Writes)

Baidu SDF, 8MB Erases and Writes

Figure 8. Latencies of write requests on the Huawei Gen3 and the Baidu SDF when writes with an aggregate total of 28 GB
data are in progress. The Huawei Gen3 serves write requests of either 8 MB or 352 MB. The Baidu SDF serves write requests
of 8 MB simultaneously on its 44 channels. By design these devices were almost full at the beginning of the experiments.

the Baidu SDF. Note that for SDF an erase operation is ex-
plicitly performed immediately before a write, so we include
the erase time in its write latency as reported in Figure 8. We
first send 8 MB write requests to the Huawei Gen3 and the
SDF. As shown in Figure 8 the latency of the Huawei Gen3
varies widely—between 7 ms and 650 ms—with an average
of 73 ms. In contrast, SDF’s latency is 383 ms with little vari-
ation. The Huawei Gen3 has a 1GB on-board DRAM buffer
and a hit in the buffer produces very low latencies. How-
ever, this buffer has been removed in SDF. By performing
erase operations explicitly before individual writes rather
than conducting bursty garbage collection, SDF provides
consistent write performance. This makes SDF a competi-
tive device for application demanding high performance pre-
dictability. If we increase the size of requests to the Huawei
Gen3 to 352 MB so that each of its 44 channels accesses
8 MB data, the latency variance is reduced to 25% of average
request latency (2.94 seconds). However, the requirement of
such large requests is impractical for most applications.

3.3 Experiments on the Production System
Currently the deployed SDFs are supporting web page ser-
vices on the production system. The crawler collects web
pages from the Internet and stores them in the web page
repository on a storage system. Web pages in the repository
will undergo various processing steps including extraction of
their abstracts, analysis of the link relationship among pages,
and construction of a reverse index to feed into index servers.
As showed in Figure 9, the web page repository is the central
component of the search engine. We use the CCDB’s Table
system to process the web page repository.

Index Building

Web

Crawling

Data Mining

Query Serving

Inverted

Index

Central Repository

of Web Pages

Figure 9. Building and indexing in a Web page repository.

In the system each storage server hosts one or multi-
ple slices. A slice provides storage and access service in a
LSM-tree fashion for KV pairs whose keys fall into a spe-
cific range. In the experiments each slice is always loaded
with requests from a single client, each client continuously
sends synchronous read/write KV requests to one slice by
setting its request keys within the slice’s designated key
range. A client sends a request immediately after it receives
the response to its previous request. To improve network and
server efficiency requests can be batched, that is, one request
may contain multiple read/write sub-requests, each reading
or writing one KV pair. The number of sub-requests con-
tained in a request is called the request’s batch size.

3.3.1 Random Reads
We first let the clients issue 512 KB random read requests to
one or a number of slices. That is, each requested value is
of 512 KB and the key is randomly and uniformly selected

0

100

200

300

400

500

600

700

800

1 4 8 16 32 44

Baidu SDF 1 slice

Huawei Gen3 1 slice

T
h

ro
u

gh
p

u
t

(M
B

/s
)

Batch Size

Figure 10. Throughputs of one storage node with Baidu
SDF and Huawei Gen3 with one slice with varying batch
size. Random 512 KB read requests are used in this experi-
ment.

from a slice’s key range. Figure 10 shows the throughputs
with different batch sizes when only one slice is used with
the Baidu SDF and the Huawei Gen3. As shown, SDF’s
throughput lags behind the Huawei Gen3 until the batch size
reaches 32. SDF’s performance advantage with high channel
concurrency cannot be realized with synchronous requests
and only one slice. For example, when the batch size is one,
requests are served at one channel at a time in SDF, deliv-
ering only 38 MB/s throughput. With increasing batch size,
different sub-requests are more likely to be served at dif-
ferent channels in parallel and the throughput steadily in-
creases. However, for the Huawei Gen3 throughput with a
batch size of only one is 245 MB/s, much greater than its
counterpart for SDF. The FTL of the Huawei Gen3 maps
contiguous logical addresses across the channels in a round-
robin manner with a striping unit of only 8 KB. The re-
quested 512 KB data are well distributed over all 44 channels
and service of even one request can be fully parallelized. In
contrast, in SDF with only one slice the service parallelism
is limited by requests’ batch sizes because each request is
served by only one channel.

