5.7. THE PROGRAMMING LANGUAGE PL/O

The remaining sections of this chapter are devoted to the development
of a compiler for a language to be called PL/0. The necessity of keeping this
compiler reasonably small in order to fit into the framework of this book and
the desire to be able to expose the most fundamental concepts of compiling
high-level languages constitute the boundary conditions for the design of this
language. There is no doubt that either an even simpler or a much more
complicated language could have been chosen; PL/0 is one possible com-
promise between sufficient simplicity to make the exposition transparent
and sufficient complexity to make the project worthwhile. A considerably
more complicated language is PASCAL, whose compiler was developed
using the same techniques, and whose syntax is shown in Appendix B.

As far as program structures are concerned, PL/0 is relatively complete.
It features, of course, the assignment statement as the basic construct on
the statement level. The structuring concepts are those of sequencing,
conditional execution and repetition, represented by the familiar forms of
begin/end-, if-, and while statements. PL/0 also features the subroutine
concept and, hence, contains a procedure declaration and a procedure call
statement.

In the realm of data types, however, PL/0 adheres to the demand for
simplicity without compromise: integers are its only data type. It is possible
to declare constants and variables of this type. Of course, PL/0 features the
conventional arithmetic and relational operators.

The presence of procedures, that is, of more or less “self-contained”
partitions of a program offers the opportunity to introduce the concept
of locality of objects (constants, variables, and procedures). PL/0 therefore




308 LANGUAGE STRUCTURES AND COMPILERS

features declarations in the heading of each procedure, implying that & =
objects are understood to be local to the procedure in which they are declarsd,
This brief introduction and overview provide the necessary intuitiam
to understand the syntax of PL/0. This syntax is presented in Fig. 5.4 in th
form of seven diagrams. The task of transforming the diagrams into
of equivalent BNF-productions is left to the interested reader. Fig. 5.
a convincing example of the expressive power of these diagrams which aliey
formulation of the syntax of an entire programming language in such a COm
cise and readable form. :
The following PL/0 program may demonstrate the use of some featusu
that are included in this mini-language. The program contains the famils
algorithms for multiplication, division, and finding the greatest com mom
divisor (ged) of two natural numbers.

— block ‘—Q

Program

Block

-

\/ .
(= o=

k—* statement

Fig. 5.4 Syntax of PL/0.



THE PROGRAMMING LANGUAGE PL/0 309

Statement

D

K»( begin statement [- end

statement

condition statement

condition statement

Condition

expression

expression

expression

Fig. 5.4 (Continued)




310 LANGUAGE STRUCTURES AND COMPILERS

Expression

P

term

=e=

Term

——— > factor

term

Factor

factor

‘, number }

expression

—

Fig. 5.4 (Continued)

const m = 7, n = 85;

var x,y,z.q,r

2

procedure multiply;

var a,b;

beging := x; b := y; z := 0;

while 5 > 0 do

begin

3

ifodd b then z := z + g;
a:= 2*xa; b := bf2;

end
end ;




SEC. 5.8 A PARSER FOR PL/0 311

procedure divide;
var w;
beginr := x; g := 0; w:= y;
while w < rdow := 2xw;
while w > y do
begin g := 2*q; w := w(2; (5.15)
if w << r then
beginr := r—w; g := g-+1
end
end
end ;

procedure ged;
var f,g;
begin f := x; g := y;
while / == g do
beginif f < gtheng := g—f; (5.16)
ifg < fthenf := f—g;

end ;
Z =
end ;
begin
x := m; y := n; call multiply;
x 1= 25; y := 3; call divide;

x := 84; y := 36; call ged;
end .

5.8. A PARSER FOR PL/0

As a first step toward the PL/0 compiler a parser is being developed.
This can be done strictly according to the parser Construction Rules Bl
through B7 outlined in Sect. 5.4. This method, however, is only applicable
if the Restrictive Rules 1 and 2 are satisfied by the underlying syntax. We
are therefore obliged to verify this condition, as formulated for their applica-
tion to syntax graphs.

