
contributed articles

124 communications of the acm | april 2010 | vol. 53 | no. 4

doi: 10.1145/1721654.1721689

by Keith Wright

When Edgster Dijkstra wrote his pap er Go To
Statements Considered Harmful,3 programmers
were lost in millions of lines of spaghetti code. Now
programmers have lost their way again—this time
amidst thousands of unread resumes. Between 2000
and 2004, the percentage of incoming computer
science freshmen fell by 60%. Drop rates of 30-50% are
common. Results are similar for the other computing
related fields including Information Systems, Software
Engineering, and Information Technology.4 Many of
these degree programs, which H.A. Simon referred to
collectively as the Artificial Sciences, have failed or are
about to fail.12

This loss of student interest in artificial sciences
has been blamed in part on the impression that they
require extraordinary programming skills. Computing
journals perpetuate these notions. For example, in
capstone (senior level) computer science courses,
students should design and code a ‘real world’
application.6 This article is an opposing viewpoint.

Software Development from 1975
to 2004 – An Insiders View
Before rejoining academia, I spent over
20 years as a professional programmer.
Drawn to the field by my college-bred
love for programming, I began my
first job in 1974 when computers and
compilers were unavailable except to
academics, business owners, and em-
ployees. The principal education re-
quirement for a professional program-
mer was a college degree that included
programming courses. The essential
qualities employers sought were ana-
lytical ability, intellectual curiosity, and
loyalty. Programming was a rare skill,
and programmers in short supply. My
first job was with a startup company
with a government contract to digitize
highways and power lines—the begin-
nings of the technology found today in
Google Earth, and Yahoo Maps.

Computer centers in those days were
populated with machines such as IBM
360s, Burroughs 3700s, and UNIVAC
1100s. Along side were recent college
under-graduates, experienced COBOL /
FORTRAN programmers, and graduate
students. I was part of a 15 person pro-
grammer team. My job was to write map
plotter drivers. I was doing design and
using math I’d just learned in college.

Because of the short supply, profes-
sional programmers in those days rarely
stayed at one job more than a year; and I
too soon moved on. Subcontracting with
a Silicon Valley firm called Informatics,
then I was part of a 100-person team
developing a shop-floor control system
for the United Airlines maintenance op-
erations center in San Bruno, California.
These kinds of projects were the begin-
nings of current supply-chain technolo-
gy. Unfortunately when I arrived, the sys-
tems analysts hadn’t yet completed their
work. This meant there was nothing yet
ready to program. That unfortunate situ-
ation was due to either poor planning,
or an intentional effort to hire program-
mers before someone else did. In either
case, United Airlines was billed for these
wasted programmer hours.

After a few weeks I moved to a sys-
tems analyst job with a Virginia-based

Capstone
Programming
Courses
Considered
Harmful

april 2010 | vol. 53 | no. 4 | communications of the acm 125

contributed articles

IBM, wishing to maintain its share
of the standard platform market, in-
vested heavily in the Web infrastructure
software market in the late 1990s; and
by the year 2000, its WebSphere prod-
uct line was a market leader. This line
of middleware was millions of lines of
code developed by teams distributed
across the globe among hundreds of
programmers. In 2000, I took a pro-
gramming job on a WebSphere devel-
opment team. By then, IBM program-
mers were known as developers. They
were more technology wizards than
programmers. They had to be technol-
ogy wizards to set up a programming
workstation. This tedious task involved
installing a large stack of software in-
cluding the J2EE, the Apache web serv-
er, the WebSphere Application Server,
DB2, WebSphere Portal Server, and
Tivoli Access Manager. This stack of
(usually immature) software contained
many intricate version dependencies.

There were few support people for
the developers, because many of the
pure UNIX and NT systems administra-
tors had been laid off in the previous
few years. As a result, most of the IBM
developers did little programming.
They spent their time doing systems
administration, installing software, or
testing it. The programming involved
displaying and interfacing Web pages to
the WebSphere Portal Server. This (side
effect) programming required expert
skill in J2EE, XML, and the complete
line of WebSphere brand products. This
type of programming was nothing like
the functional programming I learned
in college. It was similar to program-
ming a DVD player.2,5 To avoid this type
of frustrating side effect programming,
most IBM developers wanted eventu-
ally to become architects.

