
CSE 3302 Notes 6: Control Structure

(Last updated 10/21/15 8:11 PM)

References:

Gabbrielli: 6

6.1. EXPRESSIONS

Review items for expressions:

 Position of operator (prefix, infix, postfix)
 Precedence (C/C++/Java/JavaScript vs. Pascal)
 Associativity
 Arity - binary, unary, ternary (? :)
 Dijkstra’s shunting yard (http://en.wikipedia.org/wiki/Shunting-yard_algorithm)

C function call arguments are not required to be processed in a particular order (but is right-to-left for
gcc, left-to-right for LLVM)

C etc. comma operator evaluates left-to-right (uses rightmost operand value as result)

see http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES06/argOrder.c

RELATIONAL BOOLEAN EXPRESSIONS

Fundamental difficulties with equality in logic & mathematics . . .

 Notions of equivalence may be defined WRT a single function

 Is an integer odd or even?
 Is a function g in

€

Θ f()?

 What about equality?

 Has to cover all notions of equivalence (addresses and references?)

 For x and y to be equal, they are indistinguishable to any function

PLs

 Shallow equality test - no dereferencing, tests whether values refer to same object?

 Deep equality test - dereference and check values (cycles . . .)

 2
 ML = deep for equality types (more ML in notes 8)

 Doesn’t include real

 - (1,2,3)=(1,2,3);
 val it = true : bool

 - [1,2,3]=[1,2,3];
 val it = true : bool

 (ML does allow ref types which function like pointers)

 Scheme

 eq? (shallow) and equal? (deep)

 C

 Besides comparing pointers with == and !=, can also use other comparisons
 (meaningful when dealing within same array, struct, etc.)

 Pascal

 Pointers may be compared only using equality comparisons (=, <>)

 JavaScript: == vs. === and != vs. !==

BOOLEAN EXPRESSIONS

 Boolean operators to force sub-expression evaluation (for side effects)

 C - Use & or * in place of &&, | or + in place of ||

 JavaScript undefined

 Used when a property does not exist for an object.

 To access a.b.c.d or get undefined (to avoid TypeError):

 dCheck = a && a.b && a.b.c && a.b.c.d;

 Based on short-circuit evaluation, JavaScript uses the last truthy/falsy value
 as result for && and || (so do Scheme and/or, but 0 is truthy and only #f is falsy).

 Misspelled property name vs. property with undefined as value . . .

!! sanitizes truthy/falsy value to true or false
a || b in JavaScript may be achieved in C using a ? a : b
a && b in JavaScript may be achieved in C using a ? b : a

 3
SHORT-CIRCUIT BOOLEAN EVALUATION

C:

 Left side of || and && is determined before right side, i.e. no portion of right side is evaluated
 before left side is determined.

“Give equivalent C code (e.g. using if ... else ...) to demonstrate the short-circuit nature of C
boolean operators. Do not use &&, ||, or ! in your solution! Do not use work variables!”

result = a < 13 && a > 10; if (a < 13)
 if (a > 10)
 result = 1;
 else
 result = 0;
 else
 result = 0;

 result = e < 25 && !(f > 55 && g < 66);

 if (e < 25)
 if (f <= 55)
 result = 1;
 else if (g >= 66)
 result = 1;
 else
 result = 0;
 else
 result = 0;

http://ranger.uta.edu/~weems/NOTES3302/LAB/15SUM/LAB3/ - Conversion of expression with boolean result to
jump-based code

0 1

|

2 3

|

&

TD=4
FD=5

TD=4
FD=5

TD=4
FD=5

TD=4
FD=3

TD=2
FD=5

TD=2
FD=1

TD=2
FD=5

brT 2 brF 5 brT 4 brF 5

 4

&

| !!

0

1

! 2

|

3 54

&

6 87

TD=9
FD=10

TD=9
FD=10

TD=10
FD=9

TD=10
FD=9

TD=8
FD=9

TD=7
FD=9

TD=10
FD=6

TD=10
FD=5

TD=10
FD=4

TD=3
FD=10

TD=6
FD=10

TD=10
FD=6

TD=3
FD=10

TD=3
FD=2

TD=3
FD=1

TD=2
FD=3brT 3

brF 3

brT 10

brF 10

brT 10 brT 10

brF 9 brF 9 brT 10

6.2. COMMANDS (WITH SIDE EFFECTS)

 l-value and r-value notions

 Difference between reference model (Java) and modifiable variable model (C)

ASSIGNMENT

 Shallow and deep differences again apply

 Multiway (simultaneous, parallel) assignment

 a, b = b, a;

 i, j, a[i], a[j] = j, a[i], a[j], i;

 What does this really save?

 JavaScript - Destructuring assignment (also common in SML code, but strongly typed)

 [a,b] = [1,2];
 [a,b] = [b+1,a+3];
 [a,a] = [b+2,a+1]; What happens?

 5
6.3. SEQUENCE CONTROL

EXPLICIT SEQUENCING

 ;, {}, begin . . . end

 Some much-maligned control structures:

 goto (and its alterable versions - COBOL)

 break/continue

 switch (or long if/else if chains) - when used in superclass to avoid touching subclasses

 http://www.amazon.com/gp/product/0321356683 - Item 20: Prefer class hierarchies to tagged
 classes

 continuations (goto + state?, Notes 11)

(Aside: Knuth, “Structured Programming with go to Statements”, esp. the acks on p. 296
http://dl.acm.org.ezproxy.uta.edu/citation.cfm?doid=356635.356640)

SELECTION STATEMENTS

if ... then ... else ...

Switch

 Generality of individual expressions

 (small) integer values

 JavaScript - general expressions and equality tests

 Implementation

 O(1) - table/hashtable
 O(log n) - binary search
 O(n) - like corresponding ifs (JavaScript)

 Also, see Duff’s device for exploiting C case fall-through property:

 http://en.wikipedia.org/wiki/Duff's_device

 6
ITERATIVE COMMANDS

Unbounded (“logically-controlled”, while)

Bounded (“enumeration-controlled”, for)

Just a special syntax for “while” or should number of iterations be predictable at onset?

Other issues:

 Jumping into or out-of loop?

 Is expression that index variable is tested against required to be constant?

 Modifying index variable inside body?

 Predictable value of index variable after loop termination?

Iterators - container abstraction (foreach)

 Comparing two binary search trees?

 Functional language iterators (see continuations in next section)

Aside: Backtrack programming and combinatorics
http://dl.acm.org.ezproxy.uta.edu/citation.cfm?doid=361219.361224

6.4. STRUCTURED PROGRAMMING

p. 151 - Six elements from 1970s, but general support of types and abstraction came later.

goto may be acceptable as:

 Multi-level break

 In implementation of a state machine or statechart

6.5. TAIL RECURSION

Simplest form - activation record continues to exist only for passing back final value of recursive

computation.

 7
Accumulation/reduction - Procedure uses parameter to build result

(define (reverse l)
 (define (help l result)
 (cond
 ((empty? l) result)
 (else
 (help (cdr l) (cons (car l) result)))))
 (help l '()))

Scheme implementations are expected to treat tail recursion as iteration. Many can handle simple

operators (e.g. cons) remaining after the call.

