
WipDB: A Write-in-place Key-value Store that
Mimics Bucket Sort

1st Xingsheng Zhao
University of Texas at Arlington

Arlington, USA
xingsheng.zhao@mavs.uta.edu

2nd Song Jiang
University of Texas at Arlington

Arlington, USA
song.jiang@uta.edu

3rd Xingbo Wu
University of Illinois at Chicago

Chicago, USA
wuxb@uic.edu

Abstract—Key-value (KV) stores have become a major storage
infrastructure on which databases, file systems, and other data
management systems are built. To support efficient indexing and
range search, the key-value items must be sorted. However,
this sorting process can be excessively expensive. In the KV
systems adopting the popular Log-Structured Merge Tree (LSM)
structure or its variants, the write volume can be amplified by
tens of times due to its repeated internal merge-sorting operation.

In this paper we propose a KV store design that leverages
relatively stable key distributions to bound the write amplification
by a number as low as 4.15 in practice. The key idea is, instead
of incrementally sorting KV items in the LSM’s hierarchical
structure, it writes KV items right in place in an approximately
sorted list, much like a bucket sort algorithm does. The design
also makes it possible to keep most internal data reorganization
operations off the critical path of read service. The so-called
Write-in-place (Wip) scheme has been implemented with its
source code publicly available. Experiment results show that
WipDB improves write throughput by 3 to 8× (to around
1 Mops/s on one Intel PCIe SSD) over state-of-the-art KV stores.

Index Terms—key-value store, index, SSD, storage

I. INTRODUCTION

Key-value (KV) stores have become a major data manage-
ment component in a storage system. By providing a KV API
for writing, reading, and updating data items, the store makes it
possible for the upper-level software to access the storage in its
own defined key space for values of any sizes. In contrast to the
rigid block interface provided by the block storage subsystems,
such as physical/virtual disks and storage volumes, a KV
interface makes user-facing software, such as file systems [1],
[2] and database systems [3], [4], much easier to develop,
as it can leave chores, such as address conversion between
keys and block addresses and storage space management, to
the KV system. More importantly, in a distributed system
the key space can be conveniently partitioned into multiple
shards, enabling a shared-nothing architecture to achieve linear
horizontal scalability.

However, to realize its full potential a KV store must be well
designed to simultaneously meet a number of goals, which
are (1) good performance with small KV items in a storage
system of large capacity, (2) support of range search, (3) low
read amplification, and (4) low write amplification.

It is a challenge to simultaneously achieve all these goals in
a KV system. It has been noted that in many real-world KV

workloads small keys and values are common [5], [6]. A KV
item can be tens of bytes. Each (4KB) disk block may contain
tens of such items. In a server of multi-terabyte storage space
there can be tens of billions of such items. If such a huge
number of data items are individually indexed, the index size
(tens of, and even hundreds of gigabytes) can be too large to be
fully held in the memory. If (some) index data are only stored
on the disk, it needs multiple disk reads (for index data and
then KV data) to service a read request, leading to high read
amplification. To achieve the first three goals, the KV items
have to be sorted by their keys. If sorted, the store can index
disk blocks, instead of individual KV items, to significantly
reduce index size and use only one disk access to service a
read request. When the items are sorted, range search (e.g., for
all items between two keys, or for items of a common prefix)
can be well supported.

Unfortunately, maintaining an always and fully sorted list
on the disk is a prohibitive task. Analogous to expensive
data shifting operations for maintaining a sorted array in the
memory, writing new KV items into an on-disk sorted list,
which is stored in one or multiple files, involves re-writing
of file(s). This usually leads to exorbitant write amplification.
High write amplification, on the one hand, compromises
foreground throughput as more bandwidth is consumed by
background disk I/O. On the other hand, it reduces lifetime
of SSD disks. Unsurprisingly, major efforts on improvement
of KV stores have been on the amelioration of the write-
amplification issue.

Currently the most successful effort is to employ the log
structured merge tree (LSM-tree) technique to maintain mul-
tiple and increasingly large levels of sorted lists [7] (See
Figure 1a). Example KV systems adopting the technique
include Google’s LevelDB [8] and Facebook’s RocksDB [9].
In these systems new KV items in the incoming write requests
are progressively merge-sorted on different levels across the
hierarchical structure and finally enter the last and the largest
level of a sorted list. Though LSM-tree can significantly reduce
write amplification, the amplification can still be as high as
20∼70X depending on store size [10]–[13]. To reduce the
high write cost, researchers adopt the approximate sorting
technique, attempting to avoid rewriting data in the same level
and reduce the amplification to as low as number of levels
(e.g., 5∼7X) [10], [11]. In such a sorting method, the key



MemTable

Before Compaction After Compaction

L0

L1
L2

31-59 31-59
32-61 32-6166-78 80-91 66-73 74-98

66-981-28 1-28
2-28 16-28

2-99 2-99
1-100 1-100

1-100 1-100

(a) Compaction in LSM-tree

…

L0

L1
…

1-20 21-40

21-35
22-31

21-38

41-60

41-60
42-51
45-57
43-59

1-14
2-17
2-19
1-18

Compaction

MemTables

Bucket Index
WipDB

(b) WipDB

Fig. 1: Architectures of LSM tree and WipDB

space is partitioned into multiple buckets (each for a given
key range), and KV items are globally sorted (across the
buckets) but locally unsorted (within a bucket). While the level
size grows exponentially in the LSM-tree hierarchy, the store
usually has seven or fewer levels. If successful, the technique
can substantially reduce write amplification.

However, current approximate sorting technique has two
critical issues in its effort on achieving low write amplification.
The first issue is that the approximate sorting technique cannot
be effectively applied on the LSM-tree structure due to its
demand on an appropriate key partitioning. As a consequence,
the stores adopting this technique either do not support range
search (e.g., LSM-trie [10]) or consume a considerable amount
of memory in guards to reduce the write amplification. (e.g.,
PebblesDB [11]). The second issue is that the expensive
across-level progressive sorting operations compromise per-
formance of read requests. In terms of performance impact,
the high write amplification is less of an issue on the write
performance than on the read performance. If the sorting
operations are not immediately conducted (e.g., postponed
to less busy periods), writes can be quickly done. However,
the read performance will be seriously degraded if the items
are not adequately sorted (more explanation in Section II).
However, if the sorting is carried out immediately, expensive
across-level sorting would consume substantial bandwidth,
also degrading the read performance.

In this paper we propose a new KV store architecture to
fundamentally address the two issues. Accordingly, the write
amplification can be effectively reduced and most sorting
operations can be moved off the read service’s critical path.
In the way, all the four goals can be simultaneously achieved.
The proposed KV store is named WipDB (Write-in-place). It
mimics the bucket sort by partitioning the entire key space
into a large number of buckets, and placing keys directly
in the corresponding buckets. In contrast, existing LSM-tree-
based KV stores, including LevelDB and the optimized ones

using the approximate sorting technique, place KV items into
a level’s corresponding buckets (e.g., represented by SSTables
in LevelDB) and move them down to next level’s buckets using
merge sort in a level-by-level manner, as shown in Figure 1a.
However, similar to that in a bucket sort a key has only one
bucket in WipDB holding it and KV items are not moved
across buckets. KV items in a bucket are managed with a
miniature LSM tree (see Figure 1b).

In this WipDB architecture, both of the aforementioned
issues can be well addressed. First, the approximate sorting
can be used in each miniature LSM tree of a bucket without
key partitioning to reap its full performance benefit. Second,
expecting existence of read locality in the key space, WipDB
introduces a locality-aware sorting scheme. Sorting in different
buckets can be scheduled so that sorting of KV items in
buckets that do not actively service read requests can be
postponed. This benefit for hiding internal data sorting cost
is not possible in existing LSM-tree-based KV stores.

In summary, in the paper we make three major contribu-
tions: (1) we propose a new LSM-tree-based KV store archi-
tecture that allows new keys to be written in their right places
(buckets) in a sorted list at the outset by utilizing long-term key
distribution; (2) by improving and hiding write-related sorting
cost, WipDB can make both writes and reads efficient; and
(3) we have implemented WipDB and extensively evaluate its
efficiency by comparing it with state-of-the-art KV stores.

