CSE1320
Test #1
Section 001

Fall 2008 Final Exam

CSE1320
Section 001

Monday, December 8, 2008
Dr. Tiernan

Name:

Section:

001

Student ID:
 1000

Instructions:

1.
Fill in your name and the rest of your ten-digit student ID above.

2.
This is a OPEN book, OPEN notes, NO CALCULATOR test. No digital electronics of any sort are allowed to be used during the test.

3.
The test is worth a total of 100 points. The value for each question is given either at the top of that section of questions or in curly braces to the right hand side of the question. There are extra credit questions at the end of the test worth an additional 10 points total.

4. If you do not understand a question, raise your hand and the proctor will come over for you to ask about it. The proctor may or may not answer your question but you should still ask.

5. In questions where I have given you code to use, if you find typos, assume that the code is SUPPOSED to work and just indicate what assumption you made for your answer. This applies in all cases unless the question is specifically about the syntax of the code - in which case there are errors on purpose.

6. I will always try to give partial credit so the more of your work that you show, the more I am able to grade for partial credit if the answer is not entirely correct. It is to your benefit to show your work on the test.

7. You may unstaple your paper if it is easier for you. Try to not mangle it so it can be restapled.

NO CHEATING!

1.a.
Design a C struct to hold the following information:
{9 points}

UTA class information including a four letter department abbreviation (like “CSE” or “PHYS”), a string spelling out the name of the department (ex. “Civil Engineering”), a four digit course number (ex. 1320), the three digit class section code, the instructor’s last name, the number of students in the class, a string (char *) that holds the semester of the class (“Spring”, “Summer”, or “Fall”), the year of the class, the building the class is in, the room number of the class, a 7-bit bitfield representing the days the class meets each week(use one bit per day and put in a comment stating which bit represents which day), the time the class starts in 24-hour military time, and the length of the class in minutes.

1.b.
Write a C function that will perform error checking on the class start time from the struct in part 1.a. to verify that the value is a legal time hours and minutes. The input to this function should be just the military time value from the struct, not the entire struct, the function should return a value indicating if the time value is legal or not.
{9 points}

1.c.
Write a C function that uses the days of week bitfield value from the struct in part 1.a. and prints out the days of the week that the class meets based on the bitfield. The input to this function should be the entire struct.
{10 points}

1.d.
Write a C function that will perform error checking on the semester string from the struct in part 1.a. to verify that the value is one of the three allowed string values. The input to this function should be just the char pointer from the struct, not the entire struct, and the function should return a value that indicates if the string is valid or not.
{7 points}

2.
Use the declarations below and write a C function to sort the given array using the following recursive algorithm to sort
{10 points}

The array should be sorted so that the values are sorted from largest to smallest using absolute values. To sort the array, find the largest absolute value in the array and put it into the first element of the array then recursively sort the remainder of the array in the same way. Make sure to pass in the necessary information to the function and have a base case for the recursive algorithm so that it will stop.

int messy[100]; /* This is the array that should be passed to the recursive function */

3.a.
Design a C++ class to hold the following information about a UTA class:
{15 points}

Private data should include:

UTA class information including a four letter department abbreviation (like “CSE” or “PHYS”), a string spelling out the name of the department (ex. “Civil Engineering”), a four digit course number (ex. 1320), the three digit class section code, the instructor’s last name, the number of students in the class, the semester of the class (Spring, Summer, Fall), the year of the class, the building the class is in, the room number of the class, a 7-digit int representing the days the class meets each week (0 for the digit if the class does not meet that day, a 1 for the digit if the class does meet that day), the time the class starts in 24-hour military time, and the length of the class in minutes.

Public member functions should include prototype declarations for:

A default constructor for a UTA class object that sets the default value for a UTA class object to be our Fall semester CSE1320 class, a set function for class start time that allows the user to give a start time in 24-hour military time and then insures that the class start time that is stored is a valid time, a print days function that will use the 7-digit int for the days of the week and prints out the days of the week that the class meets based on that value, a get function for class end time that calculates this value from the class start time and the class length, and an overloaded operator for > which will determine if the lefthand operand UTA class object is later in the day than the righthand operand UTA class object.

3.b.
Write the C++ default constructor function for the class defined in 3.a.
{7 points}

3.c.
Write the C++ set class start time function for the class defined in 3.a.
{6 points}

3.d.
Write the C++ print days function for the class defined in 3.a.
{7 points}

3.e.
Write the C++ get class end time function for the class defined in 3.a.
{8 points}

3.f.
Write the C++ overloaded > operator for the class defined in 3.a. The “later” operator should have the following characteristics:
{12 points}

It should return an integer value with the following meanings:

If the two classes are on all different days, return -2;

if the two classes are on at least one of the same days, then check the following for the days that are the same:

if the left hand class start time is earlier than the right hand class start time and the left hand class will end before the right hand class starts, then return -1,

else if the left hand class start time is the same as the right hand class start time or the left hand class will not end before the right hand class starts, then return 0,

else if the right hand class is earlier and will not end before the left hand class starts, then return 0,

else (the left hand class starts later and after the right hand class) return 1.

Extra Credit questions

XC1.
Match the term to its definition:
{8 points; 1 point each}

 Data encapsulation
A.
Allows the same name to be used for different definitions

 Polymorphism
B.
Improving readability by redefining ‘expected’ symbols

 Function overloading
C.
Protecting parts of an object from incorrect use or change

 Templates
D.
Concept of allowing the compiler to use parameters to

determine which of several definitions to choose from

 Public inheritance
E.
Creating high-level representations of data to remove

the details of implementation from the user

 Operator overloading
F.
Allows creation of a class by filling in types and values

 Information hiding
G.
Keeping all related information of an element together

 Data abstraction
H.
Creating a new class by using an existing class as a basis

XC2.
Write a rhyme about some concept from C++.

{ANY answer will receive 2 points}

Page 1 of 9

Page 2 of 9

