
CSE 3302 Notes 8:  Structuring Data 
 

(Last updated 11/14/15 4:59 PM) 
 
References:  Gabbrielli:  8; Crockford:  3-6 
 
8.1.  DATA TYPES 
 
Types = Means for assuring operations are applied to appropriate objects (values)  (Gabbrielli, 
Definition 8.1) 
 
History of types = History of programming languages 
 
Cardelli and Wegner, “On Understanding Types, Data Abstraction, and Polymorphism”, ACM 
Computing Surveys 17 (4), Dec. 1985, http://dl.acm.org.ezproxy.uta.edu/citation.cfm?doid=6041.6042 
See section 1.4 and figure 2 (p. 516) 
 
Also, W.R. Cook, “On Understanding Data Abstraction, Revisited”, OOPSLA ’09, 
http://dl.acm.org.ezproxy.uta.edu/citation.cfm?doid=1640089.1640133 
 
http://en.wikipedia.org/wiki/Expression_problem  https://www.dreamsongs.com/Files/Incommensurability.pdf 
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8.2.  TYPE SYSTEMS 
 
Friction between flexibility and point of type error detection: 
 
http://dl.acm.org.ezproxy.uta.edu/citation.cfm?doid=2661061.2659764 
 
http://www.typescriptlang.org/ 

 
Software Types ≠ Hardware Types (interpreter vs. compiler, dynamic vs. static;  undecidability, 
Gabbrielli, p. 204) 
 
In what ways are user-defined types different from built-in types? 
 
 C++:  Can't overload operations for built-in types 
 
Strong vs. Weak Typing: 
 
 Is it clear when the type system is being abused? 
 
 Racket - mutable lists (mcons, mcar, mcdr) 
 
Aside:  Software Engineering - “domain analysis” (circa 1990) and “software product line engineering” 
( http://dl.acm.org.ezproxy.uta.edu/citation.cfm?doid=2620784.2580950 ) 
 
8.3.  SCALAR TYPES 
 
Booleans . . . 
 
Characters . . . 
 
Strings (not mentioned in Gabbrielli) 
 

Mutable (C) (see CACM, Sept. 2011, “The Most Expensive One-Byte Mistake”, 
http://dl.acm.org.ezproxy.uta.edu/citation.cfm?doid=1995376.1995391 )  
 
vs. Immutable (Java, JavaScript) strings 
 
vs. Storing lengths 

 
Numbers . . . 
 
Enumerations 
 
 C:  Maps to 0 . . . 
 
 Pascal:  Maps to 1 . . . (many compilers allow overriding) 
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Intervals (of allowed values, subranges) 
 
 Pascal:  var negval: -2002 . . -2001; 
 
 Implementations typically use the smallest hardware type that contains (bits are not minimized) 
 
 Not type safe 
 
 
8.4.  COMPOSITE TYPES (AKA structured types) 
 
Records 
 

C - fields are allocated/aligned in order given  
( http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES08/recsize.c ) 
 
Pascal:  ( http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES08/dt.pas ) 
 
 packed option to reduce space (for data, but not code) 
 with to abbreviate field selection expressions 
  
“Overlapping” portions of records: 
 
 COBOL (aside:  http://fivethirtyeight.com/features/the-queen-of-code/ ) - redefine 
 
 Pascal - variant part of record 
 
        type conrec = 
          record case tp: types of 
            ints, chars, bools: (i: integer); 
            reals: (r: real); 
            notyp, arrays, records: (); 
          end; 
 
        s: array [1..stacksize] of    (* blockmark:                *) 
           record case types of       (*    s[b+0] = fct result    *) 
             ints:   (i: integer);    (*    s[b+1] = return adr    *) 
             reals:  (r: real);       (*    s[b+2] = static link   *) 
             bools:  (b: boolean);    (*    s[b+3] = dynamic link  *) 
             chars:  (c: char);       (*    s[b+4] = table index   *) 
             notyp, arrays, records: () 
           end; 
 
 C - union, similar situation with tagged (discriminated) and untagged (free) versions 
 
 Leads to type conversion shortcuts and limits type checking 
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Arrays 
 

1-d arrays of integers for PL/0 (Gabbrielli, figure 8.5) 
 
