
CSE 2320 Lab Assignment 2

Due October 20, 2016

Goals:

1. Understanding of heaps and interfacing with a dictionary.

2. Understanding of the five steps for developing a dynamic programming solution.

Requirements:

1. Use C to implement algorithms for (a) approximate order-preserving Huffman coding - each phase

merging two adjacent subtrees whose weights give the smallest sum, and (b) exact order-preserving
Huffman coding - using the dynamic programming formulation described in Notes 7.C.

 The input is 1) a positive integer n and 2) a sequence of n positive integers giving the frequency

counts (weights) for symbols in an ordered character set. To simplify output, the character set will be
referenced numerically as 0 . . . n - 1.

 For both types of subtrees, your program should output the bit code assigned to each symbol and the

weighted sum

€

lengthi •counti
i
∑

$
% %

&

'
((based on the generated code tree and the frequency counts.

2. Submit your program on Blackboard by 1:45 p.m. on October 20, 2016. One of the comment lines

should include the compilation command used on OMEGA.

Getting Started:

1. Suppose the input frequency counts are: 6 4 5 7. The following tree is for the listed conventional

Huffman code.

4 5 6 7

13

22

0

0

01

1

1
9

ab c d

6 10
4 00
5 01
7 11

The weighted sum is 6•2 + 4•2 + 5•2 + 7•2 = 44

Now suppose the ordered character set is {a, b, c, d} with the indicated frequency counts. If the strings
“abc” and “bad” are compressed to “100001” and “001011”, respectively, they do not compare the
same way as their uncompressed counterparts. Order preservation is guaranteed only when the leaf order
is consistent with the order of the character set.

2. For the same input sequence, the following tree is for the approximate order-preserving Huffman
code. At each step in its construction, we greedily merge the two adjacent trees whose weights have
the smallest sum.

4 5

9
0 1

6
0
15

1
7

22
10

a

b c

d

6 00
4 010
5 011
7 1

The weighted sum is 6•2 + 4•3 + 5•3 + 7•1 = 46.

Now, the strings “abc” and “bad” will be compressed to “00010011” and “010001”, respectively, but
the weighted sum has not been minimized.

3. For the same input sequence, the following tree is for the exact order-preserving Huffman code. It

was constructed using dynamic programming to determine optimal order-preserving subtrees.

6 4 5 7

12

22

0

0

01

1

1
10

a b c d

6 00
4 01
5 10
7 11

The weighted sum is 6•2 + 4•2 + 5•2 + 7•2 = 44.

4. It is not difficult to see that the weighted sums for the three different approaches have the following

relationship: conventional ≤ exact ≤ approximate.

5. Your approximate solution must use a heap to achieve

€

Θ n logn() time. Submissions taking

€

Θ n2#
$
% &

'
(

time will be severely penalized.

6. Input is to be read from standard input. Do not prompt for a file name.

7. Heap-based code (http://ranger.uta.edu/~weems/NOTES2320/huffman.freq.c) for

conventional Huffman coding with frequencies is available on the course webpage. It may be
modified significantly to achieve part (a). You will want each heap entry to correspond to two
adjacent subtrees that could be merged. After a single heapExtractMin() determines the merge
to apply, you will need minHeapDelete() to discard unneeded candidate(s) (due to the merge)
and a minHeapInsert() to include new candidate(s) (also resulting from the merge). Handles
(Notes 5) facilitate this.

 Extra tables will be helpful when implementing part (a).