Another interesting observation from Figure 10 is that the
Huawei Gen3 still has higher throughput than SDF when the
batch size is substantially large (up to 32). SDF exploits the
parallelism among sub-requests in a synchronous request,
while the Huawei Gen3 exploits parallelism within one sub-
request, so the Huawei Gen3 can service one sub-request
faster than SDF. Once it is done with a sub-request, it can
send the data back to the client at the same time that it is
serving the next sub-request. In this scenario the SDF does
not have the efficiency achieved by the Huawei Gen3 with
its pipelined data access because SDF completes the service
of all sub-requests in a request at almost the same time.

If multiple slices are used in a server the concurrency of
requests from different slices would increase SDF’s through-
put by keeping more channels busy at the same time. Fig-
ure 11 shows the throughput for four and eight slices. As
shown, when the batch size is one, for SDF only a few of its

0

200

400

600

800

1000

1200

1400

1600

1 4 8 16 32 44

Baidu SDF 8 slices
Baidu SDF 4 slices
Huawei Gen3 8 slices
Huawei Gen3 4 slices

Th
ro

u
gh

p
u

t
(M

B
/s

)

Batch Size

Figure 11. Throughputs of one storage node with the Baidu
SDF and the Huawei Gen3 when running four or eight slices
with various batch sizes. Random 512 KB read requests were
used in the experiment.

44 channels are in parallel service (at most 4 or 8 channels
when 4 or 8 slices are used, respectively). In contrast, with
8 KB striping these numbers of slices are sufficient to keep
all of the channels in the Huawei Gen3 fully occupied. Ac-
cordingly, it’s no surprise that the Huawei Gen3 has greater
throughput than SDF. However, with increasing batch size
SDF’s throughput correspondingly increases. For example,
with a batch size of 4, the 8-slice throughput increases by
almost four times, from 270 MB/s to 1081 MB/s. When the
batch size is sufficiently large the increase in throughput of
SDF seems to flatten as all channels become busy. Interest-
ingly, the increase does not stop when the product of slice
count and batch size reaches the channel count (44). With
round-robin address mapping the random requests cannot
be evenly distributed over the channels when the request
count is only slightly larger than the channel count. That is,
more concurrent requests are needed to have a better bal-
anced load. In future work a load-balance-aware scheduler
will be employed to help SDF reach its peak throughput
(approximately 1.5 GB/s) with a smaller number of concur-
rent requests. Though with a small number of concurrent re-
quests the Huawei Gen3 can achieve high throughput (ap-
proximately 700 MB/s), further increasing the concurrency
does not further increase the throughput. To the contrary,
the throughput actually decreases slightly with higher con-
currency. With 512 KB requests and an 8 KB data striping
unit on 44 channels, each channel is accessed for only 8 KB
or 16 KB data in the service of one request, leading to very
high access concurrency. Accordingly, the scheduling over-
head may increase and the service time of unsynchronized
requests at different channels may increase some requests’
service time. In addition, the curves for the 4-slice and 8-
slice throughputs of the Huawei Gen3 are nearly coincident,
indicating that the increased concurrency cannot be taken ad-
vantage of.

To see how request size affects throughput, in Figure 12
we plot the throughput with different request sizes (32 KB,
128 KB, and 512 KB) and different slice counts (1, 4, and

0

200

400

600

800

1000

1200

1400

1600

Huawei Gen3-
1slices

Baidu-1slices Huawei Gen3-
4slices

Baidu-4slices Huawei Gen3-
8slices

Baidu-8slices

Read Size 32KB

Read Size 128KB

Read Size 512KB

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Figure 12. Throughputs of one storage node with the Baidu
SDF and the Huawei Gen3 when running one, four, or eight
slices with batch size of 44. Random read requests of 32 KB,
128 KB, and 512 KB were used in this experiment.

0

200

400

600

800

1000

1200

1400

1600

1 2 4 8 16 32

Baidu SDF

Huawei Gen3

Intel 320

Th
ro

u
gh

p
u

t
(M

B
/s

)

Slice Count

Figure 13. Throughputs of one storage node with sequential
reads on the Baidu SDF, the Huawei Gen3, and the Intel 320
with various numbers of slices.