II. THE BACKGROUND

To motivate the design of the proposed WipDB, in this
section we will discuss the design rationale of the LSM-tree
architecture and its weaknesses, as well as existing efforts
attempting to address the weaknesses and their inadequacies.

A. Why LSM-tree?

As we have indicated, KV items must be sorted in the
storage for reduced index size (so that it can be all cached in
the memory) and support of range search. This is especially
the case for a KV store hosting a large number of small KV
items. The challenge is to keep the items sorted when new
items keep streaming into the store, as the cost can be huge.
Assuming that the store currently has M KV items (of the
same size) that have been fully sorted on the disk. A list
of N (sorted) new items currently in the memory are to be
written to the store. To maintain a fully sorted store, one has
to write M + N items, rather than just the N new items to
the store. Specifically, one needs to first read the M items
off the disk, merge-sort the new list of N items with the
existing list of M items into one list, and write the resulting
sorted list back to the disk. The operation is often named
compaction [4]. The write amplification is (M+N)/N , which
can be huge when the store size (M ) and the ratio of the two
lists (M/N ), named compaction ratio, become increasingly
large. To address the issue there are two potential ways. One is
to reduce the ratio (M/N ). LSM-tree takes this way. The other
is to increase size of the in-memory list (N ). This is the way
taken by the proposed WipDB. However, there are significant



hurdles to overcome on the way towards its effectiveness (see
Section II-C).

To limit the ratio and allow the store to grow to a very
large size, LSM-tree introduces multiple sorted lists to form a
multi-level hierarchy. As illustrated in Figure 1a, these levels
are named Levels 0, 1, ..., and n − 1 in a n-level hierarchy.
Except for L0, which sits at the top of the hierarchy and may
have multiple sub-levels of similar size, every other level is
up to 10X as large as the level immediately above it.

Because compaction is conducted only between two adja-
cent levels, the compaction ratio is bounded by 10, or the
write amplification for moving KV items from one level to
its next lower level is bounded by 11. For example, in a 5-
level LSM-tree store, starting at Level 0 KV items move down
the hierarchy level-by-level in a sequence of compactions and
produce a write amplification of up to 44 when they arrive
at Level 4. Though LSM-tree’s write amplification is way
much smaller than the store that inserts items directly into
a single sorted list, its amplification is still significant. High
write amplification consumes much of the I/O bandwidth and
makes both write and read requests slow.

B. Why Approximate Sorting?
Apparently, LSM-tree’s 20-70X write amplification is still

a major performance concern. Recently, significant efforts
have been made to reduce the cost by using approximate
sorting to avoid rewriting data in the same level [10], [11].
As we know, to reduce write amplification LSM-tree does not
directly sort KV items into a single list. Instead, it only sorts
the items in the same level (horizontally sorted) and leaves
items in different levels unsorted (vertically unsorted). In the
approximate sorting, the key space in each level is partitioned
into multiple segments, named buckets. Keys between the
buckets are sorted. Keys within a bucket are not fully sorted.
There can be multiple overlapping small sorted lists in a
bucket. Each level is said to be approximately sorted.

By allowing each level to be horizontally unsorted, the
key-value architectures, represented by LSM-trie [10] and
PebblesDB [11], can potentially reduce a compaction’s write
amplification to 1, and possibly make the store’s write ampli-
fication as low as its level count. Here is the reason. During
a compaction, to move items in a bucket at a level to its next
level, the store first merge-sorts the small lists in a bucket
into one sorted list. It then uses the boundaries of buckets
at the next level to segment the list and simply writes each
segment to its corresponding bucket in the next level. Allowing
KV items to be partially (either horizontally or vertically)
unsorted, a read operation needs to search more sorted lists,
such as levels in a LSM-tree and small lists in a bucket of an
approximately sorted list. By using stronger bloom filters this
may not be a performance concern. The real concern is on use
of the approximate sorting in different levels.

For the approximate sorting approach to be effective, one
has to segment the key space appropriately so that each
bucket has about equal number of KV items 1. Otherwise,

1This is a requirement similar to that on an efficient bucket sort.

some buckets may receive new items at a (much) higher
rate than others, making them and their downstream buckets
become very large, and their compactions expensive. The
hierarchy would also grow in an unbalanced manner. This
is why LevelDB introduces constant-size SSTable. It is also
reminiscent of the tree balancing issue addressed in the B+
tree.

Currently, the issue is not well addressed in the use of ap-
proximate sorting, leaving its performance promises unfilled.
To ensure a balanced LSM-tree structure, LSM-trie hashes
user-supplied keys with a cryptographic hash function like
SHA-1, and uses the hashed keys for sorting in the tree.
A consequence of this approach is that range search is not
supported. In contrast, PebblesDB attempts to preserve the
support of range search by keeping user keys sorted. To
this end, it uses a probabilistic function to select some keys
as “guards” from all keys entering a level to form buckets
(between two adjacent guards). Number of guards, or buckets,
in a region of the key space in a level is roughly proportional to
the region’s key density. Intuitively, each bucket has about the
same number of KV items. But positions of guards may keep
changing, especially for guards in the higher levels (Level i
where i is small), in response to variation of key density in the
corresponding key regions. In PebblesDB, a guard in a higher
level must also be a guard in all of its lower levels [11]. Adding
a new guard into a level requires splitting of a bucket. This
will either cause rewriting data in the same level, which defeats
the very purpose of using approximate sorting, or requires an
immediate premature compaction of the bucket to the next
level, leading to a cascade of downward compactions. Both
can significantly offset the benefit of the approximate sorting.

C. Overcoming Variation of Key Density
The key to success of the approximate sorting approach

is stability of the key distribution in the key space. In other
words, the key densities in different regions of the key space
need to remain roughly unchanged (at least for an extended
period of time), so as to keep the partitioning (into the buckets)
stable. We assume user keys generated by applications have
a long-term relatively stable distribution (e.g., for weeks,
months, or even years). For real-world services, keys are often
constructed by sequencing some descriptors of an object. For
example, a key about an Amazon’s product can be generated
as Grocery→ Snack Foods→ Cookies→ Chocolate→ Oreo
Mini Chocolate Sandwich Cookies. In the example of Google’s
BigTable [4], which decomposes a database table into KV
items for storage in a distributed KV store, a key is generated
by concatenating row name, column name, timestamp, such as
com.google.maps/index.html+Spanish+04/18/2019,12:00am.
In the real world the number of products or news articles
under a certain category, or popularity of a category, can be
expected to be stable within a relatively long time period. So
is the long-term key-distribution stability in many significant
application scenarios 2.

2In Section IV-B, we experimentally show that WipDB’s performance
advantage is not contingent on existence of a strong stability at all.



0

50

100
L

ev
el

 1

0

50

100

L
ev

el
 2

6000 7000 8000 9000 10000 11000
0

50

100

L
ev

el
 3

%

Number of Compactions

G
ua

rd
 P

os
iti

on

Fig. 2: Guard positions in different levels in LevelDB (L1, L2,
and L3) after certain number of compactions in the system.
The position is expressed as a percentage of the guard key
in the entire key space (0..109). A workload with the uniform
distribution is used here.

The issue is that existing use of the approximate sorting
approach cannot exploit the long-term stability, as such sta-
bility may only exist in the last one or two levels, which
store majority of a store’s KV items inserted over weeks,
months, or even years reflecting the user keys’ inherent and
stable distribution. In contrast, KV items in the top levels
are inserted in a short time period and may exhibit a key
distribution that’s different from the long-term stable one
and can change quickly from time to time. For example,
Level 0 has a capacity of tens of megabytes, and may only
store KV items inserted in the last few minutes. However,
when stores such as PebblesDB [11] applies the approximate
sorting approach at every level, dramatic and expensive bucket
adjustment is expected in the most (top) levels, which cascades
to the lower levels.