Slices - specifying a vector or sub-matrix for use in functions or built-in operations 
 
Dope Vectors 
 
 Offsets for fields within records 
 
 Constants needed for subscripting (historical) 
 
  Dimension sizes (e.g. decrease left-to-right across dimensions) 
  Range lower bounds (not for C/Java) 
 
Memory Layout 
 
 Row-major (rows are contiguous bytes) 
 
 Column-major (columns are contiguous bytes, FORTRAN) 
 
 Row-pointer (multidimensional array handled using 1-d concepts multiple times) 
 
  Row subscript indexes array of pointers 
  Column subscript goes to position within row 
  Allows ragged arrays (e.g. triangular situations) 
 
Address Calculation for row-major 
 
 Suppose an array is to be stored starting at location 1000000 and is declared: 
 
 a: array[10..25,50..70,200..300] of integer; 
                   21     101           4 
 
 The address of a[i,j,k] (with 4 byte integers) is computed as: 
 
 1000000 + (i-10)*21*101*4 + (j-50)*101*4 + (k-200)*4 
 
 But may be simplified (at compile time) to: 
 
 1000000 + (0-10)*21*101*4 + (0-50)*101*4 + (0-200)*4 
         +      i*21*101*4 +      j*101*4 +       k*4 
 
 for which the first line (address of non-existent a[0,0,0]) is a constant and the second  
 line may be computed as: 
 
         +     ((i*21   +         j)*101   +      k)*4 
 
 (It is not difficult to go from an address back to the subscripts) 
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Sets 
 

Pascal sets (set of) - not an associative array, provides convenient implementation of long bit 
vectors 
 
 in  membership    +  union    -  difference    *  intersection 
 
 Many examples in PL/0 and Pascal-S environments 
 
(JavaScript - sets are easily simulated by manipulating an object's properties) 

 
Pointers and References 
 
 Value Model (containers and addresses) - C (pointer arithmetic, order comparisons) and Pascal 
 
 Reference Model (every access involves both “address” and container) - Java and JavaScript 
 
Recursive Types . . . 
 
ML Built-In Types - lists [], tuples (), records {} 
 

val a=[1, 2, 3, 4]; 
val b=[1.0, 2.0, 3.0, 4.0]; 
val c=["cat", "dog", "fish"]; 
val d=[#"a",#"b",#"c"]; 
 
- hd(a); 
val it = 1 : int 
 
- tl(a); 
val it = [2,3,4] : int list 
 
- hd(a)::tl(a); 
val it = [1,2,3,4] : int list 
 
- val e=[(1,2.0),(3,4.0),(5,6.0)]; 
val e = [(1,2.0),(3,4.0),(5,6.0)] : (int * real) list 
 
- datatype ('a,'b) element=P of 'a * 'b | S of 'a; 
datatype ('a,'b) element = P of 'a * 'b | S of 'a 
 
- val f=[S(2.0),P(2.0,1),S(3.0),P(4.0,3)]; 
val f = [S 2.0,P (2.0,1),S 3.0,P (4.0,3)] : (real,int) element list 
 
- tl(f@f); 
val it = [P (2.0,1),S 3.0,P (4.0,3),S 2.0,P (2.0,1),S 3.0,P (4.0,3)] 
  : (real,int) element list 
 
- tl(f)@f; 
val it = [P (2.0,1),S 3.0,P (4.0,3),S 2.0,P (2.0,1),S 3.0,P (4.0,3)] 
  : (real,int) element list 
 
- #2(hd(tl(e))); 
val it = 4.0 : real 
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- val P(_,h)=hd(tl(f)); 
val h = 1 : int 
 
- val beatles=[{name="John",plays="keyboards",born=1940}, 
= {name="Paul",plays="bass",born=1942}, 
= {name="George",plays="guitar",born=1943}, 
= {born=1940,plays="drums",name="Ringo"}]; 
 
val beatles = 
  [{born=1940,name="John",plays="keyboards"}, 
   {born=1942,name="Paul",plays="bass"}, 
   {born=1943,name="George",plays="guitar"}, 
   {born=1940,name="Ringo",plays="drums"}] 
  : {born:int, name:string, plays:string} list 
 
