
CSE 3302 Notes 4: Semantic Analysis

(Last updated 9/26/12 7:32 AM)

Syntax vs. Semantics

 Σ σ Σ σ

€

A∨B↔ A∧B

€

A→ B()∨ B→ A()

 Well-formed vs. meaningful

 Context-free vs. context-sensitive

Static Semantics

Names declared, typechecking

switch statement cases are independent

Value assigned before use

Dynamic Semantics

What the generated code must do

Language definition . . .

C allowed pointer values and loops

4.1. THE ROLE OF THE SEMANTIC ANALYZER

Assertions = Additional properties to be assured at specific execution points

 C/C++ - can be disabled

Dynamic checks - Either built into interpreter or part of generated code

 2
Static analysis

 Detects errors

 Can avoid some dynamic checking

 Can reduce method dispatch costs

4.2. ATTRIBUTE GRAMMARS

General method for defining semantics

Alternatives:

 Prototype language implementation (first Ada implementation in SETL, Pascal in Pascal)

 Two-level grammar (Algol 68)

 Denotational semantics (functional/logic languages)

 Natural language . . .

Initially, just a formal method for semantics (Knuth, 1968)

Cornell Program Synthesizer (PL/I, 1981)

Compiler-compilers

E, T, F grammar in book - synthesized attributes (bottom-up)

From http://homepage.cs.uiowa.edu/~slonnegr/plf/Book/, chapter 3

Strings of form

€

anbncn are the only ones acceptable.

Start with grammar:

 3
Accepted string:

Also accepted (?)

Attribute grammar to capture context-sensitivity with synthesized attributes:

 4

 5
Same example, but taking advantage of inherited attributes:

 6
Meaning of binary numbers using synthesized attributes:

But only the value of the entire number is computed. What about each bit’s contribution?

 7

 8

Small programming language (Wren) and its context sensitivities

 9

 10

 11

 12
Application: Structure Editor

 Goal: Editor based on moving among program constructs

 Various formatting possibilities - including highlighting, indenting

 Use window dimensions in decisions

 Eliding of “uninteresting code”

 Simple formatting:

if (x>y) { temp=x; x=y; y=temp; }

if (x>y)
{
 temp=x;
 x=y;
 y=temp;
}

 Synthesized attributes - space needed for construct

 Inherited attributes - position of construct in display

Application: Connecting Defs to Uses for Data Flow Analysis

 Def: Assigning value to a variable, e.g. (identifier, line#/token#)

 Use: Value of variable is used in an expression

 Basic block: Straight-line code, no branching

 Historic approach: Treat program as flowchart (graph)

 Construct-based approach:

 INPUT(x) set: defs with some path to construct x without an intervening def
 KILL(x) set: defs always invalidated before leaving construct x
 GEN(x) set: defs in construct x with path to exit
 OUTPUT(x): defs getting through or generated in construct x

 (INPUT(x) − KILL(x)) ∪ GEN(x) = OUTPUT(x)

 Each construct (basic block, control structure, function, etc.) has equations and way to match
 defs to uses.

 Could integrate def-use information with structure editor

 13
4.3. EVALUATING ATTRIBUTES

Iterative Firing/Propagation/Queue/Petri Net/Data Flow Machine Ideas

 Build AST

 Initialize obvious values

 Initialize queue with non-finalized tree nodes

 Iterate with updates to queue until changes stop

Integrate With Parser

 OK for static semantics

 Not useful for substantial analysis

 Avoids storage issues

Circularity of attribute grammar

 Does an attribute value at a node depend on itself due to a path of synthesized/inherited
 attributes?

