
CSE 3302 Notes 7: Control Abstraction

(Last updated 11/1/15 12:35 PM)

References: Gabbrielli-Martini: 7; Dybvig: 5.5, 5.7

7.1. SUBPROGRAMS

Interfacing Concepts:

 Parameters:

 Mathematics: Parameters Arguments
 Computing: Formal Parameters Actual Parameters

 Are the types of the actual parameters checked against the types of formal parameters?

 http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES07/separate1.c
 http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES07/separate2.c

 Positional (conventional)

 Named - formal parameter names may be used in caller -
 http://en.wikipedia.org/wiki/Named_parameter

 Default values - specified with the procedure
 http://en.wikipedia.org/wiki/Default_argument

 Flexible arity -

 http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES04/poly.cpp (varargs, notes 04)

JavaScript - every function has a local variable arguments that accesses (and aliases) the
argument list (Crockford, p. 31)

 Return Values: Are they part of function’s signature?
 (http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES07/notes07.return.cpp)

 State Changes - input/output parameters, encapsulated data structure/object, globals,
 database/files . . .

 Aside: Relationship with caller - if any, or existence as a process/thread

 From SR (Synchronizing Resources), a concurrent/distributed language:

SR Mechanisms proc
(procedure)

in

call
(synchronous)

Procedure call Rendezvous/handshake with process (from Ada,
single-slot buffer)

send
(asynchronous)

Thread creation Message passing (queue)

 2
 http://ranger.uta.edu/~weems/NOTES4351/04notes.pdf, p. 16-18
 “An overview of the SR language and implementation”,
 http://dl.acm.org.ezproxy.uta.edu/citation.cfm?doid=42192.42324

Functional Abstraction (Software Component) Concepts:

 Process and Data Abstraction . . . reusability, modularity . . . “software ICs”
 http://www.cs.dartmouth.edu/%7Edoug/components.txt

 (Data - Cardelli & Wegner ACM Computing Surveys (1985) article,
 http://dl.acm.org.ezproxy.uta.edu/citation.cfm?doid=6041.6042 for Notes 8/9/10)
 Process - W.P. Stevens, G.J. Myers, and L.L. Constantine, “Structured Design”,
 IBM Systems Journal, Vol 13 (2), 1974, 115-139,
 http://ieeexplore.ieee.org.ezproxy.uta.edu/stamp/stamp.jsp?tp=&arnumber=5388187
 Cohesiveness - coincidental, logical, temporal, communicational, sequential, functional (p. 121)
 Lambda calculus / function application as a model of computation:
 http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES07/lambdaLand.rkt

 (Scary aside: http://en.wikipedia.org/wiki/Ladder_logic)

Parameter-Passing Mechanisms:

 Call-by-value - a copy of the object is created

 Call-by-reference - a pointer to the object is passed, so the object may be modified
 (Java situation for objects, C for arrays, is occasionally referred to as call-by-sharing)

 Pascal - both -by-value and -by-reference are available for all objects

 By-value - even arrays, structures, and sets will be copied
 (asides: compiler avoidance or https://en.wikipedia.org/wiki/Persistent_data_structure)

 To pass by reference - var keyword before parameter

 Not difficult to mix these together

procedure c(var x:integer)
begin
end;

procedure d(x:integer)
begin
end;

procedure b(var x:integer)
begin
 c(x);
 d(x);
end;

procedure a;
var x:integer;
begin
 b(x);
end;

 3
 C

 By-value - scalars, structures

 By-reference - arrays

 Mixing these is messy (but C++ uses & in parameter list to simulate var)

void c(int *x)
{
}

void d(int x)
{
}

void b(int *x)
{
 c(x);
 d(*x);
}

void a()
{
 int x;
 b(&x);
}

void c(int &x)
{
}

void d(int x)
{
}

void b(int &x)
{
 c(x);
 d(x);
}

void a()
{
 int x;
 b(x);
}

 Call-by-name - behaves as though the argument expression is substituted into function

 No concern for scope (involved variables are by-reference in original scope)