- tl(beatles); 
val it = 
  [{born=1942,name="Paul",plays="bass"}, 
   {born=1943,name="George",plays="guitar"}, 
   {born=1940,name="Ringo",plays="drums"}] 
  : {born:int, name:string, plays:string} list 
 
- hd(tl(beatles)); 
val it = {born=1942,name="Paul",plays="bass"} 
  : {born:int, name:string, plays:string} 
 
- #name(hd(tl(tl(beatles)))); 
val it = "George" : string 
 
(** Top-down merge sort **) 
 
fun merge([],ys,_) = ys 
  | merge(xs,[],_) = xs 
  | merge(x::xs,y::ys,pred) = 
      if pred(x,y) then x::merge(xs,y::ys,pred) 
                   else y::merge(x::xs,ys,pred); 
 
fun tmergesort([],_)  = [] 
  | tmergesort([x],_) = [x] 
  | tmergesort(xs,pred) = 
      let val k = length xs div 2 
      in  merge(tmergesort(List.take(xs,k),pred), 
                tmergesort(List.drop(xs,k),pred), 
                pred) 
      end; 
 
- tmergesort([3.0,1.0,5.0,4.0,2.0],op<=); 
val it = [1.0,2.0,3.0,4.0,5.0] : real list 

 



 7 
Scheme code for mergesort 
 

(define (tmergesort lst pred) 
  (define (merge lst1 lst2) 
    (cond  
      ((empty? lst1) lst2) 
      ((empty? lst2) lst1) 
      ((pred (car lst1) (car lst2))  
       (cons (car lst1) (merge (cdr lst1) lst2))) 
      (else (cons (car lst2) (merge lst1 (cdr lst2)))))) 
  (define (mergesort lst) 
    (if (pred (length lst) 1) 
        lst 
        (let ((k (floor (/ (length lst) 2)))) 
          (merge (mergesort (take lst k)) 
                 (mergesort (drop lst k)))))) 
  (mergesort lst)) 
 
(tmergesort '(5 7 3 4 2 9 1 0 6) <=) 

 
8.5.  EQUIVALENCE 
 
Equivalent = “interchangeable” (ignoring scope issues) 
 
Opaque (name) equivalence 
 
 Weak = aliases are equivalent  Strong = aliases are not equivalent 
 
Transparent (structural) equivalence 
 
Structs/records - Pascal and C use weak name equivalence 
 
Arrays - C uses structural equivalence;  Pascal uses weak name equivalence (top of p. 232 example) 
 
8.6.  COMPATIBILITY & CONVERSION 
 
Compatibility = “substitutability” especially as an argument to a function (Gabbrielli, p. 234) 
 
Subtypes (S <: T, p. 242) enter the picture: 
 
 Ranges for numbers (e.g. char vs. int) 
 
 Racket structs may inherit from a supertype 
 
 C++ structs may inherit from a supertype struct (what about those functions in the struct?) 
 http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES08/notes08.struct.cpp 
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Forms of Compatibility (p. 234) 
 

1. Equivalence. 
2. Values of the type used are in a subset of the type expected. 
3. Operations on values of type S are allowed on values of type T by inferring T <: S. 
 
 http://en.wikipedia.org/wiki/Liskov_substitution_principle 
 

Liskov & Wing, “A Behavioral Notion of Subtyping”, ACM TOPLAS 16 (6), 
http://dl.acm.org.ezproxy.uta.edu/citation.cfm?id=197383 (especially figures 4 and 5) 
 
(Are circles a subtype of ellipses?  Squares of rectangles?  longs of shorts?  The issue is?) 

 
4. There is a canonical way to convert values of type T uniquely to type S. 
5. There is a way to convert values of type T non-uniquely to type S. 
 
 (Liskov & Wing, stacks and queues could be subtypes of a bag supertype) 

 
4 and 5 are difficult to distinguish, so checked casts are useful: 
http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES08/notes08.narrowCast.cpp 
(Same idea is used in JavaScript code to check string-to-number conversions.) 
 