8) when the batch size is fixed at 44. These request sizes
are representative for web pages, thumbnails, and images,
respectively, in the system’s workloads. As shown in the fig-
ure, as long as requests are served in parallel at different
channels in SDF, both small and large requests can lead to
high I/O throughput, though large requests have moderately
greater throughput (“Baidu-4slices” and “Baidu-8slices” in
the figure). Only when the concurrency in the workload
is very limited is SDF’s throughput as low as that of the
Huawei Gen3 (“Baidu-1slice”). By exposing all 44 channels
to the software, with highly concurrent workloads we expect
the software to be able to fully exploit the exposed paral-
lelism.

3.3.2 Sequential Reads
At Baidu, an important I/O-intensive operation is to build in-
verted index tables from web page tables. As shown in Fig-
ure 9, the inverted index servers send a request for building

SDF
SDF

SDF

SDF

SDF SDF

SSD SSD SSD SSD SSD SSD

0

200

400

600

800

1000

1200

1 2 4 8 16 32 1 2 4 8 16 32

Write

Read

Slice Count

T
h

ro
u

gh
p

u
t

(M
B

/s
)

Figure 14. Throughputs of one storage node with the Baidu
SDF and the Huawei Gen3 SSD running various numbers
of slices with write requests whose sizes are primarily in
the range between 100 KB and 1 MB. The requests are not
batched (equivalently, the batch size is 1) in the experiment.

the inverted index table to the ‘Central Repository of Web
Pages’ servers, where the web page data is stored on SDFs.
On each of the web page servers one or multiple slices can
be started. As previously stated, each slice is responsible for
storing and accessing keys in a specific range. Because keys
for different tables are created in different ranges, each ta-
ble is managed by a different slice. According to their needs
the inverted index servers may ask for a varying number of
inverted index tables to be built at a given time. Accord-
ingly, the number of busy slices can vary. The I/O operation
in an index-building slice is to scan, or sequentially read,
all the KV pairs in the designated key range. To limit the
I/O demand of a slice, each slice uses six threads issuing
synchronous requests to the storage in the production sys-
tem. Figure 13 shows the throughput when different num-
bers of slices are requested in the service. The throughput
of SDF scales well with the increase in slice count up to
16 slices where SDF’s peak throughput is reached. In con-
trast, the throughput of the Huawei Gen3 does not scale at
all. Even worse, it can become lower when a large num-
ber of slices are requested. In this experiment we included
the Intel 320 which shows almost constant throughput. This
experiment clearly demonstrates the advantage of exposing
internal channels to the software.

3.3.3 Writes
In CCDB, Baidu’s KV store system, all writes are accumu-
lated into 8 MB patches, which are equivalent to SSTable in
Google’s BigTable, before being written into storage. Be-
cause write requests from the clients cause compaction op-
erations, which entail reading patches from storage, merge-
sorting the patches, and writing them back to the storage, a
storage device services I/O requests originating from both
the clients’ write requests and CCDB’s internal read and
write requests, all with 8 MB request size.

In the experiment each client continuously sends syn-
chronous write requests to a slice. Figure 14 shows the read
and write throughput of the Baidu SDF and the Huawei
Gen3. Because only the compaction operation incurs reads,
the read throughput shown in Figure 14 represents the in-
tensity of the internal data cleanup operation. At the begin-
ning of the experiment, all patches on the storage have been
sorted. Therefore, the volume of new written data is corre-
lated to the demand on the compaction operation. Requests
from the clients take priority over compaction-incurred re-
quests.

