1 Second 1 minute 1 Hour
|g n 2"(10"6) 2(6x10"7) 2(3.6x10"9)
vn) 10" 3.6x10"° | 1.3x10"

n 10° 6x10’ 3.6 x 10°
nign| 6.3x10* 2.8 x10° 1.3x10°
n? 10° 7.7 x 10° 6 x 10°
n’ 10° 10@® 10@7"
2" 20 26 31
n! 9 11 12

2. 2.2-3. Average number A(n) of elements to check in order to find an element in the array of length n
can be obtained as:

n
A(n)= IPT;
i=l1
Where P; is probability of the element to be in position i, and 7; is number of comparisons to make for a
element in position i.

If we assume that an array contains distinct elements, and the element to be searched is equally likely to
be in any position in the array, then P; =% and 7; =i. This yields

Thus, on average, about half the array will be checked. Running time for this algorithm is ”T'"l = G)(n) In

the worst case, the whole array has to be checked, i.e. n comparisons are to be made. Worst case running
time is n = @(n)

3. 2.3-1. Merge sort of the array A = {3, 41, 52, 26, 38, 57,9, 49}

3 41 52 26 38 57 9 49 Initial Array

3 41 || 28 52 || 38 57 || o9 49 | step1

3 26 41 52 || o9 38 49 57 | step2

3 9 26 38 41 49 52 57 Sorted Array
4. 3.1-4.

Is 2" 2 0(2”‘)? YES

Is 22" = 0(2")? NO 22" _ 0(4”)



5. 3.2-2. Prove ql°8h" _ ylogpa

logp, a*logy n =logp nelogya commutativity of ®

logy n

logp a

=logp n

Jogpn _ logpa

logy a

(logx)y =logx” (both sides)

x198x Y _  (both sides)

6. 3-2.
A B 0 0 Q o S)
Ig* n n- YES | YES No No No
n® c" YES | YES No No No
vn nsin " No No No No No
2" 22 No No YES | YES No
n'e° c?" | YES No YES No YES
lgin!) | Ig(n") | YES No YES No YES
7. 3-4.

a.) f(n)= O(g(n)) implies g(n)= O(f(n)) FALSE
Let f(n)=n and g(n) —n2.

n? is an upper bound on 7, but 7n is not an upper bound on n?

b.) f(n)+ g(n) = ©(min(f(n).g(n))). FALSE

Let f(n)=n, g(n)= n2. So for f(n)+ g(n), min(f(n).g(n))=n.
Thus, n + n? = ©(n) does not hold

c.) f(n)= O(g(n)) implies lg(f(n)) = O(lg(g(n))), where lg(g(n)) =0 and f(n) =1 for all sufficiently
large n. TRUE

f(n)=0(g(n)) means Ang.c| such that 0= f(n) <cyg(n) forall n>ngy (1)
Taking lg gives 0 < lg(f(n)) <lgcp + lg(g(n)) forall n>ng (2)

For sufficiently large n in (2), 0 < lg(f(n)) <lgcp + lg(g(n)) < 2lg(g(n)).



d) f(n)=0(g(n)) implies 2/ (n) _ 0(23(”)) FALSE
Let f(n)=2n andg(n)=n. 22" =4" ¢ 0(2”)

e) f(n)=o( f(n)2) FALSE

Let f(n) be

S |-

f) f(n)= O(g(n)) implies g(n)= Q(f(n)) TRUE

By transpose symmetry, f(n) = O(g(n))iff g(n) = Q(f(n))

g) f(n)= @( f(%)) FALSE

n
Let f(n)=2". 2"" ¢ 0|22

h.) f(n) + o(f(n)) = O(f(n)) TRUE

For whatever g(n) =o(f(n)) is chosen, 3ng.c| such that g(n) = cf (n) when n > ny.
From this and exercise 3.1-1 (in Notes 2), max(g(n),cf(n)) = cf(n) = @(f(n))

n
8. A.1-1. Simplify the expression Y (2k -1)

k=1

S(2k=1)= $2k- S 2

k=1 k=1 k=1 2

9. A.2-2. Find an asymptotic upper bound on Y

¥l

k=0 2%
lign] Ign Ign
D Lk}s D (Lk+1)=lgn+1+n D Lkslgn+1+n%=lgn+l+2n=0(n)
k=0 1271 k=0\2 k=02 -3



10. A.2-3. Show that the nth harmonic number is Q(lg n) by splitting summations.

no o llenf1270
2= 22—
k=1 i=0 J‘=02 + ]
llgn]-12i_
= 3 3
2 j=021+1
lign|-1 2/ llgn]-1
4T 54 e
i=0  j=02 i=0

n
11. A.2-4. Approximate 2/{3 with an integral.

k=1
n+l
k< SK3 < T Kk
0 k=l 0
41 n 4 n+l
)= 8r<4]
0 k=l |
4 n (n+1)4
n- _ Ek?’ _1
i = i 3
k=1

12. 4.3-2. Show that the solution of T(n) = T([%.D +1is O(lg n) (Assume base 2 logarithms.)
Must show that T(n) < clgn for some ¢ >0.

