Introductory PL/0 Exercise

The PL/0 environment does not save, so a text editor window is useful.
http://ranger.uta.edu/~weems/NOTES3302/BASELINE/ has baseline.zip to get all files locally.
http://ranger.uta.edu/~weems/nOTES3302/BASELINE/DIAGRAMS/ includes:
states.jpg which describes the "user experience" as a state machine.
Other .jpg files for the PL/0 syntax. These were produced by http://www.graphviz.org, a free layout package.
http://ranger.uta.edu/~weems/notes3302/bASELINE/EXAMPLES/ includes PL/0 code to be pasted into the "PL/0 Code:" textarea of
http://ranger.uta.edu/~weems/NOTES3302/BASELINE/plo.baseline.html
All boxes are resizable, except the canvas.

1. Start by pasting, compiling, and running the first example (7 lines) of test.txt. You should get an exception. Fix the situation by entering three values in "Integer Input:" - an x and y for the circle's center and a radius. The "Mouse Position (cvx, cvy);" is useful for understanding the canvas's coordinate system.

Put a 1 in "Step Limit", hit Run and use Continue to single step. Observe how the "Run-Time Stack:" changes. Also the value of the program counter, p, can be used to find the relevant code line in "Listing:".
2. Paste, compile, and run (without stepping) the second example from test.txt.

Now insert after " $\mathrm{i}:=\mathrm{i}+1$ " the statements "out:=i" and "call stop". Compile and run.
3. Paste, compile, and run binsearch.txt. Observe that a is an array of integers and a procedure may have integer values (but not arrays) passed to it.

Add a call to stop so you can see the contents of array a after it is initialized.
4. Paste, compile, and run crosshair.txt, which uses the canvas. cvx and cvy are the coordinates of the cursor, but will be -999999 when the cursor is outside the canvas. Use Stop and Continue.
5. Write a program to draw a number of polygons (no more than 10) on the canvas using the built-in procedure cvline. You should read the input from "Integer Input:". The first line is the number of polygons. Each polygon will be given as a number of points (at least 3, no more than 10) followed by the x and y coordinates.
6. Modify your program from 5. to have a ball that moves from point to point. You will need to use arrays and should redraw everything for each movement of the ball.