As shown, SDF’s throughput continues to increase un-
til the slice count reaches 16 where the throughput peaks
at around 1 GB/s. When the slice count is small, the lim-
ited concurrency leads to SDF’s low throughout in serv-
ing client write requests. Accordingly, the compaction in-
tensity, indicated by the read throughput, is also low. How-
ever, SDF can take good advantage of high concurrency
where its peak throughput reaches a value between the de-
vice’s peak write throughput (approximately 0.95 GB/s) and
its peak read throughput (approximately 1.50 GB/s). Con-
sidering the presence of erasure operations, SDF achieves
excellent peak throughput. When the slice count increases
from 16 to 32 the percentage of the throughput attributable
to reads is reduced because the increased demand from the
clients’ write requests pushes the compaction load lower.
In contrast, the Huawei Gen3 exploits channel parallelism
for individual 8 MB-patch accesses so it can achieve much
higher throughout when the slice count is small, but its
throughput does not increase with increasing slice count.
Furthermore, because of its limited throughput, the Huawei
Gen3 compaction throughput decreases with increasing slice
count. With 32 slices the throughput is less than 15% of the
aggregate throughput, indicating that most of new written
data is left unsorted. This would significantly compromise
performance of subsequent read requests from clients.

4. Related Work
We organize our discussion of related work as addressing the
reduction of the overhead of random writes, the support of
high I/O concurrency, and the reduction of access latency.

4.1 Reducing the Overhead of Random Writes
Though SSD’s random-write throughput is higher than
that of hard disks, it is much less than its sequential-
write throughput [15]. Even for modern high-end SSDs the
throughput of random write is only about 1/10 to 1/7 of se-
quential writes [15]. Further, random writes can cause inter-
nal fragmentation and lead to performance degradation by an
order of magnitude and can significantly reduce lifetime of
the device because write amplification is much greater than
for sequential write [15]. To address these issues researchers
have tried to transform random writes to sequential writes at
either the file system level or at the FTL level.

At the file system level, Min proposed a log-structured
file system (SFS) to transform random writes in the file
system into sequential writes at the SSD [15]. Other log-
based file systems, such as JFFS2 [19], YAFFS2 [4], and
UBIFS [3], are designed by considering NAND flash char-
acteristics and are used widely, especially in mobile and em-
bedded domains. The log-based file system can eliminate
random writes to the flash memory. By requiring a large
write unit, SDF essentially forces the software to batch write
data as a log. On top of SDF, at Baidu a user-space dis-
tributed log-based storage system is implemented. It knows
the data types and how actively particular data is accessed,
so it can implement a more intelligent block cleaning scheme
compared to a log-based file system.

At the FTL level some researchers have used a log buffer
at the FTL level to reduce the overhead of random writes.
Kawaguchi et al. proposed a flash memory driver that uses a
log-based FTL and provides a block interface to the flash that
sequentially writes data to the flash memory in a way sim-
ilar to log-structured file system [11]. Kim et al. proposed
BAST, a hybrid FTL scheme [12]. It uses page-level map-
ping for random writes and block-level mapping for sequen-
tial writes [13]. The FAST FTL improves on BAST with a
flexible address mapping in the log buffer to improve space
utilization. Some FTLs reduce the overhead caused by ran-
dom writes by considering data access characteristics. LAST
reduces the garbage collection overhead by exploiting data
locality [14]. CAFTL reduces write traffic to the flash mem-
ory by eliminating duplicate writes and redundant data [7].
Both the file-system-level and the FTL-level efforts cannot
completely eliminate the garbage collection overhead caused
by random writes. SDF eliminates random writes by set-
ting the write size to a multiple of the size of NAND phys-
ical erase block. Thus SDF’s FTL does not need to conduct
garbage collection, and write amplification ratio is kept at
one.

4.2 Supporting High I/O Concurrency
SSDs may be deployed in an environment with a large num-
ber of applications or threads simultaneously issuing re-
quests to them, that is, with workloads of high concurrency,
and it is necessary to exploit parallelism at multiple layers
of the I/O stack to achieve high throughput. Here there are
three layers that are most relevant. The first is the Linux I/O
subsystem, which includes VFS, the file system, the generic
block layer, the scheduler layer, the SCSI mid-layer, and
the SATA/SAS translation layer. The second is the device
driver, which includes command queues, interrupt handlers,
and a hardware register interface. The third is in the SSD
itself, including the host interface, on-device DRAM, inter-
nal data paths, and multiple NAND channels. Many pre-
vious works have investigated parallelism at each of these
three layers. Seppanen et al. suggest exploiting the paral-
lelism of the Linux I/O subsystem with multiple AIO re-
quests or by using multiple threads issuing synchronous I/O

requests [18]. To take advantage of this parallelism appli-
cations need to use AIO or be multi-threaded, necessitating
modification of legacy programs. SDF uses multiple threads
with synchronous I/O requests to exploit Linux I/O subsys-
tem parallelism because synchronous I/O is easier to imple-
ment and is compatible with many legacy applications.