Rule 1 specifies that every branch emanating from a fork point must
lead toward a distinct first symbol. This is very simple to verify on the syntax
diagrams of Fig. 5.4. Rule 2 applies to all graphs that can be traversed without
reading any symbol. The only such graph in the PL/0 syntax is the one
describing statements. Rule 2 demands that all first symbols that may follow
a statement must be disjoint from initial symbols of statements. Since later
on it will be useful to know the sets of initial and following symbols for all
graphs, we shall determine these sets for all seven non-terminal symbols
(graphs) of the PL/0 syntax (except for “program”). Table 5.2 provides the




312 LANGUAGE STRUCTURES AND COMPILERS CHAP. 5

Non-terminal Initial Follow
Symbol § Symbols L(S) Symbols F(S)
Block const var 5

procedure ident
if call begin while

Statement ident call . ; end
begin if while
Condition odd + — ( then do
ident number
Expression == =g -3)R
ident number end then do
Term ident number ( )R+ —
end then do
Factor ident number ( L3R A4 —
end then do

Table 5.2 Initial and Follow Symbols in PL/0.

desired assurance, namely, that the sets of initial and following symbols of
statements do not intersect. Application of the parser Construction Rules
Bl through B7 is thereby legalized.

The careful reader will have noticed that the basic symbols of PL/0 are
no longer single characters as in the preceding examples. Instead, the basic
symbols are themselves sequences of characters, such as BEGIN, or :=.
As in Program 5.3, a so-called scanner is used to take care of the merely
representational or lexical aspects of the input sequence of symbols. The
scanner is conceived as a procedure getsym whose task is to get the next
symbol. The scanner serves the following purposes:

L. It skips separators (blanks).

2. It recognizes reserved words, such as BEGIN, END, etc.

3. It recognizes non-reserved words as identifiers, The actual identifier is
assigned to a global variable called 7id.

4. It recognizes sequences of digits as numbers. The actual value is assigned
to a global variable num.

5. It recognizes pairs of special characters, such as :=.

In order to scan the input sequence of characters, getsym uses a local
procedure getch whose task is to get the next character. Apart from this main
purpose, getch also

1. Recognizes and suppresses line end information.
2. Copies the input onto the output file, thus generating a program listing.
3. Prints a line number or location counter at the beginning of each line.

The scanner constitutes the necessary one-symbol lookahead. Moreover,
the auxiliary procedure gerch represents an additional lookahead of one




SEC. 5.8 A PARSER FOR PL/0 313

character. Therefore, the total lookahead of this compiler is one symbol
plus one character.

The details of these routines are evident from Program 5.4 which rep- |
resents the complete parser for PL/0. In fact, this parser is already extended
in the sense that it collects the declared identifiers denoting constants, o
variables, and procedures in a rable. The occurrence of an identifier within |
a statement then causes a search of this table to determine whether or not
the identifier had been properly declared. The lack of such a declaration may
duly be regarded as a syntactic error since it is a formal error in the composi-
tion of the program text because of the use of an “illegal” symbol. The fact
that this error can only be detected by retaining information in a table is a
consequence of the inherent context dependence of the language, manifest
in the rule that all identifiers have to be declared in the appropriate context.
Indeed, practically all programming languages are context sensitive in this
sense; nevertheless, the context-free syntax is a most helpful model for
these languages and greatly aids in the systematic construction of their .
recognizers. The framework thus obtained can then very easily be extended ’
to take care of the few context sensitive elements of the language, as wit- w
nessed by the introduction of the identifier table in the present parser.

Before constructing the individual parser procedures corresponding to
the individual syntax graphs, it is useful to determine how these graphs
depend on each other. To this end, a so-called dependence diagram is con-
structed; it displays the relationships of the individual graphs, i.e., it lists
for each graph G all those graphs G, ...G,in terms of which G is defined.

Correspondingly, it shows those procedures that will be called by other
procedures. The dependence graph for PL/0 is shown in Fig. 5.5, ‘

expression

Fig. 5.5 Dependence diagram for PL/0. |



314 LANGUAGE STRUCTURES AND COMPILERS CHAP. 5

The loops in Fig. 5.5 indicate instances of recursion. It is therefore
essential that a language in which the PL/0 compiler is implemented is not
burdened by prohibition of recursion. In addition, the dependence diagram
also allows drawing conclusions on the hierarchical organization of the
parser program. For instance, all routines may be contained in (be declared
local to) the routine that parses the construct {program (which is therefore
the main program part of the parser). Furthermore, all routines below
{block)> may be defined locally to the routine representing the parsing goal
{block). Naturally, all of these routines call upon the scanner getsym,
which in turn calls upon getch.