IBM architects had jobs that, al-
though had little to do with program-
ming, were more rewarding than those
of developers. Architects lead the pro-
gramming teams. This leadership in-
cluded dispensing workstation images,
test data, method signatures, and build
paths. Having at least ten years with
IBM, architects had power, and they did
not always part with it willingly. Some
of the preferred methods of retaining
power included dispensing incorrect
documentation, working odd schedules
to avoid knowledge sharing, and resist-
ing manager efforts to add new devel-

company, Information Engineering
Systems Corporation (IESC). There
I was part of a large team doing data
modeling for a supply chain project
for the Meijer department stores data
center in Grand Rapids, MI.a That job
was fine until I found that the intended
consumers of the data models – the
programmers—were employed by a
different subcontractor, Keane,b which
operated under a separate service level
agreement that allowed their program-
mers to proceed before the IESC data
models could be developed. Again,
wasted hours were billed to the cus-
tomer. This bothered me. So I shortly
moved on to my next job.

This time with Levi Strauss in San
Francisco programming an interesting
optimization algorithm to cut cloth-
ing patterns wasting the least fabric—
part of an early just-in-time inventory
system. This was a very enjoyable job,
in which I used knowledge gained in
college. Unfortunately, two years later,
Levi Strauss off-shored their entire sup-
ply chain, and I was laid off.

My quest for rewarding ethical pro-
gramming jobs continued for the next
decade, taking me to Advanced Micro
Devices, National Semiconductor, aca-
demia, and finally in 1998, IBM. My
first job there was with a small Java
team working on an interesting PC-
based datamining application for in-
surance fraud detection. I was working
with J2EE,c and learning Web technolo-
gies for the first time. But sadly for me,
IBM, in response to the rapidly matur-
ing business applications market, soon
abandoned it.

By the year 2000, enterprise resource
planning systems (ERP) had reduced
the demand for custom business ap-
plications dramatically. ERP systems
saw a large boost in sales in the 1990s
as companies facing the Y2K problem
replaced their systems with ERP. Prior
to ERP, each organization department
likely had their own custom informa-
tion system. This architecture was
expensive to maintain. Hence a com-
petitive advantage accrued to those
companies standardizing on a few
standard ERP platforms, most notably
now, SAP and Oracle.

opers. IBM architects had well learned
the hardest programming lesson: pro-
grammers who are dispensable will be
eventually dispensed with. So, instead
of ace programmers, IBM architects be-
came experts in AIX, Solaris, HP-UX, Li-
nux, DB2, Microsoft Windows, and the
WebSphere products. Architects were
highly sought, and highly paid. But they
had little occasion to apply skills they
learned in college.

My personal observations of the
software industry are consistent with
the ACM’s 2006 report on software
globalization.1 Page 36 of that report
states, about programmers:

They are more likely to work on
large software applications in
teams that include applications
specialists…they are expected to be
masters of certain software plat-
forms and interoperability stan-
dards…it will be increasingly im-
portant that….education enables
the student …to be familiar with
the tools and platforms that are
increasingly standards in the inter-
national market place.

Programming –
Prospects for the Future
In summary, the author’s industry ex-
perience from 1975 from 2004, and
current economic literature suggests
that, by 2004, a lucrative United States
career as a generalist professional pro-
grammer was a thing of the past. And
that was before many information
technology services were substantially
offshored.

The most widely cited estimate of
the scale of this off-shoring is a 2002
Forrester projection that over the next
15 years, 3.3 million U.S. services indus-
try jobs and $136 billion in wages will
move offshore.7 From 1997 to 2004, U.S.
off-shoring of business, professional,
and technical services increased 77%.
There is little doubt that the growth
of off-shoring has negatively affected
both U.S. job availability and wages in
the IT job market.13

According to the McKinsey Global
Institute,9 “a software developer who
costs $60 an hour in the U.S. costs only
$6 an hour in India.” To take advantage
of this comparative advantage, in 2004
IBM launched a $200 million Indian
development center, to handle the bulk

a �http://www.meijer.com

b �http://www.keane.com

c �Java 2 Enterprise Edition

contributed articles

126 communications of the acm | april 2010 | vol. 53 | no. 4

of solutions development work for IBM
worldwide.8 IBM now has 15% of its
global work force in India. Although
U.S. firms sell 84% of the world’s pack-
aged software, according to the ACM’s
Software Globalization report, the U.S.
employs only 50% of the related labor.1

