PAGE
2

CSE 3302 Notes 9: Data Abstraction
(Last updated 11/17/15 1:53 PM)

References: Gabbrielli: 9
9.1. Abstract Data Types
Programmer-defined types should be handled like built-in types
Primary characteristics:

1.
Type name

2.
Underlying representation (concrete type)

3.
Set of operation names

4.
Implementation for each operation

(pop returns a reference to the modified stack, top returns last-in without mutating)
5.
Opaque interface separating 1. and 3. from 2. and 4.

Stack of integers example:

1.
Figure 9.1, no opaque interface

2.
Figure 9.2, adds 5. in form of signature
9.2. Information Hiding
Based on opaque interface the principle of representation independence (p. 271) holds:
Two correct implementations of (a single specification) of an ADT are operationally indistinguishable by the clients of the types.

Constructor, transformers/operators (Liskov/Wing call these mutators), observers
9.3. Modules
Module: One or more ADTs encapsulated together
Import: Accessing a module for purposes of instantiating

Figures 9.5 and 9.6 (p. 273-274)
9.3. Some Items from W.R. Cook Paper
Figures 2 and 3, integer sets as ML ADT for specification only
Figure 4, integer set using sorted lists as representation

Disadvantage of many ADT mechanisms: only one implementation per ADT name
Notable Exceptions:

C header files and separately compiled implementations (e.g. makefiles as glue)

C++ (pointer to implementation) pimpl idiom - to avoid recompilation

https://en.wikipedia.org/wiki/Opaque_pointer

Java interfaces and generics

C++ templates

Sections 2.4 and 2.5

Existential type = ADT name and operations (Figure 6), but where implementations may differ

Using different implementations for one ADT gives different incompatible types, e.g. mixing

two recursive implementations
Transition to Notes 10:

From P. Wegner, “Dimensions of object-based language design”, OOPSLA ’87 http://dl.acm.org.ezproxy.uta.edu/citation.cfm?doid=38765.38823
[image: image1.png]CLASSLESS
DELEGATION

STRICT
INHERITANCE
IS-A

ON-STRIC
INHERITANCE
LIKE

PLEMENTATION

MULTIPLE
NHERITANC
SPECIFICATION
INHERITANCE INHERITANCE
CODE SHARING
MULTIPLE
HIERARCHIES

Figure 2. Design Alternatives for Inheritance