Assume T(’-%D < clg(%) and substitute.

T(n)sclg(%)+1=clgn—c+lsclgn ifc=1

13. 4.3-3. Show that the solution of T(n) = 2T(|-%J) +nis Q(nlg n) and conclude that the solution is
O(nlgn).

Must show that T(n) = cn lgn for some ¢ >0.

Assume that T(\-%D >c]g (Base 2 logarithms)

2
T(n )>2021g2+n
=cnlgn-cn+n

zcnlgn ifO<c =1



14. 4.4-1. Use a recursion tree to determine a good asymptotic upper bound on the recurrence

T(n) = 3T(|_%J) + n. Use the substitution method to verify your answer.

T(n)=n n
/<3>\
T(n/2)=n/2 3n/2
/<3>\
T(n/4)=n/4 On/4
/<3>\
T(n/8)=>n/8 27n/8
T(1)=>C C310g2 n:CHIOgZ 3=Cn1 585
logp n-1 i (3)log2 "
cn Y, (%) +enlo823 2 cn23— +cnlo823
i= 51
logr2
=2cn|n 22 1|+ cnlog2 3

_ 2cn(n'585 _ 1) 4ol 385

= 3cn1 585 _ 2cn

Substitution method: Show 7T(n) = O(n10g2 3)

logs 3 logon 3
Assume T(\%D < c(%) —c%. Show T(n)=cn 82° _cn.
logs 3 logs 3
n _on - n _2~-1
T(n)sB(c(z) c2)+n 3¢ Jlog2 3 3cz+n

— cnl0823 —3c%+ n

=Cl’llog23 —CYZ—%C”+ n

logp 3

scn —cn ifc=2



2n

15. 4.4-6. Argue that the solution to the recurrence 7(n) = T(%) + T(T) +cn is Q(nlg n) by appealing

to the recursion tree.

From Figure 4.6, the least depth of complete levels is log3 n, and each level adds 7 to the algorithm’s

2

running time.

16. C.3-1. Expectation of the sum

Sum Number of ways we can get by throwing the dice Value
2 1 2
3 2 6
4 3 12
5 4 20
6 5 30
7 6 42
8 5 40
9 4 36
10 3 30
11 2 22
12 1 12

Total 252

Since the probability of all events is equal, P = 1/36 . The expectation =253 /36 =7

Expectation of the maximum

Maximum Number of ways we can get by throwing the dice Value
1 1 1
2 3 6

3 5 15

4 7 28

5 9 45

6 11 66

Total 161

Since the probability of all events is equal, P = 1/36 . The expectation =161 /36 = 4.47
17. C3-2

The expectation of the index of the maximum element in the array A is,

n
Expectation = Y



The probability of the maximum element in any of the n positions is

n+l

element is also 1=,

2

18. C.3-3. There are four possible outcomes,

1

P Similarly E for the minimum

1. The person loses a dollar or
2. He gains 1 dollar or
3. He gains 2 dollars or
4. He gains 3 dollars
Outcome Probability Value Lost/Gained
-1 (5/6 *5/6 * 5/6) -1
+1 (1/6 * 5/6 * 5/6)*3 1
2 (1/6 * 1/6 * 5/6)*3 2
3 (1/6 * 1/6 * 1/6) 3
Expectation = -(125/216) +(75/216) + (30/216)+ (3 /216)

= (17/216)

19. 6.2-5. lterative Heapify

Heapify (A, 1)

{

do
{

}

p=i
1 = left(i)
r = right(i)

if (I <= heapsize(A) and A[l] > A[i])
then

largest =1
else

largest =1

if (r <= heapsize(A) and A[r] > A[largest])
then
largest =r

if (largest <> 1)

then
Exchange(A[i],A[Largest])
i=largest

while (p <>1)

}



Remove 20 and Heapify @
3] (5)
2) RS

®)
@ @

Remove 17 and Heapify @ Remove 13 and Heapify g
(8] (5) (7] ©
)

@ @

Remove 8 and Heapify Q Remove 7 and Heapify 6
@ (3) @ @ () @
) @)

Remove 4 and Heapify @
@ @ ®

®
@ (3) @ @ (3) @
@ @ @ @

()






23.15.2-1
Finding the optimal parenthesization of a matrix-chain product whose sequence of dimensions is <5, 10,
3,12,5,50, 6>

The m table

0 150 330 405 1655 2010

0 o0 360 330 2430 1950
0 0 0 180 930 1770
0 o0 0 0 3000 1860
0 o0 0 0 0 1500
0 0 0 0 0 0
The s table

