
CSE 3302 Notes 10: Object-Orientation, Polymorphism, and Generic Programming

(Last updated 11/23/15 10:46 AM)

Influences in the O-O “revolution”

 Logic/Mathematics - type concepts, notation, lambda calculus
 Software Engineering - need for reuse, early detection of errors
 Database - need for more than tables (and “semantic”)
 AI/Knowledge Representation - higher-order programming
 User Interfaces/Graphics
 Simulation

 Who was first?

10.1. LIMITS OF ABSTRACT DATA TYPES

Examples of a counter :

 (p. 278) get, inc, reset ADT
 (p. 278-279) howmany_resets ADT (new ADT or nest original?)
 Array including both types of counters? (p. 280)

What is needed? Dynamic binding (and method selection), but also

 Encapulation and type checking (like ADTs)
 Inheritance

10.2. FUNDAMENTAL CONCEPTS

Object = Data + Operations (for JavaScript, both are properties)

Class = (an often unnavigable) set of objects (instantiations)

Constructor, this, public, private

JavaScript arrays are actually associative arrays, typically implemented by hashing a string:

 arr[1] and arr["1"] refer to the same property of object arr

 arr[5/2] and arr["2.5"] refer to the same property of object arr

 2
 BUT, an object is an array only if the object was created using either of these:

 arr=['donut','chips',{a:1,b:'cat'},undefined];

 arr=new Array('donut','chips',{a:1,b:'cat'},undefined);

 For any object, object.property and object["property"] are available, BUT . . .

 .property possibilities are more limited than ["property"] possibilities

 For an array, length is one more than the maximum positive integer property name

 Set operations may be based on: for . . . in as: loop (p. 24 of The Good Parts), along
 with: string/index in object as operator returning true/false to indicate property presence

 delete x[propName] removes the property

See http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES10/objSet.html for manipulation of
properties (on simple objects, no prototypes/inheritance, no methods)

JavaScript provides prototypal inheritance as a simple delegation mechanism:

“In JavaScript, a class is a set of objects that inherit properties from the same prototype object.”
(D. Flanagan, JavaScript: The Definitive Guide, chapter 9, along with 6 and 8)

 Several ways to set the prototype for an object:

 Object.create() is usually the simplest

 Constructor used with new can lead to difficulties (see Crockford's book and webpage)

 (Browser dependent techniques, including changing the prototype)

 objectName.propertyName = ... ; can only set (l-value) the property value on
 objectName
 ... = ... objectName.propertyName ... ; searches the prototype chain (r-value)

 delete will not follow the prototype chain - it will only remove property from provided object:

 delete object-reference[property-name-as-string]
 delete object-reference.property-name

object-reference.has_property(property-name-as-string]) is the way to check presence of
a property locally (without following prototype chain) before delete

 (Aside: using Object.getPrototypeOf() to navigate prototype chain directly)

 3
 Examples:

http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES10/objArray.html demonstrates
simple data values as properties

http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES10/quo.html demonstrates use of
new

http://ranger.uta.edu/~weems/NOTES3302/LAB2SUM13/ demonstrates prototypal inheritance by
having instances inherit from “class object” with needed methods. In addition, boxes
may inherit drawing properties (colors for fill and stroke, thickness for stroke) from
containing box

To implement a class hierarchy:

1. Root class is a simple object with class variables and functions.
2. Subclass is initiated by subClassName=Object.create(superClassName).
3. New methods and class variables are added as properties.
4. Instances of a class are initiated by instanceRef=Object.create(className).
5. Possible to encapsulate private members, e.g. using closures.

http://ranger.uta.edu/~weems/NOTES3302/LAB/15SUM/LAB4/

When is a subclass also a subtype?

 Abstract class - cannot have an instance

 (asides: C++ uses =0 to make a virtual function "pure", Java has keyword abstract)

 Many subtyping issues become apparent when mutability is considered (book examples)

10.3. IMPLEMENTATION ASPECTS

10.4. POLYMORPHISM AND GENERICS

W.R. COOK PAPER - section 3

O-O is about:

 Functions, their application, and interfaces (figure 8)

 Dynamic binding

 4
 Public interfaces (autognosis, 3.3)

Flexibility to represent infinite sets (3.4 and http://ranger.uta.edu/~weems/NOTES3302/LAB1FALL13/)

Bisimulation/equivalence (3.7)

Flexibility/duality (4.3)

 ADTs - adding operations

 O-O - adding representations

C++ TEMPLATES, LAMBDA CALCULUS, AND COMPILE-TIME TURING COMPUTABILITY (ASIDE)

http://matt.might.net/articles/c++-template-meta-programming-with-lambda-calculus/

