
CSE 3302 Notes 6:  Data Types 
 

(Last updated 7/13/14 7:40 PM) 
 
6.1.  INTRODUCTION 
 
Types = Means for assuring operations are applied to appropriate objects (values) 
 
History of types = History of programming languages 
 
Cardelli and Wegner, “On Understanding Types, Data Abstraction, and Polymorphism”, ACM 
Computing Surveys 17 (4), Dec. 1985, http://dl.acm.org.ezproxy.uta.edu/citation.cfm?doid=6041.6042 
See section 1.4 and figure 2 (p. 516) 
 
Also, W.R. Cook, “On Understanding Data Abstraction, Revisited”, OOPSLA ’09, 
http://dl.acm.org.ezproxy.uta.edu/citation.cfm?doid=1640089.1640133 
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6.2.  PRIMITIVE DATA TYPES 
 
Numbers . . . 
 
Booleans . . . 
 
 JavaScript: 
 
 false undefined  null  0 -0 NaN "" 
 
 true  everything else not on previous line 
 
Characters . . . 
 
6.3.  STRINGS 
 
Mutable (C) (see CACM, Sept. 2011, “The Most Expensive One-Byte Mistake”, 
http://dl.acm.org.ezproxy.uta.edu/citation.cfm?doid=1995376.1995391 ) 
 
 vs.  
 
Immutable (Java, JavaScript) strings 
 
 vs. 
 
Storing lengths 
 
6.4.  ORDINALS 
 
Enumerations 
 
 C:  Maps to 0 . . . 
 
 Pascal:  Maps to 1 . . . (many compilers allow overriding) 
 
Subranges 
 
 Pascal:  var negval: -2002 . . -2001; 
 
 Implementations typically use the smallest integer type that contains (bits are not minimized) 
 
6.5.  ARRAYS 
 
1-d arrays of integers for PL/0: http://ranger.uta.edu/~weems/NOTES3302/LAB3SUM13/ 
 
Declarations 
 
Slices - specifying a vector or sub-matrix for use in functions or built-in operations 
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Dope Vectors 
 
 Offsets for fields within records 
 
 Constants needed for subscripting (historical) 
 
  Dimension sizes (e.g. decrease left-to-right across dimensions) 
 
  Range lower bounds (not for C/Java) 
 
Memory Layout 
 
 Row-major (rows are contiguous bytes) 
 
 Column-major (columns are contiguous bytes) 
 
 Row-pointer (multidimensional array handled using 1-d concepts multiple times) 
 
  Row subscript indexes array of pointers 
  Column subscript goes to position within row 
  Allows ragged arrays (e.g. triangular situations) 
 
Address Calculation 
 
 Suppose an array is to be stored starting at location 1000000 and is declared: 
 
 a: array[10..25,50..70,200..300] of integer; 
 
 The address of a[i,j,k] is computed as: 
 
 1000000 + (i-10)*21*101*4 + (j-50)*101*4 + (k-200)*4 
 
 (see http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES02/pascals.pas 
 routines arraytyp, selector, and interpret codes 20 and 21) 
 
 But may be simplified (at compile time) to: 
 
 1000000 + (0-10)*21*101*4 + (0-50)*101*4 + (0-200)*4 
         +      i*21*101*4 +      j*101*4 +       k*4 
 
 for which the first line (address of a[0,0,0]) is a constant and the second line may be 
 computed as: 
 
         +     (i*21   +         j)*101   +      k)*4 
 
 Run Pascal-S on http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES06/subscript.6.5.pas 
 and observe array properties and code 
 
 (It is not difficult to go from an address back to the subscripts)
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6.6.  ASSOCIATIVE ARRAYS 
 
Pascal sets (set of) - not an associative array, provides convenient implementation of long bit vectors 
 
 in  membership    +  union    -  difference    *  intersection 
 
 Many examples in PL/0 and Pascal-S environments 
 
JavaScript arrays are actually associative arrays, typically implemented by hashing a string: 
 
 arr[1]  and  arr["1"]  refer to the same property of object arr 
 
 arr[5/2]  and  arr["2.5"]  refer to the same property of object arr 
 
 BUT, an object is an array only if the object was created using: 
 
  arr=['donut','chips',{a:1,b:'cat'},undefined]; 
 
  arr=new Array('donut','chips',{a:1,b:'cat'},undefined); 
 
 For any object, object.property and object["property"] are available, BUT . . . 
 