 Simple examples look like call-by-reference

 Like macros (but “dynamic” . . . “textual substitution”) - don’t take the call to the
 function, take the function to the call

 Each argument expression may have associated code (“thunk”) to support the use of the
 expression as an r-value and as an l-value

 Relationship between arguments

 swap(x,y)
 t=x;
 x=y;
 y=t;

 swap(i,a[i])
 t=i;
 i=a[i];
 a[i]=t

 swap(a[i],i)
 t=a[i];
 a[i]=i;
 i=t;

 4
 Two things to read carefully in Gabbrielli:

 p. 175 - copy rule, especially the does not capture variables part

 p. 178 - Jensen’s Device

 http://en.wikipedia.org/wiki/Man_or_boy_test (1964) brings recursion to the party ...

Passing arrays for C:

int a[10][20][30],***c;

void printMat1(int m,int n,int p,int ***c) {
int i,j,k;

for (i=0;i<m;i++)
 for (j=0;j<n;j++)
 for (k=0;k<p;k++)
 printf("[%d][%d][%d]=%d\n",i,j,k,c[i][j][k]);
}

void printMat2(int m,int n,int p,int c[][20][30]) {
int i,j,k;

for (i=0;i<m;i++)
 for (j=0;j<n;j++)
 for (k=0;k<p;k++)
 printf("[%d][%d][%d]=%d\n",i,j,k,c[i][j][k]);
}

printMat1(10,20,30,c);
printMat2(10,20,30,a);
#error "1"
printMat2(10,20,30,c);
#error "2"
printMat1(10,20,30,a);

7.2. HIGHER-ORDER FUNCTIONS

Simple (pointer to) function passing for C, due to simple scoping

 Classic UNIX/C data structure examples:

 void qsort(void *base, size_t nmemb, size_t size,
 int(*compar)(const void *, const void *));

 void *bsearch(const void *key, const void *base, size_t nmemb,
 size_t size, int (*compar)(const void *, const void *));

 http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES07/functions.c

Traditional Pascal - avoids issues by requiring passed procedures to have only by-value parameters (and
procedures/functions cannot be returned)

Scheme (aside) - http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES07/notes07.ho.rkt

 5
Languages with nested functions, lexical/static scope, procedures as arguments - deep binding

1. When a function is passed, its referencing environment is committed (e.g. by passing an
additional pointer with the appropriate static link value, in addition to the address of the
function’s code).

2. The called function has no reason to use the additional pointer directly since the compile-

time symbol tables have different referencing environments.

3. Whenever the passed function is called, the new activation record will have its static link set

to the additional pointer.

This necessity is known as the downward fun(ctional) arg(ument) problem.

The previous extension works as long as the function address (and additional pointer) cannot be used for
a call after an activation record on the static chain is gone, known as the upward fun(ctional) arg(ument)
problem:

1. In general, the involved data/activation records need heap allocation (and a garbage
collection mechanism).

2. Without other complications (e.g. recursion), garbage collection might be avoided.

(This mechanism is also effective for dealing with continuations)

http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES07/notes07.funarg.rkt

7.3. EXCEPTIONS

Aside: Multilevel returns/Signals (setjmp/longjmp)/Exceptions in C (
http://ranger.uta.edu/~weems/NOTES3302/signal.c)

For JavaScript: http://ranger.uta.edu/~weems/NOTES3302/exception.html

C++

 Exception Hierarchy (http://en.cppreference.com/w/cpp/error/exception)

 RAII - resource acquisition is initialization

 Well-designed C++ code should avoid explicit destructor calls and depend on scope

 Thrown exceptions going through several levels of calls will not lead to resource leaks

 6
Implementations

 Simple - for each encountered try/catch block: entry registers (pushes) and exit removes
 (pops) the handler and targeted exceptions from a list. Handling an exception involves
 traversing this list and activation records.

 Low run-time overhead (in absence of throws) - Each step that would follow an exception list
 link (in the simple method) is replaced by a binary search (using the program counter as key) of a
 table whose entries are the beginning of code for functions and try/catch blocks.