f

ers}

ddsym,

ma, semicolon,
ensym,
Drocsym);




320 LANGUAGE STRUCTURES AND COMPILERS CHAP. 5

5.9. RECOVERING FROM SYNTACTIC ERRORS

Up to this point the parser had only the modest task of determining
whether or not an input sequence of symbols belonged to a language. As
a side product, the parser also discovered the inherent structure of a sen-
tence. But as soon as an ill-formed construct was encountered, the parser's
task was achieved, and the program could as well terminate. For practical
compilers, this is of course no tenable proposition. Instead, a compiler must
issue an appropriate error diagnostic and be able to continue the parsing
process—probably to find further mistakes. A continuation is only possible
either by making some likely assumption about the nature of the error and
the intention of the author of the ill-formed program or by skipping over
some subsequent part of the input sequence, or both. The art of choosing
an assumption with a high likelihood of correctness is rather intricate. It has
so far eluded any kind of successful formalization because formalizations
of syntax and parsing do not take into account the many factors that strongly
influence the human mind. For instance, it is a common error to omit inter-
punctuation symbols such as the semicolon (not only in programming!).
whereas it is highly improbable that one forgets to write a -+ operator in an
arithmetic expression. The semicolon and plus symbol are merely terminal
symbols without further distinction for the parser; for the human pro-
grammer, the semicolon has hardly a meaning and appears redundant a:
the end of a line, whereas the significance of an arithmetic operator i
obvious beyond doubt. There are many more such considerations that
have to go into the design of an adequate recovery system, and they 2l
depend on the individual language and cannot be generalized in the frame-
work of all context-free languages.

Nevertheless, there are some rules and hints that can be postulated and
that have validity beyond the scope of a single language such as PLA
Characteristically, perhaps, they are concerned equally much with the initial
conception of a language as with the design of the recovery mechanism aff
its parser. First of all, it is abundantly clear that sensible recovery is much
facilitated, or even made possible, only by a simple language structure. &
particular, if upon diagnosing an error some part of the subsequent inpet
is to be skipped (ignored), then it is mandatory that the language contaims
key words that are highly unlikely to be misused, and that may therefa
serve to bring the parser back into step. PL/0 notably follows this rule: eveny
structured statement begins with an unmistakable keyword such as bes L
if, while, and the same holds for declarations; they are headed by var, ce
or procedure. We shall therefore call this rule the keyword rule. |

The second rule concerns the construction of the parser more directli
It is the characteristic of top-down parsing that goals are split up =



SEC. 5.9 RECOVERING FROM SYNTACTIC ERRORS 321

subgoals and that parsers call upon other parsers to tackle their subgoals.
The second rule specifies that if a parser detects an error, it should not merely
refuse to continue and report the happening back to its master parser.
Instead, it should itself continue to scan text up to a point where some
plausible analysis can be resumed. We shall therefore call this the don’t
panic rule. The programmatic consequence of this rule is that there will be
no exit from a parser except through its regular termination point.

A possible strict interpretation of the don’t panic rule consists of skipping
input text upon detecting an illegal formation up to the next symbol that may
correctly follow the currently parsed sentential construct. This implies that
every parser know the set of its follow-symbols at the place of its present
activation.

In the first refinement (or enrichment) step we shall therefore provide
every parsing procedure with an explicit parameter fsys that specifies the pos-
sible follow-symbols. At the end of each procedure an explicit test is included
to verify that the next symbol of the input text is indeed among those follow-
symbols (if this condition is not already asserted by the logic of the program).

It would, however, be very shortsighted of us to skip the input text up
to the next occurrence of such a follow-symbol under all circumstances.
After all, the programmer may have mistakenly omitted exactly one symbol
(say a semicolon); ignoring the entire text up to the next follow-symbol may
be disastrous. We therefore augment these sets of symbols that terminate
a possible skip by keywords that specifically mark the beginning of a con-
struct not to be overlooked. The symbols passed as parameters to the parsing
procedures are therefore stopping symbols rather than follow-symbols only.
We may regard the sets of stopping symbols as being initialized by distinct
key symbols and being gradually supplemented by legal follow-symbols upon
penetration of the hierarchy of parsing subgoals. For flexibility, a general
routine called zest is introduced to perform the described verification. This
procedure (5.17) has three parameters:

1. The set s1 of admissible next symbols; if the current symbol is not among
them, an error is at hand.

2. A set 52 of additional stopping symbols whose presence is definitely
an error, but which should in no case be ignored and skipped.

