
CSE 3302 Lab Assignment 2

Due July 16, 2014

Goals:

 Understanding of JavaScript and elementary compiler/interpreter concepts.

Requirements:

1. Add the following as built-in (“intrinsic”) functions to PL/0:

a. cvclear() simply clears the new canvas using clearRect(). The canvas should have a width of 500 and a
height of 300.

b. cvball() has three arguments: x, y, and radius for calling arc() to draw a filled red ball centered at x and y.
c. cvdraw() has five arguments: picture number, x, y, width, and height for calling drawImage() to render an

image. The picture number will be in the range 1 .. imagemax, where imagemax will be a built-in constant.

2. To allow PL/0 users to perform animation, add a wait() function whose single argument gives the number of

milliseconds to delay. This feature will be much more convenient than stall loops. It will be implemented using
JavaScript’s setTimeout().

3. Email your zipped files to sourabh.bose@mavs.uta.edu by 12:45 p.m. on July 16. MavMail will block a number

of file types/extensions, including .js. The body of your message should indicate the browser(s) you tested with.

Getting Started:

1. Useful files are at: http://ranger.uta.edu/~weems/NOTES3302/LAB2SUM14/

2. Minimal changes will be needed for the compiler portion of PL/0 (e.g for generating code to call built-in functions). You

will need a new “kind” for built-in functions. Like the implementation of in and out, the necessary names will be
loaded into table before the initial call to block().

3. The interpreter will need code for each of the new built-in functions in the cal instruction processing. The needed

parameter values should be available on the RTS when the cal is encountered.

4. The pictures for cvdraw() should be pre-loaded from the same directory as your .html and .js files, e.g. such as the

start_canvas() from the Notes 02 examples. You should have at least three pictures.

5. Implementing wait() completely is especially challenging. setTimeout() will be called with a function to wake up

the interpreter along with the duration of the wait, but you will then exit execution. Your final version should still support
breakpoints and stepping.

6. You may assume the user will not hit the “Compile”, “Run” and “Continue” buttons while the PL/0 interpreter is running.

7. Optionally, you may include any (interesting) PL/0 code you create. Be sure to describe it in the body of your submission

message.

