
CSE 3302 Notes 6: Data Types

(Last updated 7/13/14 7:40 PM)

6.1. INTRODUCTION

Types = Means for assuring operations are applied to appropriate objects (values)

History of types = History of programming languages

Cardelli and Wegner, “On Understanding Types, Data Abstraction, and Polymorphism”, ACM
Computing Surveys 17 (4), Dec. 1985, http://dl.acm.org.ezproxy.uta.edu/citation.cfm?doid=6041.6042
See section 1.4 and figure 2 (p. 516)

Also, W.R. Cook, “On Understanding Data Abstraction, Revisited”, OOPSLA ’09,
http://dl.acm.org.ezproxy.uta.edu/citation.cfm?doid=1640089.1640133

 2
6.2. PRIMITIVE DATA TYPES

Numbers . . .

Booleans . . .

 JavaScript:

 false undefined null 0 -0 NaN ""

 true everything else not on previous line

Characters . . .

6.3. STRINGS

Mutable (C) (see CACM, Sept. 2011, “The Most Expensive One-Byte Mistake”,
http://dl.acm.org.ezproxy.uta.edu/citation.cfm?doid=1995376.1995391)

 vs.

Immutable (Java, JavaScript) strings

 vs.

Storing lengths

6.4. ORDINALS

Enumerations

 C: Maps to 0 . . .

 Pascal: Maps to 1 . . . (many compilers allow overriding)

Subranges

 Pascal: var negval: -2002 . . -2001;

 Implementations typically use the smallest integer type that contains (bits are not minimized)

6.5. ARRAYS

1-d arrays of integers for PL/0: http://ranger.uta.edu/~weems/NOTES3302/LAB3SUM13/

Declarations

Slices - specifying a vector or sub-matrix for use in functions or built-in operations

 3
Dope Vectors

 Offsets for fields within records

 Constants needed for subscripting (historical)

 Dimension sizes (e.g. decrease left-to-right across dimensions)

 Range lower bounds (not for C/Java)

Memory Layout

 Row-major (rows are contiguous bytes)

 Column-major (columns are contiguous bytes)

 Row-pointer (multidimensional array handled using 1-d concepts multiple times)

 Row subscript indexes array of pointers
 Column subscript goes to position within row
 Allows ragged arrays (e.g. triangular situations)

Address Calculation

 Suppose an array is to be stored starting at location 1000000 and is declared:

 a: array[10..25,50..70,200..300] of integer;

 The address of a[i,j,k] is computed as:

 1000000 + (i-10)*21*101*4 + (j-50)*101*4 + (k-200)*4

 (see http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES02/pascals.pas
 routines arraytyp, selector, and interpret codes 20 and 21)

 But may be simplified (at compile time) to:

 1000000 + (0-10)*21*101*4 + (0-50)*101*4 + (0-200)*4
 + i*21*101*4 + j*101*4 + k*4

 for which the first line (address of a[0,0,0]) is a constant and the second line may be
 computed as:

 + (i*21 + j)*101 + k)*4

 Run Pascal-S on http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES06/subscript.6.5.pas
 and observe array properties and code

 (It is not difficult to go from an address back to the subscripts)

 4
6.6. ASSOCIATIVE ARRAYS

Pascal sets (set of) - not an associative array, provides convenient implementation of long bit vectors

 in membership + union - difference * intersection

 Many examples in PL/0 and Pascal-S environments

JavaScript arrays are actually associative arrays, typically implemented by hashing a string:

 arr[1] and arr["1"] refer to the same property of object arr

 arr[5/2] and arr["2.5"] refer to the same property of object arr

 BUT, an object is an array only if the object was created using:

 arr=['donut','chips',{a:1,b:'cat'},undefined];

 arr=new Array('donut','chips',{a:1,b:'cat'},undefined);

 For any object, object.property and object["property"] are available, BUT . . .

 .property possibilities are more limited than ["property"] possibilities

 For an array, length is one more than the maximum positive integer property name

 Set operations may be based on: for . . . in as: loop (p. 24 of The Good Parts), along
 with: string/index in object as operator returning true/false to indicate property presentce

 delete x[propName] removes the property

See http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES06/objSet.html for manipulation of
properties (on simple objects)

JavaScript provides prototypal inheritance as a simple delegation mechanism:

“In JavaScript, a class is a set of objects that inherit properties from the same prototype object.”
(D. Flanagan, JavaScript: The Definitive Guide, chapter 9, along with 6 and 8)

 Several ways to set the prototype for an object:

 Object.create() is usually the simplest

 Constructor used with new can lead to difficulties (see Crockford book and webpage)

 (Browser dependent techniques, including changing the prototype)

 objectName.propertyName = ... ; can only set (l-value) the property value on
 objectName

 5
 ... = ... objectName.propertyName ... ; searches the prototype chain (r-value)

 delete will not follow the prototype chain - it will only remove property from provided object:

 delete object-reference[property-name-as-string]
 delete object-reference.property-name

object-reference.has_property(property-name-as-string]) is the way to check presence
(without following prototype chain) before delete

 Examples:

http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES06/objArray.html demonstrates
simple data values as properties

http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES06/quo.html demonstrates use of
new

http://ranger.uta.edu/~weems/NOTES3302/LAB2SUM13/ demonstrates prototypal inheritance by
having instances inherit from “class object” with needed methods. In addition, boxes
may inherit drawing properties (colors for fill and stroke, thickness for stroke) from
containing box

6.7/6.10. RECORDS AND UNIONS

C - fields are allocated/aligned in order given (
http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES06/recsize.c)

#include <stdio.h>

typedef struct {
char a,b,c,d;
short e,f;
int g,h;
} compact;

typedef struct {
char a;
short e;
char b;
int g;
short f;
char c;
int h;
char d;
} sloppy;

main()
{
printf("compact %d sloppy %d\n",sizeof(compact),sizeof(sloppy));
}

 6
Pascal: (http://ranger.uta.edu/~weems/NOTES3302/NEWNOTES/NOTES06/dt.pas)

 packed option to reduce space (for data, but not code)

 with to abbreviate field selection expressions

“Overlapping” portions of records:

 COBOL - redefines

 Pascal - variant part of record

 type conrec =
 record case tp: types of
 ints, chars, bools: (i: integer);
 reals: (r: real);
 notyp, arrays, records: ();
 end;

 s: array [1..stacksize] of (* blockmark: *)
 record case types of (* s[b+0] = fct result *)
 ints: (i: integer); (* s[b+1] = return adr *)
 reals: (r: real); (* s[b+2] = static link *)
 bools: (b: boolean); (* s[b+3] = dynamic link *)
 chars: (c: char); (* s[b+4] = table index *)
 notyp, arrays, records: ()
 end;

 C - union, similar situation with tagged (discriminated) and untagged (free) versions

 Leads to type conversion shortcuts and limits type checking

6.8. TUPLES

Similar to records, but no field names - use position to access.

Easily simulated

6.9. LISTS

ML (aside) - lists [], tuples (), records {}

val a=[1, 2, 3, 4];

val b=[1.0, 2.0, 3.0, 4.0];

val c=["cat", "dog", "fish"];

 7
val d=[#"a",#"b",#"c"];

- hd(a);
val it = 1 : int

- tl(a);
val it = [2,3,4] : int list

- hd(a)::tl(a);
val it = [1,2,3,4] : int list

- val e=[(1,2.0),(3,4.0),(5,6.0)];
val e = [(1,2.0),(3,4.0),(5,6.0)] : (int * real) list

- datatype ('a,'b) element=P of 'a * 'b | S of 'a;
datatype ('a,'b) element = P of 'a * 'b | S of 'a

- val f=[S(2.0),P(2.0,1),S(3.0),P(4.0,3)];
val f = [S 2.0,P (2.0,1),S 3.0,P (4.0,3)] : (real,int) element list

- tl(f@f);
val it = [P (2.0,1),S 3.0,P (4.0,3),S 2.0,P (2.0,1),S 3.0,P (4.0,3)]
 : (real,int) element list

- tl(f)@f;
val it = [P (2.0,1),S 3.0,P (4.0,3),S 2.0,P (2.0,1),S 3.0,P (4.0,3)]
 : (real,int) element list

- #2(hd(tl(e)));
val it = 4.0 : real

- val P(_,h)=hd(tl(f));
val h = 1 : int

- val beatles=[{name="John",plays="keyboards",born=1940},
= {name="Paul",plays="bass",born=1942},
= {name="George",plays="guitar",born=1943},
= {born=1940,plays="drums",name="Ringo"}];

val beatles =
 [{born=1940,name="John",plays="keyboards"},
 {born=1942,name="Paul",plays="bass"},
 {born=1943,name="George",plays="guitar"},
 {born=1940,name="Ringo",plays="drums"}]
 : {born:int, name:string, plays:string} list

- tl(beatles);