3. The number # of the pertinent error diagnostic.

procedure fest (s1, s2: symset; n: integer);
begin if —(sym in s1) then

begin error(n); sl = sl+s2; (.17)
while —(sym in s1) do getsym
end

end




322 LANGUAGE STRUCTURES AND COMPILERS CHAP. 5

Procedure (5.17) may also be conveniently used at the entrance of parsing
procedures to verify whether or not the current symbol is an admissible
initial symbol. This is recommended in all cases in which a parsing procedure
X is called unconditionally, such as in the statement

if sym = a, then S, else

if sym = a,then S, else X
which is the result of translation of the production
A=, Silla - la, S| X (5.18)

In these instances the parameter sI must be equal to the set of initial symbols
of X, whereas s2 is chosen as the set of the follow-symbols of 4 (see Table
5.2). The details of this procedure are given in Program 5.5, which represents
the enriched version of Program 5.4. For the reader’s convenience, the entire
parser is listed again, with the exception of initializations of global variables
and of the procedure getzsym, all of which remain unchanged.

The scheme presented so far has the property of trying to recover, to fall
back into step, by ignoring one or more symbols in the input text. This is
an unfortunate strategy in all cases in which an error is caused by omission
of a symbol. Experience shows that such errors are virtually restricted to
symbols which have merely syntactic functions and do not represent an ac-
tion. An example is the semicolon in PL/0. The fact that the follow-symbol sets
are augmented by certain key words actually causes the parser to stop skip-
ping symbols prematurely, thereby behaving as if a missing symbol had been
inserted. This can be seen from the program part that parses compound state-
ments shown in (5.19). It effectively “inserts” missing semicolons in front of
key words. The set called statbegsys is the set of initial symbols of the con-
struct “statement.”

if sym = beginsym then
begin getsym;
statement([semicolon, endsym]--fsys);
while sym in [semicolon]-statbegsys do
begin
if sym = semicolon then getsym else error;
statement ([semicolon, endsym]-+f5ys)
end;
if sym = endsym then getsym else error
end

(5.19)

The degree of success with which this program diagnoses syntactic errors.
and recovers from unusual situations can be estimated by considering the
PL/0 program (5.20). The listing represents an output delivered by Program




|
SEC. 5.9 RECOVERING FROM SYNTACTIC ERRORS 323 ‘
|

— m statement end
O~

Fig. 5.6 Modified compound statement syntax.

1. Use = instead of :=.
2. = must be followed by a number.
3. Identifier must be followed by =.
4. const, var, procedure must be followed by an identifier.
5. Semicolon or comma missing. ‘
6. Incorrect symbol after procedure declaration. ‘
7. ' Statement expected. ‘
8. Incorrect symbol after statement part in block. ‘
9. Period expected. o
10. Semicolon between statements is missing. I
11. Undeclared identifier. N 0
12.  Assignment to constant or procedure is not allowed. i \ |
13.  Assignment operator := expected. |
14. call must be followed by an identifier.
15. Call of a constant or a variable is meaningless. :
16. then expected.
17. Semicolon or end expected. .
18. do expected.
19. Incorrect symbol following statement.
20. Relational operator expected. 1
21. Expression must not contain a procedure identifier. ‘
22. Right parenthesis missing. \
23. The preceding factor cannot be followed by this symbol. i
24. An expression cannot begin with this symbol. \
30. This number is too large. ‘

Table 5.3 Error Messages of PL/0 Compiler.

5.5, and Table 5.3 lists a set of possible diagnostic messages corresponding

to the error numbers in Program 5.5. |
The following program (5.20) was obtained by the introduction of

syntactic errors in (5.14) through (5.16).

constm = 7, n = 85
var x,),z,q,r;

15
15

procedure multiply;
var a,b



324 LANGUAGE STRUCTURES AND COMPILERS
beging := u; b := y; z:= 0
s
111
while 5 > 0 do
110
begin
ifoddbdoz := z | a;
116
119
a = 2a; b:i= bf2;
123
end
end ;
procedure divide
var w;
T5
const two = 2, three := 3;
1/
i
beginr = x; g := 0; w := y;
113
124
while w < rdo w := twosw;
while w > y
begin g := (2+q; w := w/2);
118
122
123
if w < r then
begin r := r—w q := g1
123
end
end
end ;
procedure ged;
var f.g;

beginf := x; g:= y
while /' == g do
T
begin if f < gtheng := g—f;
ifg < fthenf:= f—g;
iz 2= f

end ;




SEC. 5.9 RECOVERING FROM SYNTACTIC ERRORS 325

begin
x = m; y = n; call multiply;
x := 25; y := 3; call divide;
x = 84; y := 36; call ged;
call x; x := ged; ged =x

115
121
112
113
124
end .