0 1 2 2 4 2

0 0 2 2 2 2

0 O 0 3 4 4

0 o0 0 0 4 4

0 0 0 0 0 5

0 0 0 0 0 0

The optimal parenthesization
(A1 * A2) * ((A3 *A4) * (A5 * A06)))
24.15.2-2
MATRIX-CHAIN-MULTIPLY (A, s, 1, ])
{
ifi=j
C< Ai
else
A <= MATRIX-CHAIN-MULTIPLY (A, s, 1, s[i, j])
B < MATRIX-CHAIN-MULTIPLY (A, s, s[i,j]+1,))
C <MATRIX-MULTIPLY (A, B)
return (C)

;
25.15.2-5

We can find the sum by making a note of the access pattern for the m table

Example: Forn=15

—_

AW |Ww
WIN|— |
N |—= D |

2
3
4
X

R




N
w

X |1 X
X 1 X

X — Don’t Care; The numbers in the cells indicate the number of accesses to the cell

It can be seen that
2 i - ® i
Z, & R =z i

_E (i41)
=n/6 ((n+1) (2n+1)) — n/2 (n+1)

=@’ —n)/3
26. 15.4-1
x =<1,0,0,1,0,1,0,1> y =<0,1,0,1,1,0,1,1,0>
0 1 3 6 9
Vi 0 1 0 | | 0 | | 0
0 x 0 0 0 0 0 0 0 0 0 0
AT x| v x| v
I 1 0 0 @ 1 1 1| €1 1 1| 41
A S
x | A v v
2 0 0 1 1 @ 42| 4= 2 | 42 | 42 2
A S
v | Mwe AL A v
3 0 0 1 1 2 2 2 @ 43 | 43 3
Ay | My |v | AN
4 1 0 1 2 2 3 3 3 @ 4 | 44
v | Alv Al AMve | A Ale
50 0 1 2 3 3 3 4 4 4 5
Ay | Alv v | Alx |5 A
6 1 0 1 2 3 4 4 4 5 @ 5
A S
x | Ave Al Awe | A A
7 0 0 1 2 3 4 4 5 5 5 @
Alve | Mv |v | Al | v A
8 1 0 1 2 3 4 5 5 6 6 6




27.15.4-2
Print LCS without the b table
print_lcs (i,j)
{
int 1,j; /* 1, j are the lengths of the two lists */
if(i==0)[[G==0))
return;
if(x[1] ==y [j]) /* x, y are the two lists whose LCS is to be found */
{
print les (i-1,j-1);
printf(“%d”, x[i]);
}
else if (c[i-1][j] >=c[i][j])  /* c is the c table as in the algorithm */
{
print_lcs (i -1, ));
}
else
{
print_lcs (i, j-1);
}

return;

j
28.15.4-5
Algorithm

e a[l ..n] is the input sequence

* length[1..n] contains the length of the monotonically increasing subsequences up
to a[i]= {i=1.n}

* Ims is the length of the longest monotonically increasing subsequence

fori=2tondo

Begin
forj=1toi-1do
Begin
Search for the j such that length[j] is the largest and a[i] can be
included in the subsequence it represents.
End
length[i] = length[j] + 1
if Ims < length[i] then Ims = length([i]
End
29.15-3
Bitonic TSP

Points Py... P,.; are sorted by increasing X- Coordinate
C(1, j) = Cost of achieving optimal pair of paths such that are paths ends with P;, the other with P; (1 <j)

Base Case
C(0,1)=dist (0, 1)

General Case
C(@-1,1)= min {C(j, i-1) + dist(j, 1)}



0= j<i-1
C(i, j) = C(, j-1) + dist(j-1, ) where i <j-1

Final solution
min {C(i, n-1) + dist(i,n-1)}
0=<i<n-1

30. 16.1-1
/* £]1...n] contains finishing times (sorted) of activities

s [1...n] contains the starting times of those activities

m[1...n] contains the number of activities from 1 .. i that can be scheduled m; in the

problem
fm[1...n] indicates the finishing times of the tasks scheduled in each of m[1...n] */

Begin
m[l]=1
fm[1] =f]1]
fori=2tondo
Begin
if( fm[i-1] < s[i] then
Begin
m[i] =m[i-1] + 1
fm[i] = f[i]
End
else
Begin
fm[i] = fm[i-1]
m[i] = m[i-1]
End
End i
End
31.16.14
n < length [s]
fori<= 1ton
Alil< { D} //each A[i] (lecture Hall) has a set of activities
LIST INSERT(L,1);
k<0
while L = J
dok<k+1
i< head [L]
forj <1+ 1 to tail[L]
doif's;.f;
then A[k] <= A[k] U {j}
1<

LIST DELETE(L,j)
return L // the final value of ‘k’ has the number of lecture halls



32.16.2-4

The greedy strategy would be to fill up the water bottle at the last moment i.e., Travel to the farthest water
station that can be reached from the current water station (without falling short)

33.16.2-5

Sort the points in ascending order of their k values

The greedy strategy would be to enclose the leftmost unenclosed point and all points that lie within a unit

distance of this point. The next interval will begin at the closest point to the right of this interval
34.16.3-3

Generalization:
code = k-1 1’s followed by a ‘0’, if k = n-1
k 1’'s,k=n