Type Conversions and Casts 
 

Narrowing - going from a value in a large set to a small set (often unsafe, can’t “undo” back to 
original values) 
Widening - going from a value in a small set to a large set (often safe, can “undo” to original 
value) 
Coercion - implicit conversion, defined by language/implementation (mixed mode operations) 
Cast - explicit conversion by programmer 
 
(P.N Hilfinger, “An Ada Package for Dimensional Analysis”, ACM TOPLAS 10 (2), Apr. 1988, 
189-203, http://dl.acm.org.ezproxy.uta.edu/citation.cfm?doid=42190.42346 simulates traditional 
“unit cancellation”.   (Also done for C++ in http://www.stroustrup.com/Software-for-
infrastructure.pdf ) 

 
 Nonconverting cast  in C through pointer casts or void* (“universal object reference”) 
 
8.7.  POLYMORPHISM 
 
Overloading/Ad-Hoc Polymorphism 
 

A name corresponds to several objects, such as: 
 

Built-in operators (for different types) in most languages 
Reusing a function/method name for different argument signatures 

 
Coercions are a separate issue and reduce the apparent number of reuses. 
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(Universal) Parametric Polymorphism 
 

Simple Java Generics or C++ Templates - unrestricted type parameter 
Non-Dictionary Collections - stacks or queues 
Dictionary Collections - even without inherent ordering 
Explicit - type parameter is supplied (C++ queue example in Notes 02) 
Implicit - type possibilities are inferred at compile-time and instantiated at run-time 
C++ - types may be inferred, without explicit instantiation, for function templates from the 
argument types or by using auto instead of an explicit type. 

 
Subtype/Inclusion (Universal) Polymorphism 
 

The type argument for a type parameter is limited to subtypes of a type 
Includes subtyping based on built-in structured types and class hierarchies 
http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES08/notes08.max.cpp 

 
Skip 8.7.4 (Implementation) 
 
 
8.8.  TYPE CHECKING & INFERENCE 
 
Only in the presence of parametric polymorphism is this a general/interesting problem - traditional 
compilers derive type information bottom-up for expressions 
 
ML uses type inference heavily by avoiding declared name-to-type bindings 
 
 Gets context/hints from places like: 
 
  Operations/functions applied (e.g. from libraries) 
  Names that are referenced 
 
8.9.  SAFETY 
 
Unsafe - C, C++ 
Locally Unsafe - Pascal 
Safe - Java, functional languages, JavaScript? 
 
8.10.  DANGLING REFERENCES 
 
Tombstones/ indirection 
 
 Any conceptual pointer always takes two steps 
 Freeing the actual object's memory clears the tombstone's pointer 
 Prevents memory re-allocated for a different object from getting clobbered 
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Locks and Keys 
 
 Also takes two steps, but now it is a comparison between accessor's key and the 
 stored lock value 
 
 http://en.wikipedia.org/wiki/Capability-based_security 

 
For C++ 14, these issues (along with reference counts and concurrency) are often handled through smart 
pointers (unique or shared) 
 
And, just to make the next topic more tedious:  weak pointers, largely in support of result caching 
 
http://en.cppreference.com/w/cpp/memory/weak_ptr 
http://docs.oracle.com/javase/7/docs/api/java/lang/ref/WeakReference.html 
http://docs.racket-lang.org/reference/eval-model.html#%28part._gc-model%29 

 
8.11.  GARBAGE COLLECTION 
 
Reference Counts (eager) 
 
 Each allocated object has count of pointers to it 
 Count decremented to zero . . . reclaim 
 Various schemes to reduce counter update costs (exploit compiler optimizations) 
 Cycles are a potential problem 
 
Mark-and-Sweep (lazy) - uses techniques analogous to directed graph traversals (DFS and BFS) for 
determining reachable heap locations.  Requires separate sweep of heap (Compact) to clean-up external 
fragmentation. 
 
Pointer Reversal (Schorr-Waite) - avoids stack for backing-up on tree edges.  Tree edges are explictly 
reversed to allow retreating later. 
 
Stop-and-Copy - extends graph traversal concept to copy graph from one workspace to another, 
including compacting and redirecting pointers.  (Same principles are used for distributed systems for 
marshalling/serialization) 
 
Generational (Racket default)- separate the heap into several workspaces.  Only clean older spaces when 
younger spaces have little to reclaim.  Objects can be moved into older (“tenured”) generations. 
 
(available online:  P.R.Wilson, “Uniprocessor Garbage Collection Techniques”) 