To illustrate the situation, we continuously write 100-byte
KV items, whose keys are generated using the db_bench tool
in the LevelDB code release. In each level we contiguously
place a hypothetical guard for every 50K keys, or a bucket
between two adjacent guards holding 50K KV items. After 1
billion items have been inserted, we track variation of guard
positions in Levels 1, 2, and 3 after every compaction. As
Figure 2 shows, in all the three levels the guard positions vary
but at different intensity. In other words, if we had fixed the
guard positions the number of KV items in a bucket can be
highly variable in Levels 1 and 2. However, in a lower level
(Levels 3), where much more items are stored, spontaneous
variation of key distribution can be smoothed out.

D. The Write-in-place Approach

To leverage the stable key space distribution, we propose to
eliminate the top levels in the LSM-tree structure and partition
the key space of the last level into equal-capacity buckets
according to the workload’s long-term key distribution. Within
each bucket of limited capacity KV items are organized as

a miniature LSM-tree, as illustrated in Figure 1b. While the
proposed write-in-place (WipDB) approach similarly allows
partially sorting in both horizontal and vertical dimensions,
the novelty is to switch the order of the dimensions where the
partially sorting technique is applied to make exploitation of
the long-term stable key distribution possible.

LevelDB introduces the partially sorted structure on the
vertical dimension (multiple overlapping sorted levels). Peb-
blesDB further allows partial sorting on the horizontal di-
mension (multiple partially sorted buckets in each level). In
contrast, WipDB first applies the partially sorting technique on
the horizontal dimension by directly placing keys in the right
buckets. It then uses the technique on the vertical dimension by
using LSM-tree in each bucket. The new architecture has two
benefits. First, because the LSM-tree in a bucket is of limited
size, WipDB can apply the approximate sorting technique to
avoid rewriting in the same level without further partitioning
any level of the tree into smaller buckets. Second, the sorting
operation in a bucket can be scheduled according to the read
request pattern to potentially move it out of read operations’
critical path.

III. THE WIPDB DESIGN

By leveraging the approximate sorting technique at only one
level that contains a long list of data items and exhibits stability
of a key distribution, WipDB can pre-define buckets in the
key space and write incoming KV items into the buckets they
belong to (write-in-place). Conceptually, WipDB mimics the
bucket sort with KV items sorted across the buckets. Within a
bucket, the items are managed within an LSM-tree. The design
of WipDB addresses a number of critical issues, including how
to partition the key space into buckets, how to efficiently write
KV items into the buckets on the disk, how to prevent new
KV items in the memory from being lost upon power failure
or system crash, how to minimize the performance impact of
in-bucket sorting, and how to adapt the buckets to change of
key distribution.

A. The WipDB Architecture

In the WipDB architecture (Figure 1b), the key space is
partitioned into a certain number of buckets so that each bucket
is supposed to contain about the same number of KV items
according to the observed key distribution. Each of the buckets
admits new KV items directly from a buffer in the memory
that corresponds to the bucket. The buffer is responsible for
receiving new KV items whose keys are in same range of its
corresponding bucket. As the buffer plays a role similar to
MemTable in LevelDB [8], we name it MemTable too. The
difference is that there are multiple MemTables, each for a
bucket on the disk. When a MemTable is full, it’s written
to its corresponding bucket on the disk as a file containing
a sorted list of KV items. This process is similar to the
minor-compaction operation in LevelDB, where a MemTable
becomes an SSTable in Level 0 of the LSM-tree on the disk.

As we mentioned, we use the LSM-tree structure within
each bucket. To reduce write amplification due to compaction



1000 2000
(a) Cache Misses

107

109

C
ou

nt
Hash-Huge Hash SkipLists 1-SkipList

1000 2000
(b) TLB Misses

1

2

Pe
rc

en
ta

ge
 (%

)

1000 2000
(c) Put Throughput

1

2

3

M
op

s/
s

Fig. 3: Performance comparison of skip list and hash table.

Tag
Tag Tag Tag Tag

Tag Tag TagPointer

Entry64 byte 64 byte

2 byte hash tag 6 byte pointer to target entry

Pointer Pointer Pointer Pointer
Pointer Pointer Pointer

1-20 21-40 41-60MemTables

HashTable

Bucket Index

……

Fig. 4: MemTable Design

within the LSM-tree, we adopt the technique used in LSM-
trie and PebblesDB, where a level consists of multiple over-
lapping sublevels, to avoid rewriting in the same level (see
Figure 1b). Specifically, in a compaction operation KV items
in the sublevels of Level i (i = 0, 1, 2, . . . ) are merge-
sorted into one list, which is then written back as a new
sublevel of Level i + 1 with a write amplification of one.
Interestingly, though the three KV stores (WipDB, LSM-
Trie, and PebblesDB) use the same technique for significantly
reduced write amplification, only WipDB can take its full
advantage. As we mentioned, when one big LSM-tree is used
to manage a KV store, each level has to be partitioned into
multiple segments, such as SSTables in LevelDB. The store
conducts compactions on a few selected segments once at a
time to cap the time of a compaction operation. To make the
tree grow in a balanced manner, both LSM-trie and PebblesDB
make a major effort attempting to maintain about the same
number of items in each segment. This is challenging as short-
term key distribution keeps changing. To this end, LSM-trie
gives up support of range search by using SHA-1 hashed keys
in the sorting. PebblesDB constantly adds guards in each level,
incurring SSTable splitting operations and rewriting in the
same level. WipDB addresses this issue by removing the need
of introducing segments into a level. As a WipDB store can
have a sufficient number of buckets so that each bucket won’t
grow very large (e.g, up to a 1GB). Each level is limited at
a relatively small size (e.g., tens of Megabytes). This makes
partitioning within a WipDB’s level unnecessary. Therefore,
all sorted KV items in a sublevel of a bucket’s LSM-tree are
stored in one file, which is named LevelTable. A compaction
is applied on multiple LevelTables of a level. In this way, the
write amplification can be as low as the number of levels.

B. The Operations

WipDB supports all basic KV store operations, including
write, deletion, modification, and read. Like most other KV
stores, WipDB executes write, delete, and modification oper-
ations, collectively named update operations as writing new
KV items to the store. In particular, for deletion operation a
special KV item, whose value is a tombstone marker indicating
it’s a deletion request, is written. The actual deletion and
modification are actually performed during compactions.

A read operation can request for either one KV item
(point search) or all items in a key range (range search). A
point search starts at the MemTable and proceeds across the
LevelTables in the order of levels until a key is found or it

reaches the last (sub)level in the corresponding bucket. In the
process, use of Bloom filters in each sublevel can avoid most
or all access of files that do not contain the requested key.
However, for range search every LevelTable must be read and
searched for the keys in the specified range. The results from
the sublevels in all relevant buckets are combined and returned
to the requester. Therefore, range search is an I/O-intensive
and expensive operation.

C. Efficiency and Persistence of MemTables

In LevelDB, MemTable is maintained as a sorted data
structure (skip list), so that it can directly support range search
and be readily written to the disk as a Level-0 SSTable.
However, such a design can be problematic for WipDB.

WipDB may have a large number (e.g., a few thousands)
of MemTables. Its enlarged working set and weakened access
locality may lead to a very high CPU cache miss ratio. A
write is always preceded by a lookup in a MemTable for its
insertion location. A lookup in a sorted structure, such as a
skip list, may require multiple memory accesses and incur
multiple cache misses. To illustrate this, we set up systems
of different number of MemTables, each with a capacity of
10K KV items, and write random keys into them. As shown
in Figure 3, KV items in each bucket can be organized as a
skip list (“SkipLists”), a hash table (“Hash”), or a hash table
with huge page enabled in Linux (“Hash-Huge”). We also
include results for all keys in one big skip list (“1-SkipList”).
The system setup is described in Section IV-A. As shown,
using skip lists causes much more cache and TLB misses,
and accordingly produces a write throughput much lower than
using hash table. This issue of using a sorted in-memory table
is particularly serious when high-speed SSDs are used and the
store has a low write amplification.

