
CSE 3302 Notes 8: Statement-Level Control Structures

(Last updated 7/22/14 2:32 PM)

8.1. INTRODUCTION

Dijkstra -

 “The prisoner falls in love with his chains.”

 “A programming language is a tool that has a profound influence on our thinking habits.”

Some much-maligned control structures

 goto (and its alterable versions - COBOL)

 break/continue

 switch (or long if/else if chains) - when used in superclass to avoid touching subclasses

 continuations (goto + state?)

(Aside: Knuth, “Structured Programming with go to Statements”, esp. the acks
http://dl.acm.org.ezproxy.uta.edu/citation.cfm?doid=356635.356640)

8.2. SELECTION STATEMENTS

Special syntax for if ... then ... else ... and avoiding dangling else

Switch

 Generality of individual expressions

 (small) integer values

 JavaScript - general expressions and equality tests

 Implementation

 O(1) - table/hashtable
 O(log n) - binary search
 O(n) - like corresponding ifs (JavaScript)

 Also, see Duff’s device for exploiting C case fall-through property:

 http://en.wikipedia.org/wiki/Duff's_device

 2
8.3. ITERATIVE STATEMENTS

Enumeration-controlled (“for”)

Just a special syntax for “while” or should number of iterations be predictable at onset?

Other issues:

 Jumping into or out-of loop?

 Is expression that index variable is tested against required to be constant?

 Modifying index variable inside body?

 Predictable value of index variable after loop termination?

Iterators - container abstraction

 Comparing two binary search trees?

 Functional language iterators (see continuations in next section)

Logically-controlled

Aside: Backtrack programming and combinatorics
http://dl.acm.org.ezproxy.uta.edu/citation.cfm?doid=361219.361224

8.4. UNCONDITIONAL BRANCHING

gotos - multiple level break within function

Aside: Multilevel returns/Signals (and setjmp/longjmp)/Exceptions (
http://ranger.uta.edu/~weems/NOTES3302/signal.c)

Continuations (more later) - call/cc = call with current continuation

http://matt.might.net/articles/programming-with-continuations--exceptions-backtracking-search-threads-
generators-coroutines/

Some examples:

http://ranger.uta.edu/~weems/NOTES3302/continue.rkt

