
CSE 3302 Notes 6: Data Types

(Last updated 10/19/12 12:12 PM)

History of types = History of programming languages

(Cardelli and Wegner, “On Understanding Types, Data Abstraction, and Polymorphism”, ACM
Computing Surveys 17 (4), Dec. 1985. See section 1.4 and figure 2.)

7.1. TYPE SYSTEMS

Concepts

 Types = Means for assuring operations are applied to appropriate objects

 Type definitions

 Rules for equivalence, compatibility, and inference

Type Checking

 Strongly typed = blocks inappropriate application of operation (“safety”, no untrapped errors)

 Statically = at compile-time

 Dynamically = at run-time

 How big are the loopholes? (“safety”, void pointers, memory-to-memory operations)

Polymorphism

 Weakly typed = many implicit casts (“freedom”)

 In general - operation/function may be applied to different types

 Set of ?

 Matrix of ?

 Linear transformation

 Boolean relation

 Graph

 Closed semiring/Kleene algebras

 2
 Minimum spanning tree

 Shortest paths

 Maximum capacity paths

 Regular expressions/FSAs

 Parametric polymorphism

 Implicit = Type inference (ML)

 Limited use of declared name-to-type bindings

 Gets context/hints from places like:

 Operations/functions applied (e.g. from libraries)

 Names that are referenced

 Unification/pattern matching provides:

 Type conflicts

 Detection of types restricted to appropriate level

 Lists

 Equality (and possibly ordering)

 Explicit = Classes with type parameters

 Containers

 Subtype

 Variable may refer to any object of the variable’s type or the type’s subtypes

Approaches to Types

 Denotational/mathematical - sets of values

 Constructive - Built-in types and constructors for aggregating into tuples/records, sets, etc.

 Abstraction - Brings in behavioral issues, information hiding and defined operations

Classifications - mostly review

 Pascal sets (general bit vector)

 3
7.2. TYPE CHECKING

Equivalence

 Structural (“shape”)

 Components of record have same types, order fixed

 Issue - array subranges

 Name

 Strict - aliased types clash

 Loose - aliased types are equivalent

 ML records

 Order of fields doesn’t matter

 Individual fields must have matching types

 { name="Jones", age=25, salary=45000 }

 { salary=45000, name="Jones", age=25 }

Type Conversions and Casts

(P.N Hilfinger, “An Ada Package for Dimensional Analysis”, ACM TOPLAS 17 (4), Apr. 1988,
189-203. Simulates traditional “unit cancellation”.)

 Nonconverting cast in C through pointer casts or void* (“universal object reference”)

Type Compatibility

 Coercion

 Overloading

Type Inference

 Subranges

 Composite Types

 ML

 4
7.3. RECORDS AND VARIANTS

C - fields are allocated in order given

#include <stdio.h>

typedef struct {
char a,b,c,d;
short e,f;
int g,h;
} compact;

typedef struct {
char a;
short e;
char b;
int g;
short f;
char c;
int h;
char d;
} sloppy;

main()
{
printf("compact %d sloppy %d\n",sizeof(compact),sizeof(sloppy));
printf("a %d b %d\n",sizeof(a),sizeof(b));
}

Pascal (aside - unpacked and packed)

7.4. ARRAYS

Declarations

Slices - specifiying a vector or sub-matrix for use in functions or built-in operations

Dope Vectors

 Offsets for fields within records

 Constants needed for subscripting (historical)

 Dimension sizes (e.g. decrease left-ro-right across dimensions)

 Range lower bounds (not for C/Java)

 5
Memory Layout

 Row-major (rows are contiguous bytes)

 Column-major (columns are contiguous bytes)

 Row-pointer (multidimensional array handled using 1-d concepts multiple times)

 Row subscript indexes array of pointers

 Column subscript goes to position within row

 Allows ragged arrays (e.g. triangular situations)

Address Calculation

 Suppose an array is to be stored starting at location 1000000 and is declared:

 a: array[10..25,50..70,200..300] of integer;

 The address of a[i,j,k] is computed as:

 1000000 + (i-10)*21*101*4 + (j-50)*101*4 + (k-200)*4

 But may be simplified to:

 1000000 + (0-10)*21*101*4 + (0-50)*101*4 + (0-200)*4
 + i*21*101*4 + j*101*4 + k*4

 for which the first line (address of a[0,0,0] is a constant and the second line may be
 computed as:

 + (i*21 + j)*101 + k)*4

7.5. STRINGS

 Mutable (C) vs. immutable (Java) strings

7.6. SETS

 Book describes implementation of Pascal sets as bit vectors

7.7. POINTERS AND RECURSIVE TYPES

Pointers - familiar

Syntax

 Reference Model - C

 6

 Value Model - Java

 Programmer responsibilities . . .

Garbage Collection

 Reference Counts

 Each allocated object has count of pointers to it

 Count decremented to zero . . . reclaim

 Various schemes to reduce counter update costs

 Cycles are a potential problem

 Some similarity to distributed termination detection

 Mark-and-Sweep - analogous to directed graph traversal techniques (DFS and BFS) to
 determine reachable heap locations. Requires separate sweep of heap to clean-up
 external framentation.

 Schorr-Waite - avoids stack for backing-up on tree edges. Tree edges are explictly
 reversed to allow retreating.

 Stop-and-Copy - extends graph traversal concept to copy graph from one workspace
 to another.

 Generational - separate the heap into several workspaces. Only clean older spaces when younger
 spaces have little to reclaim. Objects can be moved into older generations.