Modern drivers support multiple deep command queues
such as NCQ [18] for SATA II, and NVM Express [2] which
is designed to address the challenges of system scalability.
NVM Express provides optimized command issuance mech-
anisms and multiple deep queues. Using multiple queues can
support concurrent operations and help to improve scala-
bility. Moreover, when the queues are operated on multiple
CPU cores, interrupt handling can be more efficient. Follow-
ing the same principle, SDF creates a queue for each chan-
nel. Hahn et al. consider issues with the request scheduling
when SSD channels are exposed [10]. We leave studies on
intelligent request scheduling on SDF as future work.

Chen et al. investigated the performance implications of
SSD’s internal parallelism [6]. As we have demonstrated, the
aggregate channel-level bandwidth of a commodity SSD can
be greater than that made available at the host interface by
a significant factor, implying that the internal parallelism in
an SSD is far from fully exploited. By exposing flash chan-
nels to applications, SDF can effectively increase available
channel-level parallelism, and applications can manage data
layout among channels or among planes in a channel.

4.3 Reducing Access latency
Foong et al. break down the latency overhead for a request at
the granularity of the layers of the I/O stack [8]. As reported,
the Linux I/O subsystem takes about 9100 CPU cycles to
issue a request to the device and about 21900 CPU cycles to
process I/O completion. The total time spent in the Linux I/O
subsystem for one I/O request is about 12.9µs on a 2.4GHz
mainstream server processor. In contrast, reading a NAND
page from the cell to the host interface takes only about
75µs for 25nm MLC flash [1], so the software I/O stack is
responsible for about 17% of the total request service time
for a page read request, which we regards as substantial. Our
solution is to simply bypass the Linux I/O subsystem and
traditional driver layer, using instead an ultra-light-weight
user-space interface and thin driver. The SDF driver provides
a register interface and a message signaled interrupt handler.
Thus the software layer of SDF is able to significantly reduce
the software overhead compared with conventional systems.

5. Conclusions and Future Work
In the paper we present SDF, a software-defined SSD, for
web-scale Internet storage infrastructures. SDF is a high-
performance and low-cost SSD architecture with high uti-
lization of raw bandwidth and storage space and with pre-
dictable performance. It has successfully replaced traditional
SSDs at Baidu’s Internet storage infrastructure with 3000

SDFs deployed and more scheduled. SDF’s success derives
from its hardware-software co-design. In SDF, the hardware
exposes the internal channels to the applications through
customized FTL controllers. Dovetailing with the hard-
ware design, the software layer enforces large-granularity
writes and provides primitive and light-weight functionali-
ties through kernel bypass. Our experimental measurements
show that SDF can deliver about 95% of the raw flash band-
width and provide 99% of the flash capacity for user data.
SDF increases the I/O bandwidth by 3 times and reduces
per-GB hardware cost by 50% on average compared with
Baidu’s commodity-SSD-based system.

The success of the SDF at Baidu is highly dependent
on two key workload characteristics that we believe are
also prevalent in most data centers supporting Internet ser-
vices. One is large sequential writes. Because write requests
have been mostly served in log-structured storage systems,
such as Google’s LevelDB and Facebook’s Haystack, SDF’s
performance advantage on write can be realized without
re-writing or re-structuring existing software. The other
is high concurrency for exploiting SDF’s exposed chan-
nels. Because Internet service is mostly multi-threaded and
transaction-based for supporting millions of users, high con-
currency in the I/O workload is expected and is the reality in
most cases.

The Baidu SDF research is ongoing on multiple fronts.
First, as previously described we will implement a load-
balance-aware scheduler to help SDF reach its peak through-
put with a smaller number of concurrent requests. Also, to
further pursue our hardware/software co-design approach,
we intend to further investigate the possibility of “moving
compute to the storage,” that is, integrating specialized com-
putational functionality into the storage devices themselves
to minimize I/O traffic; an initial success has already been
reported [17]. Finally, recognizing that flash memory has fi-
nite write endurance, we believe that that it would be both
possible and useful to incorporate, and expose, a data relia-
bility model for flash memory in our infrastructure.