117

15

T 17

PROGRAM INCOMPLETE

It should be clear that no scheme that reasonably efficiently translates
correct sentences will also be able to handle all possible incorrect con-
structions in a sensible way. And why should it! Every scheme implemented
with reasonable effort will fail, that is, will inadequately handle some mis-
constructions. The important characteristics of a good compiler, however,
are that

. No input sequence will cause the compiler to collapse.

2. All constructs that are illegal according to the language definition are
detected and marked.

3. Errors that occur reasonably frequently and are true programmer’s

mistakes (caused by oversight or misunderstanding) are diagnosed

correctly and do not cause any (or many) further stumblings of the

compiler (so-called spurious error messages).

oy

The presented scheme performs satisfactorily, although there is always
room for improvement. Its merit is that it is built according to a few ground
rules in a systematic fashion. The ground rules are merely supplemented by
some choices of parameters based on heuristics and experience with actual
use of the language.




SEC. 5.10 A PL/0 PROCESSOR 331 ‘ ‘

5.10. A PL/0 PROCESSOR

It is indeed remarkable that the PL/0 compiler was so far developed i
without any knowledge of the machine for which it was supposed to generate N |
code. But why should the structure of an object machine influence the parsing ’
and error recovery scheme of a compiler! In fact, it must not do so. Instead, J.'i
the proper scheme for code generation for any computer should be super- | ‘
imposed on the existing parser by the method of stepwise refinement of the ‘ |
existing program. Since we are about to do this, it becomes necessary to .
select a processor for which to compile. |

In order to keep the description of the compiler reasonably simple and }
free from extraneous considerations of peculiar properties of a real, existing I
processor, we shall postulate a computer of our own choice, specifically .
tailored to the needs of PL/0. Since this processor does not really exist (in .
hardware), it is a hypothetical processor; it will be called the PL/0 machine.

It is not the aim of this section to explain the detailed reasoning that
led to the choice of exactly this kind of machine architecture. Instead,
it is to serve as a descriptive manual consisting of an intuitive introduction,
followed by a detailed definition of the processor in the form of an algorithm.

This formalization may serve as an example for accurate and detailed
algorithmic descriptions of actual processors. The algorithm interprets
PL/0 instructions sequentially, and is called an interpreter.

The PL/0 machine consists of two stores: an instruction register and \
three address registers. The program store, called code, is loaded by the
compiler and remains unchanged during interpretation of the code. It can [

|
\

then be considered as a read-only store. The data store S is organized as a
stack, and all arithmetic operators operate on the two elements on top of
the stack, replacing their operands by a result. The top element is addressed
(indexed) by the top stack register T. The instruction register I contains the
instruction that is currently being interpreted. The program address register
P designates the next instruction to be fetched for interpretation.

Every procedure in PL/0 may contain local variables. Since procedures
may be activated recursively, storage for these local variables may not be \
allocated before the actual procedure call. Hence, the data segments for
individual procedures are stacked up consecutively in the stack store S.

Since procedure activations strictly obey the first-in-last-out scheme, the
stack is the appropriate storage allocation strategy. Every procedure owns
some internal information of its own, namely, the program address of its
call (the so-called return address), and the address of the data segment of its
caller. These two addresses are needed for proper resumption of program w
execution after termination of the procedure. They can be understood as
internal or implicit local variables allocated in the procedure’s data segment.



332 LANGUAGE STRUCTURES AND COMPILERS CHAP. 5

We call them the return address RA and the dynamic link DL. The origin of
the dynamic link, that is, the address of the most recently allocated data
segment, is retained in the base address register B.