To address the issue, WipDB uses a hash table to implement
a MemTable. As shown in Figure 4, each entry of the hash-
table’s directory has 64 bytes (the cacheline size), which
consists of eight 8-bytes slots. The entry is 64-byte-aligned.
One memory access can retrieve all its eight slots into the
cache. Conceptually, each slot stores a KV item. In reality,
we hash the key into a two-byte tag. The tag and a six-byte
pointer pointing to the space storing the KV item are stored
in the slot. The eight slots in an entry are used as a log. New
KV items are appended at the end of the log. A lookup in the
entry starts from current end of the log. When the hash table
is full (i.e., any of its entry has overflown) WipDB freezes the
table, sorts its data items, and writes them to the disk as a



LevelTable at Level 0. Meanwhile, a second empty hash table
is set up to continue admitting incoming KV items.

Any KV items in the MemTables hosted in the DRAM are
subject to loss due to power failure or system crash until they
turn into LevelTable on the disk. Therefore, WipDB writes any
new KV items into a write-ahead-log before their requests are
acknowledged.

D. Support of Range Search

The hash-table-based MemTable does not directly sup-
port range search. When a range-search request arrives at a
MemTable, WipDB immediately sorts the data items currently
in the hash table and place them in a one-time-use buffer,
which is discarded after the range search has completed its
scanning. KV items are copied, rather than moved, from the
hash table to the buffer.

This design choice is in stark contrast with FloDB [14], a
KV store dedicated for improving operating efficiency of the
skiplist based MemTable. FloDB adds a hash table on top of
the MemTable and keeps pushing KV items from the hash
table to the MemTable. WipDB cannot adopt such a design.
With such a two-level in-memory structure a read request
still needs to search the skip list (unless the item has been
found in the hash table), causing many cache misses, which
compromises performance. Interestingly, FloDB cannot use
WipDB’s choice either as it assumes a MemTable as large
as 192 GB to take full advantage of memory’s high speed.
In contrast, each WipDB’s MemTable has only one or a few
megabytes, or a few thousand KV items. While a range search
operation is very expensive, it is well affordable to sort this
relatively small number of items in a hash table. In addition,
if a bucket receives a large number of range queries during
a time window, WipDB replaces the hash-based MemTable
with a skiplist-based one to reduce sorting overhead for this
bucket. If no more range-query requests arrive after next
minor compaction, it changes back to hash-based MemTable.
This adaptive strategy adjusts the MemTable structure of each
bucket individually based on the workload, so that the sorting
overhead can be minimized.

To ensure that items arriving after a range search request
from being considered, WipDB leverages a global unique and
monotonically increasing sequence number assigned to any
incoming item in the order of their arrival. Such a sequence-
number mechanism is also adopted in other KV stores such as
LevelDB and RocksDB. When a search request is received, the
sequence number currently available for assignment is attached
to the search. During a search any items whose sequence
numbers are equal to or larger than the sequence number with
the search are skipped.

E. Bucket Splitting and Merging

WipDB does not pre-assign a large number of buckets when
a store is initialized as the key distribution is not known yet.
Instead, it has only one or a few initial buckets. When the
store grows or the key distribution of the incoming KV items
changes, a bucket may become too large, and have too many

levels (or sublevels), which degrades read performance. In
principle the WipDB’s structure is similar to a hash table,
whose bucket capacity also needs to be capped for desired
lookup performance. The difference is that KV items in a
WipDB are sorted across its buckets. For this reason, it can
be much more efficient to reduce a bucket’s size. Instead of
reshuffling the entire store, WipDB can individually split a
bucket once it reaches its capacity.

Assuming each level of the LSM tree in a bucket consists
of maximally T sublevels. When a bucket reaches its capacity
each of its levels consists of T full sublevels. We choose to
evenly split the bucket into N smaller buckets when it exceeds
its capacity threshold. We consistently apply the same set of
N−1 splitters at each sublevel to produce N segments. Items
in the ith segments (i = 1, 2, . . . , N ) of all sublevels constitute
one of the N new buckets. As WipDB grows incrementally
from a small number of buckets initially to thousands of
buckets by this bucket splitting, the choice of the splitters is
important to balancing buckets. To this end, similar to the
sample sort, for each sublevel we first choose N − 1 splitters
that evenly partition it. Assuming there are L levels, or L×T
sublevels, we then sort the list of the L×T ×(N−1) splitters
and choose N −1 splitters that evenly split the splitter list for
the bucket splitting. During the splitting, the bucket continues
servicing incoming requests. When N new buckets are created,
items in the MemTable are written to one of the new buckets
according to their keys. Therefore, N new Memtables are
created, each for a new bucket, to receive incoming items. In
the meantime, the old bucket becomes read-only to serve read
requests that cannot be satisfied in the new buckets. WipDB
carries out a full compaction to turn the old bucket into one
sorted list. It then partitions the list into N segments according
to the selected splitters and places them in the new buckets
respectively as their last levels. Eventually, all requests can be
processed by the new buckets and the old bucket is removed.

A bucket shrinks after repeated deletion of its KV items.
While existence of small buckets does not compromise perfor-
mance, it may increase number of buckets and thus memory
footprint. Small buckets can be removed by merging them
with their neighboring buckets, which helps reduce WipDB’s
memory demand. Admittedly, by having multiple MemTables
WipDB uses more memory for its in-memory data structure
than other KV stores such as RocksDB and PebblesDB.
However, its demand on memory is still very small. For
example, for a 5TB disk filled with KV items of around 512B
each, the memory demand is only 2GB, which is negligible
on a commercial server equipped with several hundreds of
GB memory. Furthermore, its use of the additional memory
brings significant improvement of write performance, as will
be shown in Section IV. This benefit is not available to existing
KV stores even if a much larger memory is offered.

WipDB’s write amplification (WA) is mainly attributed to
(1) compaction operations on LSM trees within individual
buckets; and (2) bucket splitting operations. As we have dis-
cussed, with its use of vertical approximate sorting WipDB’s
compaction-induced WA is bounded by Lmax, the maximally



c(1),d(5)
n(2),q(6)j(3),k(10) x(4),z(8)

11

11

11

12

12

22

22

13

13

14

14

……

……

66

66

7

7

7

8

8

8

9

9

10 …

…10

11

11

a(7),c(14)

a(7),c(14)

h(12) m(9),n(13) u(11)

u(11)

MemTable

free space
Minor Compaction

After Minor Compaction

valid record garbage key(seq. No.)

tail

tail

head

head

SSTable

Log

Fig. 5: Space reclamation in WipDB’s Write-Ahead Log

allowed level count in a bucket. Assuming a full bucket’s size
is 1 and its splitting produces N new buckets, each with a
size of 1

N . Each of the new buckets will be split again with
the entire bucket being re-written after it grows from size 1

N
to 1 with a minimal 1− 1

N data written into the bucket from
users. Accordingly, the split-induced I/O write amplification is
upper-bounded by the ratio between amount of write for bucket
splitting and amount of write of new data from users, which
is 1/(1− 1

N ), or N
N−1 . Considering write amplification due to

both compaction and bucket splitting, the store’s WA is upper-
bounded by Lmax + N

N−1 , regardless of bucket count or the
actual store size. Assuming a practically configured WipDB
store whose Lmax = 3, N = 8, the total WA is no more than
4.15.

F. Use of Write Ahead Log for DRAM resident MemTable

In order to tolerate power failure, WipDB adopts a basic
principle similar to existing KV stores, such as LevelDB,
which writes a KV item to a write-ahead log (WAL) when
it is still in the MemTable. The main issue for WipDB to
address is how to reclaim the log space occupied by the KV
items that have been safely persisted into the KV store itself.

In LevelDB KV items are persisted on the disk in their
arrival order, which is also their order in the log. Each item
is assigned a monotonically increasing sequence number in
the order. Therefore, when an item with a particular sequence
number is written to the disk, any items whose numbers
are not larger than the sequence number in the log, or any
items before a corresponding offset in the log file, can be
removed. However, this is true only for items within individual
MemTables in WipDB. WipDB has multiple MemTables. All
new items are written to a common log. But they may be
distributed in different MemTables.