According to a recent report re-
leased by the Brookings Institution,
about 20% of the existing U.S. IT jobs
will move to lower cost destinations by
2015.d The study predicted that about
60,000 jobs will be offshored between
2004 and 2015. Between March 2001
and November 2001 the IT industry
shed 197,000 jobs. By March 2002 IT
industry employment had declined by
more than 270,000 jobs. Significant
losses continued such that by March
2003, IT industry employment had
fallen by an additional 113,000 jobs.
Employment losses finally slowed by
March 2004, although the industry still
suffered a decline of 19,700 jobs. All
told, these mounting losses meant that
the IT industry lost 402,800 jobs be-
tween March 2001 and March 2004.

In spite of these gloomy statistics
industry leaders and economic policy
makers believe that the future of the
American workforce is in information
technology, working as what Robert Re-
ich termed “symbolic analysts.”11 Sup-
porting these claims are signs, since
March of 2004, of a weak resurgence
in the IT industry. The total number
of available positions has increased al-
most 50% since April 2002, if Monster.
com is a reasonable indicator.13 The
US Bureau of Labor Statistics forecasts
20%–50% job growth in all computing
specialties by 2012, except computer
operations, which is declining, and
programming, which is flat.10

In summary, this article has de-
scribed the dramatic decline in de-
mand for U.S. programmers over the
period from 1974 to 2004.e Let me con-
clude this section by saying that there
is still some demand for US program-
mers. Most of this demand is for Web
programming which now leads the to-
tal number of jobs requiring program-
ming skills.10 But the Web has radically
changed the programming skill sets re-

quired. Web programming comprises
a complex set of non-functional pro-
gramming skills, not typically taught
in college. As a result, many of today’s
college degree programs in artificial
sciences need a complete redesign.

Recommendations
When designing computing curricu-
lums, it is useful to first consider the
capstone courses. Many of today’s
capstone courses involve locating real
programming projects in the commu-
nity.6 However, this is often too time
consuming. Furthermore, real proj-
ects are usually too difficult for college
seniors. Other capstone computing
courses have students working indi-
vidually on imaginary projects, giving
them a chance to build something they
own. Unfortunately, this may give stu-
dents a poor understanding of the real
world. Finally, we do students a disser-
vice if capstone courses give them the
impression they are likely to become
professional programmers.

It is important to remember that, in
the ACM Education Board’s Great Prin-
ciples of Computing project, program-
ming is only one of four core practices.
The other three are systems thinking,
modeling, and innovating. Deempha-
sizing programming and giving sys-
tems thinking a more prominent role
in artificial science curricula would
improve its appeal. (For an excellent
discussion of creative ideas for adding
innovation to Computer Science curri-
cula we suggest.4)

Research shows that students find
bioinformatics and molecular biology
more attractive than the artificial sci-
ences.4 So, why not look to the medi-
cal school curriculums for guidance
for designing curricula for artificial
science programs? The similarities of
the medical profession to today’s IT
profession are mentioned in the ACM
report.1 That report recommends that
student training in artificial sciences
needs to be much broader, and deeper
in certain areas. Medical schools pro-
vide that depth in part by arranging, in-
stead of capstone courses, internships
in the various major specialties. These
internships extend for at least two years
in most schools.

What are appropriate major special-
ties of artificial science? I believe part of
the answer lies in industry best practices

like those captured in the IT Infrastruc-
ture Library (ITIL) and the correspond-
ing international standard - ISO 20000.f,

g So I suggest, to designers of future arti-
ficial science curriculums, that capstone
programming projects be replaced with
the following internships:

Service desk.˲˲ Here students would
serve as assistants in large data center
service desks. Students could handle
routine first line support. Especially in-
cident recording and escalation.

Change management.˲˲ Here students
would work with programmers and
change control specialists. Program
maintenance should be stressed here.

