
CSE 2320 Lab Assignment 1

Due September 17

Goal:

Application of binary searches to determine (in a logarithmic number of steps) which element in a pair of monotonically
increasing sequences has a particular rank.

Requirements:

1. a. Write a C program to read the two ordered integer input sequences and then a sequence of ranks (queries). For each

rank you should trace the binary search (one line per “probe”) and then indicate which element of which sequence has the
desired rank. The first line of the input file will give m, n, and p where m is the number of elements in the first sequence,
n is the number of elements in the second sequence, and p is the number of ranks (queries) for which binary searches will
be performed. The integer input sequence elements will be in the range 0 . . . 999,999, inclusive. The ranks will be in the
range 1 . . . m + n.

 b. The output line for each Θ 1() time probe should include the values of low, high, i, and j. You may also include

other debugging information, such as the result of the probe.

2. Submit your C program on Canvas by 10:45 am (section 004) or 1:45 pm (section 003) on September 17. Comments at

the beginning of the source file should include: your name, your ID number, and the command used to compile your code
on Omega (5 point penalty for non-compliance).

Getting Started:

1. Your program should read the input files via Linux shell redirection (e.g. a.out < lab1.dat on omega.uta.edu,

https://en.wikipedia.org/wiki/Standard_streams). Do NOT prompt for file names! You should
dynamically allocate tables for storing the input. To simplify the binary search code, it is recommended that the first
sequence be stored in subscripts 1 . . . m of its table (a) and that subscripts 0 and m + 1 store “low” and “high” sentinel
values, respectively. The second sequence (b) would be stored similarly.

2. The rank of an element in one of the two sequences is the index of the position that it would occupy if the two sequences

were merged into one monotonically increasing sequence. Should equal-valued elements appear, those in the first
sequence are copied to the output before those in the second sequence. The following (linear-time) code will compute
(and store) the ranks for all elements if stored as suggested in (1.):

void ranksByMerge()
{
 int i,j,k;

 i=j=k=1;
 while (i<=m && j<=n)
 if (a[i]<=b[j])
 aRank[i++]=k++;
 else
 bRank[j++]=k++;
 while (i<=m)
 aRank[i++]=k++;
 while (j<=n)
 bRank[j++]=k++;
}

These tables of ranks will allow testing your code in an exhaustive fashion, e.g. for all ranks in the range 1 . . . m + n.
The aRank and bRank tables should NOT be computed in the version you submit.

3. For a given rank, the corresponding element could be in either of the two input sequences. If stored as suggested in (1.),
the following (symmetric) observations allow a binary search to be used:

 a. If the corresponding element is at a[i], then there must be an index j such that all of the following hold:

1. i + j == rank,
2. b[j] < a[i], and
3. a[i] <= b[j+1]

 b. If the corresponding element is at b[j], then there must be an index i such that all of the following hold:

1. i + j == rank,
2. a[i] <= b[j], and
3. b[j] < a[i+1]

 So, a probe consists of: a) compute i as the middle of the search range of the first table, b) determine whether 3.a.2 or

3.b.2 applies, and c) determine whether the desired element has been found or make an appropriate adjustment in the
search range.

4. Be careful in initializing the search range of the first table (e.g. low and high). Otherwise, slots outside of the tables

could be referenced.

5. Recursion should not be used.

 i a[i] aRank[i]

 0 -99999999 0

 1 1 2

 2 1 3

 3 1 4

 4 1 5

 5 2 7

 6 5 12

 7 6 14

 8 8 17

 9 8 18

10 9 22

11 99999999 0

 j b[j] bRank[j]

 0 -99999999 0

 1 0 1

 2 1 6

 3 2 8

 4 3 9

 5 4 10

 6 4 11

 7 5 13

 8 6 15

 9 7 16

10 8 19

11 8 20

12 8 21

13 9 23

14 9 24

15 9 25

16 99999999 0