We track the smallest sequence number in each MemTable
among those whose corresponding KV items are not yet
persisted. We then choose the smallest of every MemTable’s
smallest number. All items in the log whose sequence numbers
not greater than this smallest number, which are contiguous
in the log file, can be removed. In this way, the log space
can still be efficiently reclaimed. The process is illustrated in
Figure 5, where new items are written at the log head and
free space starts at the tail. The smallest sequence number
is at the tail (e.g., Sequence number 7). Note that there can
be removable (garbage) items interspersed among valid items,
such as items with Sequence numbers 8 and 10. After the

leftmost MemTable is flushed to the disk, the tail moves
forward to Sequence number 9. The space before the position
can them be reclaimed and reused.

To prevent the log from becoming too large, WipDB sets
up a threshold on the log size. When the threshold is reached,
MemTables at the log tail are written to the disk to shrink the
log.

G. Read-aware Compaction Scheduling

In an LSM-tree-based multi-level KV store, read perfor-
mance can be compromised by searching in SSTables in
different levels. The more the levels, the more likely for
Bloom filters in the SSTables to have false positives and for
a read request to take more than one disk access. To this end,
compaction must be conducted to push new items downwards
and reduce level count. However, intensive compactions can
consume much I/O bandwidth and slow down the concurrent
read requests. Should we be able to schedule compactions
with priority on KV items being intensively read and reduce
number of levels hosting these read items, the negative impact
of compactions on read requests can be reduced. However,
this is very difficult as LSM-tree’s top levels are covered by a
few SSTables. And it’s hard to separate items being read from
those being written into different compactions.

WipDB addresses the issue in its design. Each of its buckets,
managed as a small LSM-tree, is only responsible for a
fraction of the entire key space. As long as write and read
requests do not intensively fall in the same buckets, WipDB
can prioritize compactions on read-intensive buckets to reduce
their levels and improve read performance. Even if the write
and read key spaces are highly overlapped, it’s likely the
case where newly written items are immediately read in the
following requests and the read requests can be serviced at a
cache before they reach the storage system [15], [16]). For
scheduling of compaction of all sublevels of a level in a
bucket, WipDB considers two factors, which are number of
current sublevels, denoted sub count and number of times
any of the sublevels are accessed to serve read requests
since the last compaction of the level, denoted read count.
sub count should be in the range of [min count, max count].
A level becomes eligible for compaction when it has at least
min count sublevels. This level receives the highest priority
for compaction when it reaches max count sublevels. Suppose
average of eligible levels’ read counts is avg read count,
the relative read count for a level of read count reads is
rela read count = read count

avg read count . Also if the average of eligi-
ble levels’ sub count is avg sub count, the relative sublevel
count for a level of sub count sublevels is rela sub count =

sub count
avg sub count . The priority (p) of a level’s compaction is qualified
as
p = (read weight) × (rela read count) + rela sub count,
where min count ≤ sub count < max count.

The read weight adjusts the weight of the read performance
relative to importance of a balanced compaction across the
buckets according to the sublevel count. The priority values
are dynamically updated and the N levels with the highest



values are selected for concurrent compactions. By adopting
a large read weight, WipDB allows read-intensive buckets to
be aggressively compacted for high-performance read service.
In the meantime, it leaves the write-intensive and read-little
buckets lightly compacted to save more bandwidth and further
improve read performance. Based on our empirical study, we
set default values of min count, max count, and read weight
as 4, 20, and 10, respectively.

IV. EVALUATION

We implement a prototype of WipDB and evalu-
ate it against three state-of-the-art KV stores: LevelDB
(v1.20), RocksDB [9] (v5.18), and PebblesDB [11] (git
#220d0fa). In the evaluation, we will answer the following
questions:
• How does WipDB improve write performance?
• How effective is WipDB’s MemTable?
• How does WipDB perform with workloads of changing key

distribution?
• How does the compaction scheduling improve WipDB’s

read performance?

A. Experiment Setup

The experiments were run on a Dell T440 server with two
4-core Intel Xeon Gold 5122 CPUs and 64GB DRAM. To
minimize the interference between threads or cores, hyper-
threading is turned off from BIOS. The server runs a 64-bit
Linux (v4.20.0) with an ext4 file system on an Intel 750 SSD
(PCIe, 1.2 TB). The SSD has up to 1200 MB/s sequential write
throughput and up to 440K IOPS for random 4KB reads.

In the evaluation, WipDB uses 2MB MemTable for each
bucket. LevelDB, RocksDB, and PebblesDB use 64 MB Me-
mTables. We configure WipDB with Lmax = 3, T = 8 and
N = 8. Another SSD of the same type holds the log file(s)
to avoid impact of logging on systems’ frontend operations in
each of the four stores. Meanwhile, every 1000 write requests
are logged as a batch for high efficiency.

B. Write Performance

WipDB aims to substantially reduce the high write amplifi-
cation ratio (WA) of LSM-tree-based KV stores. To evaluate
the performance improvement of WipDB for write-intensive
workloads, we use 16-byte keys and 100-byte values with
uniform distribution and send 8 billion write requests (around
900 GB data) to each store. WipDB is configured to have 100
buckets at beginning except stated otherwise. All the stores,
except LevelDB which only supports one background thread,
use seven compaction threads. We show throughput and WA
of WipDB, LevelDB, RocksDB, and PebblesDB in Figures 6.

Write throughput and WA. As shown, WipDB has much
higher throughputs than the other stores. This improvement is
primarily due to its low write amplification (see Figure 6b).
In particular, RocksDB and LevelDB’s write amplification
is about 5× to 6× higher than that of WipDB. Admittedly
WipDB uses more memory for its MemTables. To reveal
impact of this increase of MemTable size, we include an

experiment of RocksDB whose MemTable is configured to
be of 1.6GB, the peak size of WipDB’s MemTables in the
experiments. This RocksDB’s results are shown as ‘RocksDB-
1.6G’ in Figure 6a. The throughput doesn’t improve. A larger
Memtable does help collect more writes for larger batched
I/O and improved I/O efficiency. However, increasing the
Memtable size will have diminishing return on fast devices and
the dominant factor on the stores’ performance is the amount
of I/O, which is determined by a store’s WA. PebblesDB’s WA
is also 2× of that of WipDB 3 The total amount of I/O during
the writes is shown in Figure 6c. PebblesDB’s extra writes are
caused by having more levels and constantly splitting SSTables
to generate new guards, while WipDB maintains at most three
levels and conducting bucket splitting only when a bucket
reaches its the size limit.

Since WipDB has a consistently low WA, its throughput
remains stable and high at about 0.8 Mops/s. It is worth noting
that initially WipDB’s WA increases as the store grows. At the
moment it reaches its peak value, 3.14 as shown in Figure 6b,
the overall WA drops slightly. The reason is twofold. On the
one hand, as WipDB starts to split, the number of buckets
grows, and more data can be stored at Levels 0 and 1. Hence
the WA becomes smaller with fewer levels. On the other hand,
the workload contains update requests, which makes the size
of new SSTables generated by compaction smaller than the
total size of the SSTables being compacted.

WipDB’s MemTable. To improve its memory access ef-
ficiency, WipDB initializes with hash-based MemTable, in-
stead of skiplist. To assess the impact of this design, we
include a version of WipDB that is initialized with skiplist-
based MemTable, marked ‘WipDB-S’ in Figure 6a. As shown,
WipDB’s write throughput is 2× of that of WipDB-S.
WipDB-S’s throughput remains stable at a lower rate (around
0.4 Mops/s), while its WA ratio is as low as that of WipDB.
With the increase of bucket count from 100 to around 800,
the working set of the MemTables grows much larger than
the CPU cache size. Echoing observations shown in Figure 3,
the degraded throughput of WipDB-S is due to its use of
sorted skip list that causes much more CPU cache misses in
its index walk than use of hash table. It is noted this issue
of memory access performance arises only in the design of a
high-performance KV store using high-speed storage devices.