7.8. LISTS

ML

val a=[1, 2, 3, 4];

val b=[1.0, 2.0, 3.0, 4.0];

val c=["cat", "dog", "fish"];

val d=[#"a",#"b",#"c"];

- hd(a);
val it = 1 : int

- tl(a);
val it = [2,3,4] : int list

 7
- hd(a)::tl(a);
val it = [1,2,3,4] : int list

val e=[(1,2.0),(3,4.0),(5,6.0)];

- datatype ('a,'b) element=P of 'a * 'b | S of 'a;
datatype ('a,'b) element = P of 'a * 'b | S of 'a

- val f=[S(2.0),P(2.0,1),S(3.0),P(4.0,3)];
val f = [S 2.0,P (2.0,1),S 3.0,P (4.0,3)] : (real,int) element list

- tl(f@f);
val it = [P (2.0,1),S 3.0,P (4.0,3),S 2.0,P (2.0,1),S 3.0,P (4.0,3)]
 : (real,int) element list

- tl(f)@f;
val it = [P (2.0,1),S 3.0,P (4.0,3),S 2.0,P (2.0,1),S 3.0,P (4.0,3)]
 : (real,int) element list

- #2(hd(tl(e)));
val it = 4.0 : real

- val P(_,h)=hd(tl(f));
val h = 1 : int

- val beatles=[{name="John",plays="keyboards",born=1940},
= {name="Paul",plays="bass",born=1942},
= {name="George",plays="guitar",born=1943},
= {born=1940,plays="drums",name="Ringo"}];
val beatles =
 [{born=1940,name="John",plays="keyboards"},
 {born=1942,name="Paul",plays="bass"},
 {born=1943,name="George",plays="guitar"},
 {born=1940,name="Ringo",plays="drums"}]
 : {born:int, name:string, plays:string} list

- tl(beatles);
val it =
 [{born=1942,name="Paul",plays="bass"},
 {born=1943,name="George",plays="guitar"},
 {born=1940,name="Ringo",plays="drums"}]
 : {born:int, name:string, plays:string} list

- hd(tl(beatles));
val it = {born=1942,name="Paul",plays="bass"}
 : {born:int, name:string, plays:string}

- #name(hd(tl(tl(beatles))));
val it = "George" : string

Arrays are in the ML “Standard Basis”

 8
Lisp

'(a b c d)

expression (' (a b c d))
value (a b c d)

'(a 1 c 2.0)

expression (' (a 1 c 2.0))
value (a 1 c 2.0)

'(a (1 c) 2.0)

expression (' (a (1 c) 2.0))
value (a (1 c) 2.0)

car '((1 2) (3 4) (5 6))

expression (car (' ((1 2) (3 4) (5 6))))
value (1 2)

car car '((1 2) (3 4) (5 6))

expression (car (car (' ((1 2) (3 4) (5 6)))))
value 1

cdr '((1 2) (3 4) (5 6))
expression (cdr (' ((1 2) (3 4) (5 6))))
value ((3 4) (5 6))

car cdr car cdr '((1 2) (3 4) (5 6))

expression (car (cdr (car (cdr (' ((1 2) (3 4) (5 6)))))))
value 4

cons '(1 2 3 4) '(5 6 7 8)

expression (cons (' (1 2 3 4)) (' (5 6 7 8)))
value ((1 2 3 4) 5 6 7 8)

cons '(1 2 3 4) '((5 6 7 8))

expression (cons (' (1 2 3 4)) (' ((5 6 7 8))))
value ((1 2 3 4) (5 6 7 8))

 9
Scheme

> (car '((1 2)(3 4)(5 6)))
(1 2)

> (car(car '((1 2)(3 4)(5 6))))
1

> (cdr '((1 2)(3 4)(5 6)))
((3 4) (5 6))

> (car(cdr(car(cdr '((1 2)(3 4)(5 6))))))
4

List Comprehensions / Set-Builder Notation / Generators

 Three elements:

 Generating expression based on index

 Mechanism for expressing values of index (e.g. loop or range)

 Logical expression indicating indices to be kept

 “map” - generating expression is a function applied to each element

 “filter” - generating expression is the identity function

 “iterator” - values are from a container

 Are results provided as entire list (or other container) or through a stream (lazy evaluation)?

 Restricting number of results wanted

7.10. EQUALITY & ASSIGNMENT

Fundamental difficulties with equality in logic & mathematics . . .

 Notions of equivalence may be defined WRT a single function

 Is an integer odd or even?

 Is a function g in

€

Θ f()?

 What about equality?

 Has to cover all notions of equivalence

 For x and y to be equal, they are indistinguishable to any function

 10
PLs

 Shallow equality test - no dereferencing, tests whether values refer to same object?

 Deep equality test - dereference and check values (cycles . . .)

 ML = deep for equality types

 Doesn’t include real

 - (1,2,3)=(1,2,3);
 val it = true : bool

 - [1,2,3]=[1,2,3];
 val it = true : bool

 - beatles=beatles;
 val it = true : bool

 - beatles=tl(beatles);
 val it = false : bool

 - [hd(beatles)]=tl(beatles);
 val it = false : bool

 (ML does allow ref types which function like pointers)

 Scheme

 Understand the difference between eq?, equal?, and eqv?

 C

 Besides comparing pointers with == and !=, can also use other comparisons
 (meaningful when dealing with same array, struct, etc.)

 Pascal

 Only allows equality comparisons for pointers

Assignment

 Shallow - to one level or just a pointer

 Deep - needed for distributed systems

 AKA - marshalling, serializ . . .

