
CSE 3302 Notes 1: Introduction

(Last updated 11/11/15 8:41 AM)

References:

Gabbrielli-Martini: Intro., 1, 13.3, 13.4, 13.5, 13.6
Dybvig: 1
Steele, Growing a Language: http://ranger.uta.edu/~weems/steele.pdf

1.1. LANGUAGE DESIGN

Early IBM Tradition

Embedded Systems Attitude

 We’ll never code in C, we need assembler. (Late 80s)
 We’ll never code in Java, we need (some parts of) C++.

(http://www.ee.ryerson.ca/~elf/hack/realmen.html)

The inevitability of converting code . . .

Why so many languages? (Why so few “good” ones?)

(http://dl.acm.org.ezproxy.uta.edu/citation.cfm?id=365257)

What makes a language popular?

Steele: “I stand on this claim: I should not design a small language, and I should not design a large
one. I need to design a language that can grow.”

“A language design can no longer be a thing. It must be a pattern—a pattern for growth—a pattern for
growing the pattern for defining the patterns that programmers can use for their real work and their main
goal.”

Specific concepts and features are more useful (in academic study) than bundles.

How about domain-specific languages and end-user programming? (programming vs. configuration?)

(http://dl.acm.org.ezproxy.uta.edu/citation.cfm?id=1922649.1922658)
(http://dl.acm.org.ezproxy.uta.edu/citation.cfm?id=2602695.2605205)

Steele: “We need to put tools for language growth in the hands of the users.”

What language should be given to “babies”?
 (https://apstudent.collegeboard.org/apcourse/ap-computer-science-a/about-the-exam/java-subset)
How long should it take to learn a language?
Is UML a PL?

 2
1.2. THE PROGRAMMING LANGUAGE DESIGN SPECTRUM

ACM Turing Award Winners (http://amturing.acm.org/) with Strong Connections to PLs:

 Year Name Contribution

 1966 Perlis Programming and compilers
 “When someone says ‘I want a programming language in which
 I need only say what I wish done,’ give him a lollipop.”
 1971 McCarthy LISP
 1972 Dijkstra Philosophy of programming
 “If FORTRAN has been called an infantile disorder,
 PL/I must be classified as a fatal disease.”
 1973 Bachman COBOL, navigational DB
 1974 Knuth Language implementation
 http://www.youtube.com/embed/gAXdDEQveKw
 “compiler research was certainly intensive, representing roughly
 one third of all computer science in the 60s”
 1977 Backus FORTRAN, formalisms
 1978 Floyd Parsing, semantics
 https://en.wikipedia.org/wiki/Cycle_detection

 1979 Iverson APL
 1980 Hoare CSP
 “Inside every large language is a small language struggling to get out ... ”
 http://i.stanford.edu/pub/cstr/reports/cs/tr/73/403/CS-TR-73-403.pdf

 1981 Codd Relational DB
 1983 Thompson UNIX, scripting
 1983 Ritchie UNIX, C
 1984 Wirth Philosophy of PLs
 1987 Cocke RISC, code optimization
 1991 Milner ML, type inference
 1999 Brooks Systems design
 “The worst mistake we made was JCL”
 http://dl.acm.org.ezproxy.uta.edu/citation.cfm?doid=2838899.2822519

 2001 Dahl/Nygard Simula, O-O
 2003 Kay O-O, Smalltalk, MVC
 “Actually I made up the term ‘object-oriented’, and I can tell you
 I did not have C++ in mind”
 https://en.wikiquote.org/wiki/Talk:Edsger_W._Dijkstra#nano-Dijkstras

 2005 Naur Algol 60
 2006 Allen FORTRAN optimization
 2008 Liskov Abstraction, distributed computing

ACM Software System Award: http://awards.acm.org/software_system/year.cfm

Greatest Common Denominator Example:

 C, Pascal, PL/0, Scheme, JavaScript, SML, Prolog code on webpage
 (http://ranger.uta.edu/~weems/NOTES3302/GCD/)

 3
2320: Where do want to be in 10 years?