Programming.˲˲ In this rotation, stu-
dents would work along side program-
ming teams developing new systems.
Requirements analysis, tool usage, ver-
sion control, and system design would
be strongly emphasized.

Networking.˲˲ Students here would as-
sist in network configuration manage-
ment, and diagnosing traffic problems.

Problem Control.˲˲ Here students would
learn operating system administration.

Service level management.˲˲ Here an
interdisciplinary approach is required
to understand how services should be
conceived, designed, delivered, and
supported. Students could work as ex-
ecutive assistants to first line IT man-
agers. Emphasized would be the writ-
ing of ethical service level agreements,
underpinning contracts, and opera-
tional level agreements.

These internships correspond to
process areas for IT service manage-
ment which are treated at length in
ITIL. This best practice framework
mentions five other such process ar-
eas, but I do not mention them here for
the sake of brevity.

Conclusion
In summary, enrollment in U.S. univer-
sity computer related degree programs
has plummeted in the past decade. Yet
the field of information technology re-
mains one of the stronger careers for
those fortunate enough to receive the
right training. This article a dilemma for
many of today’s U.S. universities. This
article offered perspective and sugges-

d �Silicon Valley to Offshore Majority of Jobs Over 10 Yrs -
Brookings, Global Sourcing NOW, 2/13/2007

e �Demand for database, ERP (such as SAP and Oracle /
People Soft), and ecommerce servers skills (such as
WebSphere and WebLogic) are on the rise.10

f �http://www.itil.co.uk

g �http://www.iso.org/iso/en/CatalogueDetailPage.Catalogu
eDetail?CSNUMBER=41332&scopelist=PROGRAMME

april 2010 | vol. 53 | no. 4 | communications of the acm 127

contributed articles

tions to universities grappling with this
dilemma and presented ideas on how to
redesign computer curriculums to ad-
dress modern economic needs. These
recommendations included replacing
programming capstone courses with
internships that would supply depth
in standard platform training, (for ex-
ample, UNIX, SAP, Oracle) business pro-
cesses, and IT service management.�

References
	 1.	� ACM (Association of Computing Machinery)

Globalization and Offshoring of Software. ACM
Job Migration Task Force; http://www.acm.org/
globalizationreport/. 2006.

	 2.	� Brooks, F.P. No Silver Bullet: Essence and Accidents of
Software Engineering. Computer, 20, 4 (April 1987).

	 3.	� Dijkstra, E.W.G. Go To statement considered harmful.
Comm. ACM 11, 3 (Mar.1968).

	 4.	� Denning, P.J. and McGettrick. Re-centering computer
science. Comm. ACM 48, 11, (Nov. 2005).

	 5.	� Hudak P. Conception, evolution and application of
functional programming languages. ACM Computing
Surveys 21, 3, (Sept. 1989).

	 6.	� Martin, F. Toy projects considered harmful. Comm.
ACM 49, 7 (July 2006).

	 7.	� McCarthy, John C. 3.3 Million U.S. Services
Jobs to go Offshore. Forrester, Nov. 11, 2002;
http://www.forrester.com/ER/Research/Brief/
Excerpt/0,1317,15900,FF.html.

	 8.	� McDougall, P.C. IBM to move all solutions
development operations to India. InformationWeek, (
Mar 8, 2006).

	 9.	� McKinsey Global Institute. Offshoring: Is it a win-win
game? San Francisco: McKinsey & Company. 2003.

	10.	� Prabhakar ,B. and Litecky, C. R. IT skills in a tough job
market. Comm. ACM 48, 10, (Oct. 2005).

	11.	� Reich, R. The work of nations. NY: Alfred A. Knopf.
1991.

	12.	� Simon, H. A. The Sciences of the Artificial. The MIT
Press; 3 edition. (Oct. 1, 1996).

	13.	� Srivastav S. and Theodore, N. A long jobless recovery:
Information technology labor markets after the
bursting of the high-tech Bubble. The Journal of Labor
and Society 8, (Mar. 2005), 1089-7011.

Dr. Wright (WrightM@uhd.edu) is currently teaching
business intelligence courses at the University of Houston-
Downtown, TX.

© 2010 acm 0001-0782/10/0400 $10.00

