
CSE 3302 Notes 1: Introduction

(Last updated 9/5/12 2:52 PM)

Got the CD?

Did anyone crash Linux in the browser?

Are you better off for having taken CSE 2312?

1.1. THE ART OF LANGUAGE DESIGN

Early IBM Tradition

Embedded Systems Attitude

 We’ll never code in C, we need assembler.

 We’ll never code in Java, we need C++.

The inevitability of converting code . . .

Why so many languages? (three answers in book)

What makes a language popular? (seven answers in book)

Specific concepts and features are more useful that bundles.

How about domain-specific languages and end-user programming?

1.2. THE PROGRAMMING LANGUAGE DESIGN SPECTRUM

Turing Award Winners with Strong Connections to PLs:

 Year Name Contribution

 1971 McCarthy LISP
 1972 Dijkstra Philosophy
 1977 Backus FORTRAN, formalisms
 1979 Iverson APL
 1980 Hoare CSP
 1983 Thompson UNIX, scripting
 1983 Ritchie UNIX, C
 1984 Wirth Philosophy
 1987 Cocke RISC, optimization
 1991 Milner ML, inference

 2
 2001 Dahl Simula, O-O
 2001 Nygard Simula, O-O
 2003 Kay O-O, SmallTalk, MVC
 2005 Naur Algol 60
 2006 Allen FORTRAN optimization
 2008 Liskov Abstraction, distributed computing

GCD Example:

 C, Scheme, SML, Prolog, JavaScript code on webpage

Questions:

 2320: Where do want to be in 10 years?

 What is design? (juggling correctness, resource requirements, development cost)

 3302: To get ahead, what do you want to manipulate?

 First Class: Passed as argument, returned from function, assigned to variable,
 (Constructible?)

 Second Class: Passed as argument

 Third Class: None of the above

 How about functions, threads/processes, processors, messages, channels/pipes?

 Aside: COBOL - Can ALTER the destination of a GOTO . . .

1.3. WHY STUDY PROGRAMMING LANGUAGES?

ABET CAC Program Criteria for Computer Science:

 Coverage of the fundamentals of . . . programming languages

ABET EAC Program Criteria for Software Engineering:

 The curriculum must provide both breadth and depth . . . computer science topics

To be better now and in the future (book, pages 15 and 16)

Programming language application and PL implementation skills are a continuing distinguishing
characteristic of computer science.

 3
1.4. COMPILATION AND INTERPRETATION

Practice vs. Possibilities vs. Details

Assembler:

 Op Codes
 Labels
 Data Types (corresponding to hardware capabilities)
 Macros
 Control of Assembly

Compiler:

 Maximizes checking that can be performed without execution of the source program.
 May produce code for a machine whose level of similarity to ideal “language machine”
 may vary.

Interpreter:

 Ranges from general hardware machine to “language machine”

Linker/Loader:

 Resolves external references in several object files
 Possibly commence execution or just produce executable

From D. Grune, et.al., Modern Compiler Design, Wiley, 2000.

Source
Code

Executable
Code

Real
Machine

Source
Code

Intermediate
Code

Interpreter/
Virtual
Machine

preprocessing

preprocessing

processing

processing

 4
1.6. AN OVERVIEW OF COMPILATION

Preprocessor (e.g. C)

 Include files

 Macros

 Conditional text

 Compiler directives

Scanning/Lexing/Tokenizing/Lexical Analysis

 Remove comments / white space

 Collect “minimal” meaningful substrings

 Identifiers/reserved words

 Operators

 Constants

 Strong connections to regular expressions and finite-state automata (CSE 3315)

Parsing/Syntax Analysis

 Construct tree representing nesting structure of language constructs and expressions

 Practical languages allow both bottom-up and top-down (e.g. recursive descent) approaches

Symbol Tables

 Data structures

 Scope/namespaces

Semantic Analysis

 Attribute grammar evaluation - functions for sending semantic information through
 abstract syntax tree

 Type inference

Intermediate Code Generation

 Triples or quads - high-level machine language

 5
Code Improvement

 Peephole optimization

 Basic Blocks:

 Common subexpressions

 Constant propagation

 Inlining

 Flow analysis - matching variable definitions (assignments) with uses

 Loop dependence analysis - can loop iterations run independently (or be modified to allow)?

 Subscript aliasing - can two subscripting expressions refer to the same location?

 Concurrentization

 Register usage