Responding to changing key distribution. Real-world
workloads are usually skewed [5] and their key distribution is
likely to change over time, causing some buckets in WipDB to
grow much faster and having more (sub)levels than the others.
WipDB addresses this issue with bucket splitting. To evaluate
how WipDB responds to key distribution change, we run a
WipDB store initially with only one bucket. In the meantime,
we separate the entire key range into four equal-size and

3In the experiment with PebbleDB, we manually change its opensourced
code by setting top level bits, a variable controlling probability of generating
guards, from 27 to 31 to reduce number of guards. This is necessary to allow
PebbleDB to finish its execution. Otherwise, the program would run out of
memory (on our server with 64GB memory) when the store reaches two
billion KV items.



0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 (M

op
s/

s)
WipDB
RocksDB

WipDB-S
RocksDB-1.6G

PebblesDB
LevelDB

0 1 2 3 4 5 6 7 8
Store Size (Billion of Keys)

0
500 Number of Buckets in WipDB

(a) Write Throughput

0 1 2 3 4 5 6 7 8
Store Size (Billion of Keys)

0

3

6

9

12

15

18

W
rit

e 
A

m
pl

ifi
ca

tio
n

3.14

WipDB PebblesDB RocksDB LevelDB

(b) Write Amplification

 R1861 GB 
W2526 GB

0

1

2

3

4

5

6

34.5%

34.0%46.5%

31.5%53.5%

Level
WipDB

Read
Write

 R6135 GB 
W6459 GB

13.8%

13.1%14.1%

12.5%13.2%

12.6%13.2%

12.1%12.7%

12.1%12.8%

23.7%34.0%

PebbelsDB

 R17323 GB 
W17484 GB

08.1%02.9%

09.7%09.8%

29.7%30.0%

37.8%38.3%

14.6%19.0%

RocksDB

 R13891 GB 
W14042 GB

06.4%

06.3%06.4%

08.5%08.6%

26.0%26.3%

36.5%36.9%

16.4%21.8%

LevelDB

(c) IO at Different Levels

Fig. 6: Write performance. “WipDB” uses the hash table for MemTable. “WipDB-S” uses skiplist. In (c) percentages of read
and write amount at each level of a store are marked in the graph. The total read and write amounts, including those for
compaction, are shown under respective graphs.

0

20

0.5 Billion
Histogram at Different Time

0

20

1.5 Billion

0

20

2.5 Billion

0

20

3.5 Billion

Range 1 Range 2 Range 3 Range 4

0.2

0.4

0.6

0.8

1.0

Mops/s

Exponential Normal Uniform Exponential-Reverse

Throughput

0 1 2 3 4
Store Size (Billion of Keys)

2.5

3.0

3.5

Write Amplification

0.2 k

0.4 k

0.6 k

0.8 k

1.0 k

Bucket #

Number of Buckets

Fig. 7: Write throughput when key distribution changes. Blue
bars in the right graph show the distribution of buckets
(number of buckets in each 1/60 key space) in the key space
at four sample time points when the store reaches 0.5, 1.5, 2.5
and 3.5 billion items, respectively.

non-overlapping regions, and serve four write workloads with
different key distributions, each writing to a different region,
one at a time, to simulate a workload of dynamical key pattern
changes. The four regions, in the order of their key ranges,
receive KV items (16 B keys and 100 B values) of exponential,
normal, and uniform key distributions, and then exponential
again with its key order reversed, respectively. Each region
receives 1 billion KV items. The experiment results are shown
in Figure 7. As shown in the left graph, the number of buckets
increases with the increase of store size. The increase rate
slows whey the workload switches to the uniform distribution
without having skewed writes to rapidly fill and split a subset
of buckets. The right graph of Figure 7 shows that the bucket
distributions consistently match the key distributions in the
key regions, demonstrating WipDB’s adaptability in its bucket
placement for equalized bucket sizes. During the execution, the
WA may be modestly reduced. When buckets become filled
and are then split into small ones with much fewer (sub)levels,

their WAs accordingly become smaller. It is worth noting
that the write throughput is the lowest at the moment when
key distribution switches. Because new buckets are always
generated by splitting existing buckets, this bucket splitting for
accommodating new a key distribution leads to the throughput
loss.

Note that in the WipDB’s design, we do not assume an
advance knowledge on number of buckets to be used and
how the buckets should cover the key space (the store can be
initialized with only one bucket). We only assume a long-term
relatively stable key distribution to prevent an extreme scenario
that may lead to excessively large number of buckets. In the
scenario, some buckets receive many KV items and are filled.
They are then split into new near-empty ones. The new buckets
would receive few KV items afterwards. The consequence
is that a very large number of buckets/MemTables leads to
serious cache misses and compromised system’s performance.
However, from the experiment results we understand that the
assumption on the key distribution does not have to be strong.
The system’s performance is highly tolerant to the change of
the distribution and bucket count increase.

C. Read Performance

To evaluate read performance, we first build a store of
1 billion KV items (about 100GB). We then use eight threads
to read items until another thread finishes sending 300 million
write requests at a rate up to 150 Kops/s (by inserting time
delay between requests). The read and write throughput is
shown in Figure 8 (Note that the read Y axis is on the right
of the graphs). In the meantime, to evaluate the impact of
WipDb’s read-aware compaction (RC) design, we include a
version of WipDB that disable RC, marked ‘WipDB-DRC’.

In the experiment where read requests have no locality (uni-
form), as shown in Figure 8(a), read throughput of all the
four stores become lower after the write requests arrive.
However, only WipDB sees its read throughput recovered
during the writes, while others’ read throughput keep dropping
and then stay at its low level. This is mainly due to WipDB’s
consistently lower WA values. WipDB-DRC’s read throughput



25
50
75

Read

25
50
75

25
50
75

25
50
75

25
50
75

200

400

Read

200

400

200

400

200

400

200

400

Th
ro

ug
hp

ut
 (K

op
s/

s)

50
100
150

WipDB-DRC
Write

50
100
150

WipDB

50
100
150

PebblesDB

50
100
150

RocksDB

500 1000 1500 2000 2500 3000 3500 4000

50
100
150

(a) Uniform

LevelDB

seconds

50
100
150

WipDB-DRC
Write

50
100
150

WipDB

50
100
150

PebblesDB

50
100
150

RocksDB

500 1000 1500 2000 2500 3000 3500 4000

50
100
150

(b) Exponential

LevelDB

seconds

Fig. 8: Throughput with mixed read/write requests. One thread
sends 300 million random (uniform) write requests at the rate
of 150 Kops/s(if possible). Eight threads send read requests
until all the writes finish. WipDB that Disable Read-aware
Compaction is marked as ‘WipDB-DRC’.

shows slight difference with WipDB. As there exists weak
access locality, RC makes a minor contribution to improving
performance. LevelDB uses only one thread for compactions
and aggressively compacts SSTables to the last two levels.
Accordingly its write throughput is intensively fluctuated.

We then repeat the experiment with exponential key dis-
tribution for the read requests. The results are shown in Fig-
ure 8(b). With a very strong access locality the read throughput
is multiple times higher than that with the uniform key
distribution. When the write requests arrive, all stores, except
WipDB, observe much lower read throughput. Only WipDB
roughly maintains its read throughput with some fluctuations.
During the time period, WipDB’s read throughput often more
than doubles that of other stores. As shown, WipDB-DRC’s
read throughput is 30% lower than WipDB. This is apparently
the consequence of WipDB’s read-aware compaction schedul-
ing design that leaves much of the compaction in the key range
with light reads off the read requests’ critical path. WipDB
identifies read-intensive buckets and applies more aggressive
compaction with priority on them. Therefore, the buckets that
serve most read requests can be compacted faster and have
fewer sublevels for fast read. Therefore, among all the stores
WipDB has the lowest read latency, as shown in Table I.

