
CSE 3302 Notes 3: Names, Scopes, and Bindings

(Last updated 9/25/12 8:21 AM)

3.1. BINDING TIME

Binding = Commitment: Existence, Type(s), Value, Representation, Location

Language Design

Language/Library Implementation

Program Writing

Compilation

Linkage

Loading

Execution

3.2. OBJECT LIFETIME AND STORAGE MANAGEMENT

Big Side Issues

 Recursion

 Reentrant Code

 Threads/Processes

 Separate Code and Data Address Spaces

 Virtual Memory, Caches, and Mappings

Static Allocation

 Characteristics - single instance, fixed size, global or side-effect (non-pure-functional)

 Pointers?

 2
Stack-Based Allocation (fig 3.1)

 Support of recursion and functions in general

 Size of stack frame (activation record) and offsets for function are usually known at
 compile-time

 Nested blocks? (or alloca())

Heap-Based Allocation

 Most flexible “temporally”

 Pascal implementation - same space as stack

 Buddy systems - maintain available blocks of size

€

2k

 One or many free lists?

 Fragmentation

 External - unallocated space between allocated blocks

 Internal - extra space inside allocated block

#include <stdio.h>
#include <stdlib.h>

char bigStatic[2000000000];

main()
{
char bigStack[10000000];

char *bigHeap;

printf("Ready to malloc\n");
bigHeap=(char*) malloc(10000000);
printf("malloc successful\n");
}

Garbage Collection

 Explicit freeing of unneeded space or reachability checking (or reference counts)?

 Free lists only or compact active memory to remove external fragmentation?

 3
3.3. SCOPE RULES

When is a particular binding of name to . . . relevant?

Static Scoping

 Globals

 Variables within functions

 Nested blocks

 Existence independent of execution:

 C static refers to allocation

 Class variables

Nested Subroutines

 Non-nesting: A significant connection between C to COBOL, FORTRAN, and assembler.

 Pascal:

 The issue of holes in a scope can be addressed with scope resolution operators.

 4
 Pascal also allows forward declarations to have mutual recursion without nesting or to
 deal with complicated situations like the Pascal-S interpreter:

1. pascal-s.structure.txt provides nesting structure (see expression).
2. syntax6.gif provides the call graph.
3. pascals.txt gives complete code.
4. pascals.dot is the call graph as input to Graphviz.

 Important detail - for such code (potentially with a variety of call paths and recursion),
 how are necessary bindings referenced?

Declaration Order

 Pascal - Scope of declaration is entire surrounding block. Can’t use until declared. (p. 128)

 C . . . - Scope of declaration begins with the declaration, but definition may appear later.

Modules - hold for

 Chapter 9 - Data Abstraction and Object Orientation

 ML modules

Dynamic Scoping

 Name operates LIFO as contexts are entered and exited. (figure 3.9)

 5
3.5. MEANING OF NAMES WITHIN A SCOPE

Aliases

 x^=y;
 y^=x;
 x^=y;

 (tagged) unions

Overloading

 Arithmetic operations applying to multiple simple types

 C++ - use [] to treat binary search tree as array

Polymorphism

 poly.C - type signature to determine which of identically named functions gets called

3.6. BINDING TIME OF REFERENCING ENVIRONMENTS

Subroutine Closures

 Shallow Binding - ignore (goes along with dynamic scopring, e.g. Perl)

 Deep Binding

 Static/lexical binding

 Static chain pointer created at same time as reference to function (closure)

 Problem when reference persists longer than stack frame

 Figure 3.15 - static chain link is created when B is put in argument list

 Solution - anything needed for closure gets heap allocation

 Like object systems

 Like functional languages

 6
 JavaScript (closure.html)

var makeCounter = function(initVal) {
 var privateCounter;
 var funcs= {
 reset: function() {
 privateCounter=initVal;
 },
 up: function(val) {
 privateCounter+=val;
 },
 down: function(val) {
 privateCounter-=val;
 },
 value: function() {
 return privateCounter;
 }
 };
 funcs.reset();
 return funcs;
};

3.7. MACRO EXPANSION

The first software tool?

 OS generation

 I/O routines, record layouts

Part of C/C++ preprocessor

/* Basic bit twiddles */
#define bitSelect(x,bit) ((x>>(bit))&1)
#define bitSet(x,bit) (x | (1<<(bit)))
#define bitClear(x,bit) (x & ~(1<<(bit)))
#define bitComplement(x,bit) (x ^ (1<<(bit)))

 Continuing a macro definition?

Inlining

Loop unrolling?