 8
val it =
 [{born=1942,name="Paul",plays="bass"},
 {born=1943,name="George",plays="guitar"},
 {born=1940,name="Ringo",plays="drums"}]
 : {born:int, name:string, plays:string} list

- hd(tl(beatles));
val it = {born=1942,name="Paul",plays="bass"}
 : {born:int, name:string, plays:string}
- #name(hd(tl(tl(beatles))));
val it = "George" : string

(** Top-down merge sort **)

fun merge([],ys,_) = ys
 | merge(xs,[],_) = xs
 | merge(x::xs,y::ys,pred) =
 if pred(x,y) then x::merge(xs,y::ys,pred)
 else y::merge(x::xs,ys,pred);

fun tmergesort([],_) = []
 | tmergesort([x],_) = [x]
 | tmergesort(xs,pred) =
 let val k = length xs div 2
 in merge(tmergesort(List.take(xs,k),pred),
 tmergesort(List.drop(xs,k),pred),
 pred)
 end;

- tmergesort([3.0,1.0,5.0,4.0,2.0],op<=);
val it = [1.0,2.0,3.0,4.0,5.0] : real list

ML uses type inference heavily:

 Declared name-to-type bindings are avoided

 Gets context/hints from places like:

 Operations/functions applied (e.g. from libraries)

 Names that are referenced

 9
Scheme code for mergesort

(define (tmergesort lst pred)
 (define (merge lst1 lst2)
 (cond
 ((empty? lst1) lst2)
 ((empty? lst2) lst1)
 ((pred (car lst1) (car lst2))
 (cons (car lst1) (merge (cdr lst1) lst2)))
 (else (cons (car lst2) (merge lst1 (cdr lst2))))))
 (define (mergesort lst)
 (if (pred (length lst) 1)
 lst
 (let ((k (floor (/ (length lst) 2))))
 (merge (mergesort (take lst k))
 (mergesort (drop lst k))))))
 (mergesort lst))

(tmergesort '(5 7 3 4 2 9 1 0 6) <=)

6.11 POINTERS AND REFERENCES

Pointers - familiar

Syntax

 Value Model (containers and addresses) - C and Pascal

 Reference Model (every access involves both “address” and container) - Java and JavaScript

 Programmer responsibilities . . .

Garbage Collection (reference model)

 Explicit freeing of unneeded space or reachability checking (or reference counts)?

 Free lists only or compact active memory to remove external fragmentation?

 Reference Counts (eager)

 Each allocated object has count of pointers to it

 Count decremented to zero . . . reclaim

 Various schemes to reduce counter update costs

 Cycles are a potential problem

 10
 Mark-and-Sweep (lazy) - analogous to directed graph traversal techniques (DFS and BFS) to
 determine reachable heap locations. Requires separate sweep of heap to clean-up
 external framentation.

 Schorr-Waite - avoids stack for backing-up on tree edges. Tree edges are explictly
 reversed to allow retreating later.

 Stop-and-Copy - extends graph traversal concept to copy graph from one workspace
 to another.

 Generational (Racket default)- separate the heap into several workspaces. Only clean older
 spaces when younger spaces have little to reclaim. Objects can be moved into older generations.

 (available online: P.R.Wilson, “Uniprocessor Garbage Collection Techniques”)

6.12.-6.15. TYPE CHECKING, STRONG TYPING, TYPE EQUIVALENCE

Concepts

 (Types = Means for assuring operations are applied to appropriate objects)

 Type definitions

 Rules for equivalence, compatibility, and inference (connections to lambda calculus)

Type Checking

 Strongly typed = blocks inappropriate application of operation (“safety”, no untrapped errors)

 Statically = at compile-time

 Dynamically = at run-time

 How big are the loopholes? (“safety”, void pointers, memory-to-memory operations)

 Equivalence

 Structural (“shape”)

 Components of record have same types, order fixed

 Issue - array subranges

 Name

 Strict - aliased types clash

 Loose - aliased types are equivalent

 11
 ML records

 Order of fields doesn’t matter

 Individual fields must have matching types

 { name="Jones", age=25, salary=45000 }

 { salary=45000, name="Jones", age=25 }

Type Conversions and Casts

(P.N Hilfinger, “An Ada Package for Dimensional Analysis”, ACM TOPLAS 10 (2), Apr. 1988,
189-203, http://dl.acm.org.ezproxy.uta.edu/citation.cfm?doid=42190.42346
Simulates traditional “unit cancellation”. Also done for C++ in
http://www.stroustrup.com/Software-for-infrastructure.pdf)

 Nonconverting cast in C through pointer casts or void* (“universal object reference”)