Acknowledgments
The SDF project has benefited greatly from constructive
input from many engineers and interns at Baidu, in particular
Guangjun Xie, Wei Qi, Hao Tang, and Bo Peng. We would
like to thank Kei Davis for constructive input on the final
composition of this paper. We are also thankful to Jason
Cong for his support and suggestions on the paper.

References
[1] “Micron 25nm MLC Product Datasheet.”

http://www.micron.com.

[2] “NVMe: Non-volatile Memory Express.”
http://www.nvmexpress.org/.

[3] “UBIFS: Unsorted Block Image File System.”
http://www.linux-mtd.infradead.org/doc/ubifs.html/.

[4] “YFFS: Yet Another Flash File System.”
http://www.yaffs.net/.

[5] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber.
“Bigtable: A Distributed Storage System for Structured
Data.” In Seventh Symposium on Operating System Design
and Implementation, 2006.

[6] F. Chen, R. Lee, and X. Zhang. “Essential Roles of Exploiting
Internal Parallelism of Flash Memory based Solid State Drives
in High-speed Data Processing.” In IEEE 17th International
Symposium on High Performance Computer Architecture,
2011.

[7] F. Chen, T. Luo, and X. Zhang, “CAFTL: A Content-
Aware Flash Translation Layer Enhancing the Lifespan of
Flash Memory based Solid State Drives.” In 9th USENIX
Conference on File and Storage Technologies, 2011.

[8] A. Foong, B. Veal, and F. Hady. “Towards SSD-ready
Enterprise Platforms.” In 1st International Workshop on
Accelerating Data Management Systems Using Modern
Processor and Storage Architectures, 2010.

[9] S. Ghemawat, H. Gobioff, and S.-T. Leung. “The Google
File System” In 19th ACM Symposium on Operating Systems
Principles, 2003.

[10] S. S. Hahn, S. Lee, and J. Kim. “SOS: Software-based Out-of-
order Scheduling for High-performance NAND Flash-based
SSDs.” In IEEE 29th Symposium on Mass Storage Systems
and Technologies, 2013.

[11] A. Kawaguchi, S. Nishioka, and H. Motoda. “A Flash-
memory based File System.” In Winter USENIX Technical
Conference, 1995.

[12] J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho. “A
Space-efficient Flash Translation Layer for Compact-flash
Systems.” In IEEE Transactions on Consumer Electronics,
2002.

[13] S. W. Lee, D. J. Park, T. S. Chung, D. H. Lee, S. Park, and
H. J. Song. “A Log Buffer-based Flash Translation Layer
Using Fully-associative Sector Translation.” In Trans. on
Embedded Computing Systems, 2007.

[14] S. Lee, D. Shin, Y. J. Kim, and J. Kim. “LAST: Locality-aware
Sector Translation for NAND Flash Memory-based Storage
Systems.” In SIGOPS Operating Systems Review, 2008.

[15] C. Min, K. Kim, H. Cho, S. Lee, and Y. Eom. “SFS: Random
Write Considered Harmful in Solid State Drives,” In 10th
USENIX Conference on File and Storage Technologies, 2012.

[16] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. “The
Log-structured Merge-tree (LSM-tree).” In Acta Informatica
33(4):351-385, 1996.

[17] J. Ouyang, S. Lin, Z. Hou, P. Wang, Y. Wang, and G. Sun.
“Active SSD Design for Energy-efficiency Improvement of
Web-scale Data Analysis.” In International Symposium on
Low Power Electronics and Design, 2013.

[18] E. Seppanen, M. T. O’Keefe, and D. J. Lilja. “High Perfor-
mance Solid State Storage under Linux.” In IEEE 26th Sym-
posium on Mass Storage Systems and Technologies, 2010.

[19] D. Woodhouse. “JFFS: The Journaling Flash File System.” In
Ottowa Linux symposium, 2012.