  .property possibilities are more limited than ["property"] possibilities 
 
 For an array, length is one more than the maximum positive integer property name 
 
 Set operations may be based on:  for . . . in as:  loop (p. 24 of The Good Parts), along 
 with:  string/index in object as operator returning true/false to indicate property presentce 
 
 delete x[propName] removes the property 
 

See http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES06/objSet.html for manipulation of 
properties (on simple objects) 

 
JavaScript provides prototypal inheritance as a simple delegation mechanism: 
 

“In JavaScript, a class is a set of objects that inherit properties from the same prototype object.” 
(D. Flanagan, JavaScript:  The Definitive Guide, chapter 9,  along with 6 and 8) 

 
 Several ways to set the prototype for an object: 
 
  Object.create() is usually the simplest 
 
  Constructor used with new can lead to difficulties (see Crockford book and webpage) 
 
  (Browser dependent techniques, including changing the prototype) 
 
 objectName.propertyName = ... ; can only set (l-value) the property value on  
       objectName 
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 ... = ... objectName.propertyName ... ; searches the prototype chain (r-value) 
 
 delete will not follow the prototype chain - it will only remove property from provided object: 
 
  delete object-reference[property-name-as-string] 
  delete object-reference.property-name 
 

object-reference.has_property(property-name-as-string]) is the way to check presence 
(without following prototype chain) before delete 

 
 Examples: 
 

http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES06/objArray.html demonstrates 
simple data values as properties 
 
http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES06/quo.html demonstrates use of 
new 
 
http://ranger.uta.edu/~weems/NOTES3302/LAB2SUM13/ demonstrates prototypal inheritance by 
having instances inherit from “class object” with needed methods.  In addition, boxes 
may inherit drawing properties (colors for fill and stroke, thickness for stroke) from 
containing box 

 
6.7/6.10.  RECORDS AND UNIONS 
 
C - fields are allocated/aligned in order given ( 
http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES06/recsize.c ) 
 
#include <stdio.h> 
 
typedef struct { 
char a,b,c,d; 
short e,f; 
int g,h; 
} compact; 
 
typedef struct { 
char a; 
short e; 
char b; 
int g; 
short f; 
char c; 
int h; 
char d; 
} sloppy; 
 
main() 
{ 
printf("compact %d sloppy %d\n",sizeof(compact),sizeof(sloppy)); 
} 
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Pascal:  ( http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES06/dt.pas ) 
 
 packed option to reduce space (for data, but not code) 
 
 with to abbreviate field selection expressions 
  
“Overlapping” portions of records: 
 
 COBOL - redefines 
 
 Pascal - variant part of record 
 
        type conrec = 
          record case tp: types of 
            ints, chars, bools: (i: integer); 
            reals: (r: real); 
            notyp, arrays, records: (); 
          end; 
 
        s: array [1..stacksize] of    (* blockmark:                *) 
           record case types of       (*    s[b+0] = fct result    *) 
             ints:   (i: integer);    (*    s[b+1] = return adr    *) 
             reals:  (r: real);       (*    s[b+2] = static link   *) 
             bools:  (b: boolean);    (*    s[b+3] = dynamic link  *) 
             chars:  (c: char);       (*    s[b+4] = table index   *) 
             notyp, arrays, records: () 
           end; 
 
 C - union, similar situation with tagged (discriminated) and untagged (free) versions 
 
 Leads to type conversion shortcuts and limits type checking 
 
 
6.8.  TUPLES 
 
Similar to records, but no field names - use position to access. 
 
Easily simulated 
 
 
6.9.  LISTS 
 
ML (aside) - lists [], tuples (), records {} 
 
val a=[1, 2, 3, 4]; 
 
val b=[1.0, 2.0, 3.0, 4.0]; 
 
val c=["cat", "dog", "fish"]; 
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val d=[#"a",#"b",#"c"]; 
 
- hd(a); 
val it = 1 : int 
 
- tl(a); 
val it = [2,3,4] : int list 
 
- hd(a)::tl(a); 
val it = [1,2,3,4] : int list 
 
- val e=[(1,2.0),(3,4.0),(5,6.0)]; 
val e = [(1,2.0),(3,4.0),(5,6.0)] : (int * real) list 
 
- datatype ('a,'b) element=P of 'a * 'b | S of 'a; 
datatype ('a,'b) element = P of 'a * 'b | S of 'a 
 
- val f=[S(2.0),P(2.0,1),S(3.0),P(4.0,3)]; 
val f = [S 2.0,P (2.0,1),S 3.0,P (4.0,3)] : (real,int) element list 
 
- tl(f@f); 
val it = [P (2.0,1),S 3.0,P (4.0,3),S 2.0,P (2.0,1),S 3.0,P (4.0,3)] 
  : (real,int) element list 
 
- tl(f)@f; 
val it = [P (2.0,1),S 3.0,P (4.0,3),S 2.0,P (2.0,1),S 3.0,P (4.0,3)] 
  : (real,int) element list 
 
- #2(hd(tl(e))); 
val it = 4.0 : real 
 
- val P(_,h)=hd(tl(f)); 
val h = 1 : int 
 
- val beatles=[{name="John",plays="keyboards",born=1940}, 
= {name="Paul",plays="bass",born=1942}, 
= {name="George",plays="guitar",born=1943}, 
= {born=1940,plays="drums",name="Ringo"}]; 
 
val beatles = 
  [{born=1940,name="John",plays="keyboards"}, 
   {born=1942,name="Paul",plays="bass"}, 
   {born=1943,name="George",plays="guitar"}, 
   {born=1940,name="Ringo",plays="drums"}] 
  : {born:int, name:string, plays:string} list 
 