TABLE I: Read Latency for 99 Percentile

Store Uniform Exponential
WipDB DRC 439 us 247 us

WipDB 365 us 190 us
PebblesDB 1698 us 324 us
RocksDB 765 us 293 us
LevelDB 526 us 249 us

D. Impact of WAL on Restart Time

A WipDB store has hundreds of or even more MemTables.
New KV items from different MemTables are written to a
common log. This will lead to a log file much larger than

50 550 1050 1550
0

5

10

15

20
Uniform

50 550 1050 1550

Exponential

50 550 1050 1550

Zipfian

0.0

0.5

1.0

1.5

Number of Buckets

R
es

ta
rt

 T
im

e 
(s

ec
) L

og Size (G
B

)

Fig. 9: Restart time (curves) and log size (bars).

those for stores using only one MemTable. When the store
unexpectedly crashes and requires a re-start, it may take a
longer time period to read the log for a restart. Figure 9 shows
the log size and the restart time when a store is built with
write requests of different key distributions at a size in terms
of number of buckets. Initially, the log and the restart time
grow linearly with the number of buckets. When the WipDB
store reaches around 400 buckets, the log size and the restart
time stay stable at around 1.5GB and 12 seconds, respectively.

E. Results of the YCSB Benchmarks

The Yahoo! Cloud Serving Benchmark (YCSB) [17] is a
popular benchmark used to evaluate performance of NoSQL
databases. We modify db bench to support YCSB benchmarks
and run eight threads and send 8 million requests for each
workload. All the stores are pre-loaded with 1 billion (around
100GB) KV items. The results of the benchmarks are shown
in Figure 10.

Load A B C D E F0
1
2
3
4
5
6
7

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

13
4.

1 
ko

ps
/s

10
6.

0

60
.2

61
.5

60
.2

32
.2

53
.6

WiPDB LevelDB PebDB RocksDB

Fig. 10: Throughput of YCSB benchmarks

For the all-write workload (“Load”) that pre-loads 1 billion
items into the store, as expected WipDB has a much higher
throughput than other stores. The other workloads consist of
only or mostly read requests. WipDB is proposed to mainly op-
timize write operations so as to improve performance of writes
and that of reads concurrent with writes. When writes accounts
for only a fraction of total I/O load in the workload, WipDB
is not expected to make a substantial difference. As shown,
Workloads B and C have a 95/5 reads/write mix and a 100%
read, respectively. WipDB’s read throughput is comparable to
others’ performance. It’s a little lower than that of RocksDB.
Note that RocksDB is a production-level system that has been
carefully engineered with numerous optimizations. WipDB
is an experimental prototype with only limited optimization
efforts. Therefore, this small performance gap is not a surprise.
Though Workload A has a 50/50 reads/write mix, its 50%



26038

19849

446

0

982

588

0

31

1821

1

128

1704

WipDB RocksDBPebblesDB LevelDB

Fig. 11: File size histogram. The number above each figure is
the number of files within the size range.

TABLE II: Latency for 99 Percentile

Store A B C D E F
WipDB 349 344 343 323 1133 351

LevelDB 253 342 328 341 688 364
PebblesDB 443 534 543 603 3008 671
RocksDB 237 241 241 241 638 248

read requests contribute over 90% of the execution time
(as each read usually needs to read an entire data block).
Therefore, the performance gap still exists. Nevertheless, for
almost all the workloads, WipDB outperforms LevelDB and
PebblesDB. Workload E consists of short range queries that
require searching a store’s every (sub)level. WipDB has more
sublevels than levels of LevelDB and RocksDB, and thus
has a higher read amplification. The read latency (us) is
shown in Table II. WipDB’s latency is comparable to that of
LevelDB, expect for workloads A and E. PebblesDB has the
highest latency because the randomly chosen guards cause file
fragmentation. As shown in Figure 11, more than half of its file
are smaller than 1 MB. Meanwhile, PebblesDB has over 20×
files than the other store, causing more file-system overhead.

V. RELATED WORK

LSM-tree has become the most popular data structure for the
storage layer of NoSQL databases due to its optimized write
performance compared to other structures such as B+-tree.
LSM-tree achieves this by avoiding expensive in-place writes
and moving the internal data reorganization to the background.
However, write amplification in LSM-tree-based systems can
still easily go over 10×, which leaves a wide gap between
the user-perceived performance and that offered by the low-
level storage devices, the SSDs. Because of this, improving
write efficiency in LSM-tree-based KV stores has become a
daunting task for persistent KV stores. This section discusses
representative works on amelioration of the high WA.

Optimizations for efficient compaction. Real-world KV
workloads often demonstrate skewed patterns [5], which have
been leveraged by researchers to apply specialized optimiza-
tions. For example, bLSM [18] uses a merge scheduler that
aims to minimize write stalls by coordinating compaction op-
erations across multiple levels. Thonangi et al. [19] introduces
ChooseBest, a compaction policy that selects an SSTable at
Lk with the fewest overlapping SSTables at Lk+1 to minimize

the merge cost. Skip tree [20] allows KV items to be written
to a deeper level without going through the level-by-level
merges. VT-tree [21] reduces disk writes by reusing existing
data in the old tables. TRIAD [22] takes advantage of the
skewed workload where hot keys are likely to be short-lived.
It identifies the hot keys and keeps them in the MemTable and
the WAL instead of moving them to the Level-0 SSTables. In
this way, the write traffic to the top levels can be effectively
reduced. The above optimization are orthogonal to WipDB and
may help to further improve the efficiency of WipDB.

The tiering merge scheme. In LevelDB [8] and
RocksDB [9], compaction operation needs to rewrite a signifi-
cant amount of data at the deeper level (Lk+1) but moves only
1/N of that amount of data from Lk. The tiering merge scheme
was proposed to eliminate the significant rewrites. By merg-
ing multiple SSTables from Levelk and writing to Levelk+1

without rewriting any Levelk+1 data, write amplification can
be effectively reduced to only Lmax, the number of levels
in the store. wB-Tree [23] uses a B+-tree-like structure to
organize the tables to maintain a small Lmax. Similarly, LSM-
trie [10] uses a prefix-tree (trie) structure for the same purpose.
However, since both wB-tree and LSM-trie depend on hashing
to maintain balanced tree structures, they gives up the ability of
performing range operations. sDB [11] employs a probabilistic
method to partition the keys at each level to enable tiering with
the range-query capability retained. SifrDB [24] also employs
tiering. In LSM-Bush [25] and Dostoevsky [26], a lazy-
leveling scheme is introduced to use tiering for levels from 1
to Lmax− 1 and use leveling at Level Lmax, the last level. In
this way, the WA is O(Lmax + T ), where T is the size ratio
between adjacent levels. Different from the above schemes,
WipDB employs a partitioning approach to limit its bucket’s
size and accordingly the number of levels. As a result, WipDB
achieves a lower write amplification (O(Lmax +

N
N−1 )) (N is

the split-ratio) without sacrificing read efficiency. Both of L-
Store [27] and WipDB aim to improve write performance.
Additionally, L-store converts the data from a write-optimized
organization to a read-friendly one to serve read-intensive
OLAP workloads. This is similar to regular LSM-based stores
that finally compact all data into the last level if writes do not
keep coming. WipDB is designed to opportunistically improve
read performance even with write requests by prioritizing hot
buckets’ compaction for fast read.

Key-value separation. It is observed that rewriting the val-
ues in KV items can contribute to a major amount of I/O in the
compaction for relatively large values, compared to the size of
metadata and key which is usually tens of bytes. WiscKey [12]
proposed a simple yet effective method, KV separation, to
write values into a log and keep them from the compaction.
However, the value log requires regular GC operations to
reclaim free space. The log GC can be particularly expensive
under skew real-world workloads. Significant amount of cold
data needs to be consistently removed, which drives up the
store-wise write-amplification to up to 20× and offsets the
benefit of KV separation [13]. To reduce this GC overhead,
HashKV [13] replaces the log with a sophisticated mechanism



that divides the log into partitions and separates the cold items
from the hot data, which again shifts the overhead to read by
adding another layer of indirection. WipDB solves the high
write-amplification issue by directly partition the key space
without creating any indirection.

