CSE 3302/5307 Lab Assignment 3 - corrected

Due May 5, 2015

Goals:

Understanding of JavaScript prototypal inheritance.

Requirements:

1. Implement a class hierarchy (using Object.create ()) representing
a. (1) Simple, convex polygons as a list of counter-clockwise points (last point wraps around to first point).
b. (2) Rectilinear rectangles as four values: lowX, highX, lowY, highY.
c. (3) Rectilinear squares as the coordinates of the leftmost lowest point and the length of a side.
d. (4) A triangle with three counter-clockwise points.
e. (5) Regular polygon with k counter-clockwise points.
and including methods to construct an instance, to compute the area, to indicate whether a provided point is inside (including on the border) of a region, and to indicate whether one object is contained in another.
2. The input is to be taken from an html textarea (in response to a button click) and the output written to an html textarea:
a. A line indicating the number of objects that follow, one object per line. References to the objects should be placed in a 0 -based array.
3. The number 1 , the number of counter-clockwise points, and then pairs of x / y coordinates.
4. The number 2 , followed by the four bounding values.
5. The number 3 , followed by an x / y pair for the leftmost lowest point and then the length of both sides.
6. The number 4 , followed by three x / y pairs for the three counter-clockwise points.
7. The number 5 , followed by the number of sides and then x / y pairs for the first two points. The remaining points will be determined by taking left turns.
b. A line indicating the number of command lines that follow. The command lines may be formatted as:
8. The number 1 and an object's subscript to indicate that the area should be computed.
9. The number 2, an object's subscript, and an x / y pair to be tested for being inside.
10. The number 3 and one of the four five values above for retrieving the number of instances in that class. (a square is a rectangle, while rectangles and triangles are simple polygons; a regular polygon is a simple polygon)
11. The number 4 and an object's subscript for retrieving the bounding box, a rectilinear rectangle.
12. The number 5 and two objects' subscripts i and j for testing whether object i is contained in object j. Note that all objects are convex.
13. Submit your zipped . html/.js files on Blackboard by $3: 15$ p.m. on May 5 .

Getting Started:

1. http://ranger.uta.edu/~weems/nOTES3302/LAB4FALL14/contains the baseline code/lab assignment from Fall 2014lab4.basic.html and lab4.basic.js. Differences from that assignment are highlighted above.
2. All input values will be provided as strings corresponding to integers. Conventional cartesian coordinates, not window coordinates.
3. If a polygon is convex, then any three consecutive points will make a left turn.
4. If invalid input is detected, give an error message alert and stop.
5. http://ranger.uta.edu/~weems/notes5311/notes17.pdf has basic information regarding geometry.