- tl(beatles); 
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val it = 
  [{born=1942,name="Paul",plays="bass"}, 
   {born=1943,name="George",plays="guitar"}, 
   {born=1940,name="Ringo",plays="drums"}] 
  : {born:int, name:string, plays:string} list 
 
- hd(tl(beatles)); 
val it = {born=1942,name="Paul",plays="bass"} 
  : {born:int, name:string, plays:string} 
- #name(hd(tl(tl(beatles)))); 
val it = "George" : string 
 
(** Top-down merge sort **) 
 
fun merge([],ys,_) = ys 
  | merge(xs,[],_) = xs 
  | merge(x::xs,y::ys,pred) = 
      if pred(x,y) then x::merge(xs,y::ys,pred) 
                   else y::merge(x::xs,ys,pred); 
 
fun tmergesort([],_)  = [] 
  | tmergesort([x],_) = [x] 
  | tmergesort(xs,pred) = 
      let val k = length xs div 2 
      in  merge(tmergesort(List.take(xs,k),pred), 
                tmergesort(List.drop(xs,k),pred), 
                pred) 
      end; 
 
- tmergesort([3.0,1.0,5.0,4.0,2.0],op<=); 
val it = [1.0,2.0,3.0,4.0,5.0] : real list 
 
ML uses type inference heavily: 
 
 Declared name-to-type bindings are avoided 
 
  Gets context/hints from places like: 
 
   Operations/functions applied (e.g. from libraries) 
 
   Names that are referenced 
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Scheme code for mergesort 
 
(define (tmergesort lst pred) 
  (define (merge lst1 lst2) 
    (cond  
      ((empty? lst1) lst2) 
      ((empty? lst2) lst1) 
      ((pred (car lst1) (car lst2))  
       (cons (car lst1) (merge (cdr lst1) lst2))) 
      (else (cons (car lst2) (merge lst1 (cdr lst2)))))) 
  (define (mergesort lst) 
    (if (pred (length lst) 1) 
        lst 
        (let ((k (floor (/ (length lst) 2)))) 
          (merge (mergesort (take lst k)) 
                 (mergesort (drop lst k)))))) 
  (mergesort lst)) 
 
(tmergesort '(5 7 3 4 2 9 1 0 6) <=) 
 
 
6.11  POINTERS AND REFERENCES 
 
Pointers - familiar 
 
Syntax 
 
 Value Model (containers and addresses) - C and Pascal 
 
 Reference Model (every access involves both “address” and container) - Java and JavaScript 
 
 Programmer responsibilities . . . 
 
Garbage Collection (reference model) 
 
 Explicit freeing of unneeded space or reachability checking (or reference counts)? 
 
 Free lists only or compact active memory to remove external fragmentation? 
 
 Reference Counts (eager) 
 
  Each allocated object has count of pointers to it 
 
  Count decremented to zero . . . reclaim 
 
  Various schemes to reduce counter update costs 
 
  Cycles are a potential problem 
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 Mark-and-Sweep (lazy) - analogous to directed graph traversal techniques (DFS and BFS) to 
 determine reachable heap locations.  Requires separate sweep of heap to clean-up 
 external framentation. 
 
 Schorr-Waite - avoids stack for backing-up on tree edges.  Tree edges are explictly 
 reversed to allow retreating later. 
 
 Stop-and-Copy - extends graph traversal concept to copy graph from one workspace 
 to another.   
 
 Generational (Racket default)- separate the heap into several workspaces.  Only clean older  
 spaces when younger spaces have little to reclaim.  Objects can be moved into older generations. 
 
 (available online:  P.R.Wilson, “Uniprocessor Garbage Collection Techniques”) 
 
 
6.12.-6.15.  TYPE CHECKING, STRONG TYPING, TYPE EQUIVALENCE 
 
Concepts 
 
 (Types = Means for assuring operations are applied to appropriate objects) 
 
 Type definitions 
 
 Rules for equivalence, compatibility, and inference (connections to lambda calculus) 
 
Type Checking 
 
 Strongly typed = blocks inappropriate application of operation (“safety”, no untrapped errors) 
 
  Statically = at compile-time 
 
  Dynamically = at run-time 
 
 How big are the loopholes?  (“safety”, void pointers, memory-to-memory operations) 
 
 Equivalence 
 
  Structural (“shape”) 
 
   Components of record have same types, order fixed 
 
   Issue - array subranges 
 
  Name 
 
   Strict - aliased types clash 
 
   Loose - aliased types are equivalent 
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  ML records 
 
   Order of fields doesn’t matter 
 
   Individual fields must have matching types 
 
   { name="Jones", age=25, salary=45000 } 
 
   { salary=45000, name="Jones", age=25 } 
 
 
Type Conversions and Casts 
 

(P.N Hilfinger, “An Ada Package for Dimensional Analysis”, ACM TOPLAS 10 (2), Apr. 1988, 
189-203, http://dl.acm.org.ezproxy.uta.edu/citation.cfm?doid=42190.42346  
Simulates traditional “unit cancellation”.  Also done for C++ in 
http://www.stroustrup.com/Software-for-infrastructure.pdf ) 

 
 Nonconverting cast  in C through pointer casts or void* (“universal object reference”) 
 
 


