
CSE 3302 Notes 4: Names & Scope

(Last updated 10/1/15 1:18 PM)

References:

Gabbrielli-Martini: 4

Aside: Ever heard of Scopeware?

4.1. BINDING TIME - “early” or “late”

Binding = Commitment: Existence, Type(s), Value, Representation, Location, Mutability

Design:

 Language
 Libraries

Program Writing

Build:

 Compilation
 Linkage

Runtime:

 Loading
 Execution

4.2. OBJECT LIFETIME AND STORAGE MANAGEMENT

Issues

 Recursion
 Threads/Processes/Reentrant Code
 Separate Code and Data Address Spaces (such as code and s in Pascal-S and PL/0)
 Virtual Memory, Caches, and Mappings

Static Allocation

 Characteristics - single instances, fixed size, global or side-effect (non-pure-functional)

 2
Stack(-Dynamic) Allocation

 Useful for support of recursion and functions in general

 Size of stack frame (activation record) and offsets for a function are usually known at
 compile-time

 C - historically no function nesting, so just local variables, globals, or statics
 with additional scope levels (“block structure”) allowed within functions
 (http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES04/block.c)

 Allocate maximum possible space immediately upon entering function, or
 Allocate depending on control flow (alloca() to extend stack frame)

 PL/0 (similar for Pascal-S and Pascal) - scopes nest only for procedures/functions

Heap(-Dynamic) Allocation

 Most flexible “temporally” - for pointer-based data structures

#include <stdio.h>
#include <stdlib.h>

char bigStatic[2000000000];

main()
{
char bigStack[10000000];

char *bigHeap;

printf("Ready to malloc\n");
bigHeap=(char*) malloc(10000000);
printf("malloc successful\n");
}

4.3. SCOPE RULES

When is a particular binding of name to . . . relevant?

Referencing environment: (Gabbrielli, p. 70)

 Associations (bindings) between names and (denotable) objects at

1. Position in program.
2. Time during execution.

but could be complicated by nesting and polymorphism/overloading.
Includes global, non-local, and local components (Gabbrielli, p. 73)

 3
Lexical/Static Scoping

 (Gabbrielli, p. 78) - A use of a name:

 is mapped uniquely to a declaration (run-time ordering does not matter)
 has instances respecting lexical nesting (e.g. for recursion)

 Globals

 Variables within functions

 Nested blocks

 Existence independent of execution:

 C static refers to allocation
 Class variables

Nested Subroutines

 Non-nesting: A significant connection between C to COBOL, FORTRAN, and assembler.
 Pascal: http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES04/notes04.pas
 JavaScript: http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES04/notes04.html demonstrates
 how global names are properties of “window” object

(Gabbrielli, p. 75-76 is very detailed regarding names and associations to objects, along with problems
regarding dangling references to inappropriate use of an expired binding to storage.)

 4
Gabbrielli, p. 82-85 is useful for these issues.

Pascal also has forward declarations to allow mutual recursion without nesting or to deal with
complicated situations like the Pascal-S interpreter:

1. http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES04/pascal-s.structure.txt provides
nesting structure (see expression).

2. http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES04/pascals.pdf provides the call graph.
 (Contrast with Appendix B of the Pascal-S report)
3. http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES02/pascals.pas gives complete code.
4. http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES04/pascals.dot is the call graph as input

to Graphviz.

 Important detail - for such code (potentially with a variety of call paths and recursion),
 how are necessary bindings referenced at run-time? (Gabbrielli, chapter 5)

Declaration Order

 Pascal - Scope of declaration is entire surrounding block. Can’t use until declared.

 C - Scope of declaration begins with the declaration, but definition may appear later.

 JavaScript

 Declarations are “hoisted” to beginning of a function or global scope
 (see Crockford, p. 102)

 Block scoping may be kludged using an immediately invoked function expression
 (IIFE, http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES04/iife.html)

 Scheme

 define ordering does not matter - names available throughout block
 let has its own nested scope, but comes in other variations

 http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES04/notes04.rkt

Dynamic Scoping (aside - Perl craziness)

 Gabbrielli, p. 80, def 4.5

 A use of a name:

 is mapped to a declaration based on run-time ordering
 has instances operating in a stack-like fashion (according to run-time ordering)

 Each name operates LIFO as contexts are entered and exited.

 http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES04/array.txt

 5
4.4. MEANING OF NAMES WITHIN A SCOPE

Aliases

 x^=y;
 y^=x;
 x^=y;

 (tagged) unions

Overloading

 Arithmetic operations applying to multiple types
 C++ - use [] to treat binary search tree as array

Polymorphism

http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES04/poly.cpp - type signature to determine
which of identically named functions gets called

4.5. OPENING SCOPES

Pascal with (http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES04/with.pas)

 Opens one or more instances of record structures to simplify referencing
 Ambiguity is resolved by nested with/LIFO assumption

JavaScript with (http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES04/with.html)

 Property must already exist . . . otherwise a global variable results

site.ebrary.com.ezproxy.uta.edu/lib/utarlington/reader.action?ppg=126&docID=10763621&tm=1435436076995

C++ (aside)

 Namespaces:

Allows grouping of classes, functions, data, and types under a name to avoid name conflicts.
There may be several declarations for a particular namespace.
Qualified names outside namespace declarations may only be uses (not definitions)
Each class is a namespace. ::x refers to a name x in the global namespace

 using Declarations - simply short-cut a path of qualifications (::)

 using Directives

Open entire namespace
May easily introduce name conflicts, so bad practice to put in header files

 6
C++ Argument-Dependent Look-Up - If use of a function name is not resolved within its
containing scopes, then try the namespaces of its arguments. (Consider operator overloading.)

http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES04/slams.notes04.cpp

http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES04/rational.notes04.cpp

4.6. HEAP ALLOCATION AND SUBROUTINE CLOSURES

Subroutine Closures

 Problem with lexical/static binding

 Static chain pointer (notes 5) created at same time as reference to function (closure)

 Difficulty when reference lasts longer than stack frame

Solution - anything needed for closure gets heap allocation

 JavaScript (http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES04/closure.html)

site.ebrary.com.ezproxy.uta.edu/lib/utarlington/reader.action?ppg=198&docID=10763621&tm=1435436200192

 Scheme (http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES04/closure.rkt)