In-memory key-value stores. For applications demanding
high concurrency and low latency, in-memory key-value stores
are always preferred. HotRing [28] is proposed as a hotspot-
aware and lock-free design to speed up multi-core performance
for highly skewed workloads. Redis and Aerospike [29] pro-
vide a hybrid solution which provides memory-access speed as
well as on-disk data persistency when specified conditions are
met. In contrast, WipDB is still a on-disk KV store providing
always data persistency and expecting on-disk data access for
most read requests.

VI. CONCLUSION

We introduce WipDB, a key-value store designed to manage
small key-value items in a storage system of large capacity. By
introducing approximate sorting and the write-in-place LSM-
tree scheme, WipDB minimizes write amplification for LSM-
tree-based KV stores. Meanwhile, the read-aware scheduling
of compaction moves most compaction off the critical path of
read service. Our results show that WipDB can significantly
improve for both write and mixed read/write workloads.
Source code of our WipDB implementation is available at
https://gitlab.com/sjiang-lab/wipdb .

ACKNOWLEDGMENT

We are grateful to the paper’s anonymous reviewers who
helped to improve the paper’s quality. This work was sup-
ported by US National Science Foundation under Grants CCF-
1815303.

REFERENCES

[1] W. Jannen, J. Yuan, Y. Zhan, A. Akshintala, J. Esmet, Y. Jiao, A. Mittal,
P. Pandey, P. Reddy, L. Walsh, et al., “Betrfs: Write-optimization in a
kernel file system,” ACM Transactions on Storage (TOS), vol. 11, no. 4,
pp. 1–29, 2015.

[2] K. Ren and G. Gibson, “Tablefs: Enhancing metadata efficiency in the
local file system,” in Proceedings of the 2013 USENIX Conference on
Annual Technical Conference, USENIX ATC’13, (Berkeley, CA, USA),
pp. 145–156, USENIX Association, 2013.

[3] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” in Proceedings of Twenty-
first ACM SIGOPS Symposium on Operating Systems Principles, SOSP
’07, (New York, NY, USA), pp. 205–220, ACM, 2007.

[4] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed
storage system for structured data,” ACM Trans. Comput. Syst., vol. 26,
pp. 4:1–4:26, June 2008.

[5] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny, “Work-
load analysis of a large-scale key-value store,” in Proceedings of the 12th
ACM SIGMETRICS/PERFORMANCE Joint International Conference on
Measurement and Modeling of Computer Systems, SIGMETRICS ’12,
(New York, NY, USA), pp. 53–64, ACM, 2012.

[6] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab, et al., “Scaling memcache
at facebook,” in USENIX NSDI ’13, pp. 385–398, 2013.

[7] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The log-structured
merge-tree (lsm-tree),” Acta Inf., vol. 33, pp. 351–385, June 1996.

[8] Google, “Leveldb.” https://github.com/google/leveldb, 2020.

[9] Facebook, “Rocksdb.” https://rocksdb.org.
[10] X. Wu, Y. Xu, Z. Shao, and S. Jiang, “Lsm-trie: An lsm-tree-based

ultra-large key-value store for small data,” in Proceedings of the 2015
USENIX Conference on Usenix Annual Technical Conference, USENIX
ATC ’15, (Berkeley, CA, USA), pp. 71–82, USENIX Association, 2015.

[11] P. Raju, R. Kadekodi, V. Chidambaram, and I. Abraham, “Pebblesdb:
Building key-value stores using fragmented log-structured merge trees,”
in Proceedings of the 26th Symposium on Operating Systems Principles,
SOSP ’17, (New York, NY, USA), pp. 497–514, ACM, 2017.

[12] L. Lu, T. S. Pillai, H. Gopalakrishnan, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau, “Wisckey: Separating keys from values in ssd-
conscious storage,” ACM Trans. Storage, vol. 13, no. 1, pp. 1–28, 2017.

[13] H. H. Chan, C.-J. M. Liang, Y. Li, W. He, P. P. Lee, L. Zhu, Y. Dong,
Y. Xu, Y. Xu, J. Jiang, et al., “Hashkv: Enabling efficient updates
in {KV} storage via hashing,” in 2018 USENIX Annual Technical
Conference (USENIX ATC 18), pp. 1007–1019, 2018.

[14] O. Balmau, R. Guerraoui, V. Trigonakis, and I. Zablotchi, “Flodb:
Unlocking memory in persistent key-value stores,” in Proceedings of
the Twelfth European Conference on Computer Systems, EuroSys ’17,
(New York, NY, USA), pp. 80–94, ACM, 2017.

[15] zhichao Cao, S. Dong, S. Vemuri, and D. H. Du, “Characterizing,
modeling, and benchmarking rocksdb key-value workloads at facebook,”
in 18th USENIX Conference on File and Storage Technologies (FAST
20), (Santa Clara, CA), pp. 209–223, USENIX Association, Feb. 2020.

[16] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel, “Finding a
needle in haystack: Facebook’s photo storage,” in Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation,
OSDI’10, (USA), p. 47–60, USENIX Association, 2010.

[17] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” 2010.

[18] R. Sears and R. Ramakrishnan, “blsm: A general purpose log structured
merge tree,” in Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’12, (New York, NY,
USA), pp. 217–228, ACM, 2012.

[19] R. Thonangi and J. Yang, “On log-structured merge for solid-state
drives,” in 2017 IEEE 33rd International Conference on Data Engi-
neering (ICDE), pp. 683–694, IEEE, 2017.

[20] Y. Yue, B. He, Y. Li, and W. Wang, “Building an efficient put-intensive
key-value store with skip-tree,” IEEE Transactions on Parallel and
Distributed Systems, vol. 28, pp. 961–973, April 2017.

[21] P. Shetty, R. Spillane, R. Malpani, B. Andrews, J. Seyster, and E. Zadok,
“Building workload-independent storage with vt-trees,” in Proceedings
of the 11th USENIX Conference on File and Storage Technologies,
FAST’13, (Berkeley, CA, USA), pp. 17–30, USENIX Association, 2013.

[22] O. Balmau, D. Didona, R. Guerraoui, W. Zwaenepoel, H. Yuan,
A. Arora, K. Gupta, and P. Konka, “Triad: Creating synergies between
memory, disk and log in log structured key-value stores,” in USENIX
ATC ’17, pp. 363–375, 2017.

[23] S. Chen and Q. Jin, “Persistent b+-trees in non-volatile main memory,”
Proc. VLDB Endow., vol. 8, pp. 786–797, Feb. 2015.

[24] F. Mei, Q. Cao, H. Jiang, and J. Li, “Sifrdb: A unified solution for
write-optimized key-value stores in large datacenter,” in Proceedings of
the ACM Symposium on Cloud Computing, SoCC ’18, (New York, NY,
USA), pp. 477–489, ACM, 2018.

[25] N. Dayan and S. Idreos, “The log-structured merge-bush & the wacky
continuum,” in Proceedings of the 2019 International Conference on
Management of Data, SIGMOD ’19, (New York, NY, USA), p. 449–466,
Association for Computing Machinery, 2019.

[26] N. Dayan and S. Idreos, “Dostoevsky: Better space-time trade-offs for
lsm-tree based key-value stores via adaptive removal of superfluous
merging,” in Proceedings of the 2018 International Conference on
Management of Data, SIGMOD ’18, (New York, NY, USA), pp. 505–
520, ACM, 2018.

[27] M. Sadoghi, S. Bhattacherjee, B. Bhattacharjee, and M. Canim, “L-store:
A real-time OLTP and OLAP system,” in EDBT 2018, Vienna, Austria,
March 26-29, 2018 (M. H. Böhlen, R. Pichler, N. May, E. Rahm, S. Wu,
and K. Hose, eds.), pp. 540–551, OpenProceedings.org, 2018.

[28] J. Chen, L. Chen, S. Wang, G. Zhu, Y. Sun, H. Liu, and F. Li,
“Hotring: A hotspot-aware in-memory key-value store,” in 18th USENIX
Conference on File and Storage Technologies (FAST 20), (Santa Clara,
CA), pp. 239–252, USENIX Association, Feb. 2020.

[29] A. Davoudian, L. Chen, and M. Liu, “A survey on nosql stores,” ACM
Comput. Surv., vol. 51, Apr. 2018.


