

CSE 3302/5307 Lab Assignment 2

Due July 22, 2015

Goals:

 Understanding of JavaScript and compiler/interpreter concepts.

Requirements:

1. Extend the baseline PL/0 compiler/interpreter for:

a. Emojis (or other Unicode symbols) entered through an additional textarea. Line breaks are not be used.

1. The total number of Emojis should be available through the PL/0 global variable emojicount.
2. An intrinsic procedure, emojidraw(emoji#, x, y, size), should be available to allow PL/0 programs

to place an Emoji on the canvas. The emoji# must be in the range 1 . . emojicount. x and y will be in
canvas coordinates. size is the font size to be used just for the current call.

3. The set of Emojis is fixed after the Run button is hit. Attempts to change the set at other times are to be ignored.

b. Changing the canvas cursor to indicate the state of a PL/0 program during execution.

1. http://www.w3schools.com/jsref/prop_style_cursor.asp has an introduction.
2. When the interpreter is stopped, use not-allowed. (A call to wait is not considered stopped.)
3. When the interpreter is blocked by a (synchronous) cvclick call, use help.
4. When an asynchronous cvasclick handler is active, use crosshair.
5. Otherwise, use pointer.

c. In addition to cvclick, which causes the interpreter to block waiting for an onclick event on the canvas, provide

a cvasclick procedure that does not block.

1. When a PL/0 program calls cvasclick, both intrinsic global variables cvclickx and cvclicky should be
assigned a negative value. In addition, an appropriate handler function should be assigned to
canvas.onclick.

2. When a mouse click occurs, the handler should set cvclickx and cvclicky to the event coordinates. In
addition, canvas.onclick should be removed (undefined). A PL/0 program is expected to poll
cvclickx to know that the asynchronous click occured. Since JavaScript has run-to-completion semantics, it
is important for PL/0 programs using cvasclick to call wait in polling loops.

3. It is a fatal error for a cvclick to be used while a cvasclick is still active.
4. An alert should be given, but execution should continue, if another cvasclick occurs while a previous

cvasclick is still active.

d. All of the state machine functionality of the “IDE” must be preserved! Be sure to understand the state machine

(http://ranger.uta.edu/~weems/NOTES3302/BASELINE/DIAGRAMS/states.jpg and
http://ranger.uta.edu/~weems/NOTES3302/LAB1FALL14/lab1fall14.pdf), especially the code for cvclick and
wait.

2. Submit your zipped files on Blackboard by 12:45 p.m. on July 22. Be sure to indicate the browser(s) you tested with.

Getting Started:

1. Useful files, including baseline code and HTML, are at http://ranger.uta.edu/~weems/NOTES3302/BASELINE/

2. Each Emoji in a string occupies two positions. If the Emoji textarea string has odd length, then use prompt to have the

user correct the input.

3. Each table.push() in compile() is for an intrinsic name. Each varible (sic) is addressed in block(),
initMachine(), and indirectly in doInstructions() through the run-time stack (s[]). Each proc has code in
a large switch statement in doInstructions(). Those involving canvas output are the simplest, while those
involving the interpreter state and events are more complicated. (Why do some have a break and others a return or
throw?) Note that the by-value parameters for a procedure call are in stack positions s[b + 3], s[b + 4], s[b +
5], etc.

4. Understand the processing for cvclick (along with cvx and cvy) before attempting cvasclick.