Since the actual allocation of storage takes place during execution
(interpretation) time, the compiler cannot equip the generated code with
absolute addresses. Since it can only determine the location of variables
within a data segment, it is capable of providing relative addresses only. The
interpreter has to add to this so-called displacement to the base address of
the appropriate data segment. If a variable is local to the procedure cur-
rently being interpreted, then this base address is given by the B register.
Otherwise, it must be obtained by descending the chain of data segments.
The compiler, however, can only know the static depth of an access path.
whereas the dynamic link chain maintains the dynamic history of procedure
activations. Unfortunately, these two access paths are not necessarily the
same.

For example, assume that a procedure A calls a procedure B declared
local to 4, B calls C declared local to B, and C calls B (recursively). We say
that 4 is declared at level 1, B at level 2, C at level 3 (see Fig. 5.7). If a2
variable a declared in A is to be accessed in B, then the compiler knows
that there exists a level difference of 1 between B and A. Descending one
step along the dynamic link chain, however, would result in an access to 2
variable local to C!

DL RA SL

[

variables local
to A

~— | [

variables local
to B

[

variables local

PR

to C
B[ = ] I
variables local
to B
) [
L

Fig. 5.7 Stack of PL/0 machine. |



SEC. 5.10 A PL/0 PROCESSOR 333

Hence, it is plain that a second link chain has to be provided that properly
links data segments in the way the compiler can see the situation. We call
this the static link SL.

Addresses are therefore generated as pairs of numbers indicating the
static level difference and the relative displacement within a data segment.
We assume that each location of the data store is capable of holding an
address or an integer.

The instruction set of the PL/0 machine is tuned to the requirements of
the PL/O language. It includes the following orders:

An instruction to load numbers (literals) onto the stack (LIT).

An instruction to fetch variables onto the top of the stack (LOD).

A store instruction corresponding to assignment statements (STO).

An introduction to activate a subroutine corresponding to a procedure

call (CAL).

5. An instruction to allocate storage on the stack by incrementing the
stack pointer 7' (INT).

6. Instructions for unconditional and conditional transfer of control, used
in if- and while statements (JMP, JPC).

7. A set of arithmetic and relational operators (OPR).

g I e

The format of instructions is determined by the need for three com-
ponents, namely, an operation code f and a parameter consisting of one
or two parts (see Fig. 5.8). In the case of operators the parameter a determines
the identity of the operator; in the other cases it is either a number (LIT,
INT), a program address (JMP, JPC, CAL), or a data address (LOD, STO).

[ fe] -

The details of operation of the PL/0 machine should be evident from the
procedure called interpret that is part of Program 5.6, which combines the
completed compiler with the interpreter into a system that translates and
subsequently executes PL/0 programs. The modification of this program to
generate code for an existing computer is left as an excercise for the interested
reader. The resulting expansion of the compiler program may be taken as a
measure of the appropriateness of the chosen computer for the present task.

There is no doubt that the presented PL/O computer could be expanded
into a more sophisticated organization in order to make certain operations
more efficient. One instance is the chosen addressing mechanism. The
presented solution was chosen because of its inherent simplicity and because
all improvements must essentially be based on it and derived from it.

I Fig. 5.8 Instruction format.




334 LANGUAGE STRUCTURES AND COMPILERS CHAP. 5

5.11. CODE GENERATION

In order to be able to assemble an instruction, the compiler must know
its operation code and its parameter, which is a literal number or an address.
These values are associated by the compiler itself with the respective iden-
tifiers. This association is performed upon processing the declaration of
constants, variables, and procedures. For this purpose, the table containing
the identifiers is expanded to contain the attributes associated with each
identifier. If an identifier denotes a constant, its attribute is the constant
value; if the identifier denotes a variable, the attribute is its address, consist-
ing of a displacement and a level; and if the identifier denotes a procedure,
then its attributes are the procedure’s entry address and its level. The cor-
responding extension of the declaration of the variable fable is shown in
Program 5.6. It is a noteworthy example of a stepwise refinement (or enrich-
ment) of a data declaration progressing simultaneously with the refinement
of the statement part.

Whereas the constant values are provided by the program text, it is the
compiler’s task to determine addresses on its own. PL/0 is sufficiently simple
to make sequential allocation of variables and code the obvious choice.
Hence, every variable declaration is processed by incrementing a data
allocation index by 1 (since each variable occupies by definition of the PL/O
machine exactly one storage cell). The data allocation index dx is to be
initialized upon starting the compilation of a procedure, reflecting the fact
that its data segment starts empty. [Actually, dx is given the initial value 3
since each data segment contains at least the three internal variables R4,
DL, SL (see preceding section).] The appropriate computations to determine
the identifiers” attributes are included in the procedure enter which is used
to enter new identifiers into the table.