 What is design? (juggling {correctness, resource requirements, development cost}
 or {quality, cost, schedule})

3302: To get ahead, what do you want to manipulate?

 First Class: Passed as argument, returned from function, assigned to variable,
 (Constructible?)
 Second Class: Passed as argument
 Third Class: None of the above

 How about functions, threads/processes, processors, messages, channels/pipes?

 First-class classes?

1.4. COMPILATION AND INTERPRETATION

Practice vs. Possibilities vs. Details

Like . . . the nature of names, bindings, and symbol table(s)

Assembler:

 Op Codes
 Labels
 Data Types (corresponding to hardware capabilities)
 Macros
 Control of Assembly

Compiler:

 Maximizes checking that can be performed without execution of the source program.
 May produce code for a machine whose level of similarity to ideal “language machine”
 may vary.
 Traditional languages (as opposed to scripting languages) have symbol tables only in
 the compiler and use static (AKA lexical) scoping.

Interpreter/Virtual Machine:

 Ranges from general hardware machine to “language machine” (with features such as
 strings, hashing for object property names, memory management, and dynamic scope).
 In recent years, Just-In-Time “compilers” translate instructions for virtual machine to real
 machine code.

Linker/Loader:

 Resolves external references in several object files
 Possibly commences execution or just produces executable

 4
From D. Grune, et.al., Modern Compiler Design, Wiley, 2000.

Source
Code

Executable
Code

Real
Machine

Source
Code

Intermediate
Code

Interpreter/
Virtual
Machine

preprocessing

preprocessing

processing

processing

And, going meta:

 (https://en.wikipedia.org/wiki/Metamodeling)

 http://www.scheme.com/tspl4/examples.html#./examples:h7

 https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-25.html#%_chap_4

 https://en.wikipedia.org/wiki/Bootstrapping_(compilers)

 The Little JavaScripter

And, run-time at compile-time:

 https://msdn.microsoft.com/en-us/library/Dn956974.aspx

1.5. AN OVERVIEW OF COMPILATION

Preprocessor (e.g. C)

 Include files
 Macros
 Conditional text
 Compiler directives

Scanning/Lexing/Tokenizing/Lexical Analysis

 Remove comments / white space

 Collect “minimal” meaningful substrings

 Identifiers/reserved words
 Operators
 Constants (strings, numbers)

 Strong connections to regular expressions and finite-state automata (CSE 3315)
 (https://en.wikipedia.org/wiki/Lex_(software))

 5
Parsing/Syntax Analysis

 Construct tree representing nesting structure of language constructs and expressions
 Practical languages allow both bottom-up and top-down (e.g. recursive descent) approaches
 (https://en.wikipedia.org/wiki/Yacc)

Symbol Tables

 Data structures
 Scope/namespaces

Semantic Analysis

 Attribute grammar (Notes 4) evaluation - functions for sending semantic information through
 abstract syntax tree

 Type checking/inference (http://www.amazon.com/dp/0262162091)

Intermediate Code Generation

 High-level machine language (http://adriansampson.net/blog/llvm.html)

Code Improvement (http://www.amazon.com/dp/1558603204)

To get a handle on this . . . (over the entire semester)

http://ranger.uta.edu/~weems/NOTES3302/BASELINE/

 6
PL/0 - Pascal subset (see syntax diagrams: http://ranger.uta.edu/~weems/NOTES3302/BASELINE/DIAGRAMS/)
One-pass recursive-descent compiler, no intermediate code, no optimization
Scanner (getsym) is hand coded
Symbol table uses linear search
Stack-based interpreter

1.6. THE CHOSEN FEW . . .

Scheme (Lisp, SML, Haskell)
Scripting (JavaScript)
Pascal, C
C++
Java
Prolog (ASP: http://potassco.sourceforge.net/clingo.html)
Algol 60
Algol 68
Smalltalk

