CSE 2320-003 Lab Assignment 1

Due February 12
Goals:

1.
Understanding of binary search.

2.
Understanding of indirection, maps/permutations, and swapping.

Requirements:

1.
Write a C program to maintain n counters indexed by 0 .. n-1. n will be the first input value and all counters are initially valued as zero. The following operations will then appear, one per line, in the input:

a.
0 - terminate execution.

b.
1 - print the counters in ascending index value order as (index, count) pairs. (O(n) time)

c.
2 - print the counters in ascending counter value order as (index, count) pairs. (O(n) time)

d.
3 i - add one to the counter indexed by i. (O(log n) time)

e.
4 i - subtract one from the counter indexed by i. (O(log n) time)

f.
5 i j - determine the number of counters whose values are no smaller than i and no larger than j. (O(log n) time)

The input will be read from standard input (stdin) as either keyboard typing or as a shell redirect (<) from a file. Prompts/menus are completely unnecessary!

2.
Submit your C program on Canvas by 12:45 pm on February 12. Comments at the beginning of the source file should include: your name, your ID number, and the command used to compile your code on Omega (5 point penalty for non-compliance).
Getting Started:

1.
Review binary search and obtain a copy of http://ranger.uta.edu/~weems/NOTES2320/binarySearchRange.c. Code similar to this will be useful in implementing operations 3, 4, and 5.

2.
Your program should dynamically allocate three tables - map, index, and count. (If you wish, the last two tables may be implemented as an array of structs.) index[i] indicates which of the n counters has its value presently stored as count[i]. map[i] is used to find the counter with index i, i.e. it is always true that index[map[i]]==i.

Operation 2 may be coded as:

 for (i=0;i<n;i++)

 printf("%d %d\n",index[i],count[i]);

Operation 1 may be coded as:

for (i=0;i<n;i++)

 printf("%d %d\n",i,count[map[i]]);

3.
You should implement and completely debug operation 3 before implementing operation 4.

4.
Your code must satisfy the indicated time bounds by using binary search when possible. DO NOT USE SORTING!
