
CSE 2320-001 Lab Assignment 1

Due June 22, 2016

Goals:

1. Understanding of binary search.

2. Understanding of indirection, maps/permutations, and swapping.

Requirements:

1. Write a C program to maintain n counters indexed by 0 .. n-1. n will be the first input value and all counters are initially

valued as zero. The following operations will then appear, one per line, in the input:

a. 0 - terminate execution.
b. 1 - print the counters in ascending index value order as (index, count) pairs. (O(n) time)
c. 2 - print the counters in ascending counter value order as (index, count) pairs. (O(n) time)
d. 3 i - add one to the counter indexed by i. (O(log n) time)
e. 4 i - subtract one from the counter indexed by i. (O(log n) time)
f. 5 i j - determine the number of counters whose values are no smaller than i and no larger than j. (O(log n) time)

The input will be read from standard input (stdin) as either keyboard typing or as a shell redirect (<) from a file.
Prompts/menus are completely unnecessary!

2. Submit your program on Blackboard by 12:45 pm on June 22. One of the comment lines should indicate the compilation

command used on OMEGA.

Getting Started:

1. Review binary search and obtain a copy of

http://ranger.uta.edu/~weems/NOTES2320/binarySearchRange.c. Code similar to this will be useful
in implementing operations 3, 4, and 5.

2. Your program should dynamically allocate three tables - map, index, and count. (If you wish, the last two tables may

be implemented as an array of structs.) index[i] indicates which of the n counters has its value presently stored as
count[i]. map[i] is used to find the counter with index i, i.e. it is always true that index[map[i]]==i.

 Operation 2 may be coded as:

 for (i=0;i<n;i++)

 printf("%d %d\n",index[i],count[i]);

 Operation 1 may be coded as:

for (i=0;i<n;i++)
 printf("%d %d\n",i,count[map[i]]);

3. You should implement and completely debug operation 3 before implementing operation 4.

4. Your code must satisfy the indicated time bounds by using binary search when possible.