With this information about operands at hand, generating the actual
code is a rather simple affair. Because of the convenient stack organization
of the PL/0 machine, there exists practically a one-to-one correspondence
between operands and operators in the source language and instructions in
the target code. The compiler has merely to perform a suitable resequencing
into postfix form. By “postfix form” is meant that operators always follow
their operands instead of being embedded between the operands as in the
conventional infix form. The postfix form is sometimes also called Polish
form (after its originator Lukasciewicz) or parenthesis-free form since i
makes parentheses superfluous. Some correspondences between infix and
postfix forms of expressions are shown in Table 5.4 (see also Sect. 4.4.2).

The very simple technique of performing this transformation is shown by
the procedures expression and term in Program 5.6. It is merely a matiss



sec. 5.11 CODE GENERATION 335

Infix Form Postfix Form
x+y xy+
(x—p) +z xy — z+
X =—(y=1=2) xyz+—
x#(y + 2)xw xyz + #wx

Table 5.4 Expressions in Infix and Postfix Form.

of delaying the transmission of the arithmetic operator. At this point the
reader should verify that the presented arrangement of parsing procedures
also takes care of an appropriate interpretation of the conventional priority
rules among the various operators.

A slightly less trivial matter is the translation of conditional and repeti-
tive statements. In this case the generation of jump instructions is necessary,
for which at times the destination address is still unknown. If one insists on
a strictly sequential production of instructions in the form of an output file,
then a two-pass compiler scheme is necessary. The second pass then assumes
the task of supplementing the incomplete jump instructions with their
destination addresses. An alternative solution adopted by the present com-
piler is to place the instructions into an array and essentially retaining them
in directly accessible store. This method allows supplementing the missing
addresses as soon as they become known. This operation is commonly called
a fixup.

The only additional operation that has to be performed when issuing
such a forward jump is to retain its location, i.e., its index in the program
store. This address is then used to locate the incomplete instruction at the
time of the fixup. The details are again evident from Program 5.6 (see routines
processing if- and while statements). The patterns of code generated for the
if- and while statements are as follows (L1 and L2 stand for code addresses):

if C then § while C do S
code for condition C L1: code for C
JPC L1 JPC L2
code for statement S code for S
LlE ... JMP L1
2

For convenience, an auxiliary procedure called gern is introduced. Its
purpose is to assemble and emit an instruction according to its three pa-
rameters. It automatically increments the code index ex which designates the
location of the next instruction to be issued.




) 336! LANGUAGE STRUCTURES AND COMPILERS CHAP. 5
Tes==
As an example, the code emitted by compiling the multiplication routine
(5.14) is listed below in mnemonic form. The comments on the right-hand
side are merely added for explanatory purposes.

2 INT 0,5 allocate space for links and local variables
3 LOD 1,3 x
4 STO 0,3 a
5 LOD 1,4 ¥
6 STO 0.4 b
7 LIT 0,0 0
8 STO 1,5 z
9 LOD 0,4 b
10 LIT 0,0 0
11 OPR 0,12 >

12 JPC 0,29

13 LOD 0,4 b
14 OPR 0,7 odd
15 JPC 0,20
16 LOD 1,5
17 LOD 0,3
18 OPFR 0,2
19 STO 125
20 LIT 0,2
21 LOD 0,3
22 OFR 0,4
23 STO 0,3
24 LOD 0,4
25 LIT 0,2
26 OPR 0,5
27, STO 04
28 JMP 0,9
29 OPR 0,0 return

Code corresponding to PL/0 procedure 5.14.

TSN TR * R NN RN

Many tasks in compiling programming languages are considerably more
complex than the ones presented in the PL/0 compiler for the PL/0 machine
[5-4]. Most of them are much more resistant to being neatly organized.
The reader trying to extend the presented compiler in either direction toward
a more powerful language or a more conventional computer will soom
realize the truth of this statement. Nevertheless, the basic approach toward
designing a complex program presented here retains its validity, and even
increases its value when the task grows more complicated and more sophis-
ticated. It has, in fact, been successfully used in the construction of large
compilers [5-1 and 5-9].




