
CSE 3318 Lab Assignment 2

Due October 3

Goals:

1. Understanding of heaps.

2. Understanding of merging.

Requirements:

1. Write a C program to take n files containing strings in ascending order (no duplicates within a file) and produce a file

out.dat containing a line for each string (in ascending order). Even if a string str appears in multiple files, it should
be output only once and, for each string, you should also output the number of files (k) containing the string. This should
be done using code similar to:

 fprintf(outfp,"%s %d\n",str,k);

2. Submit your program on Canvas by 5:00 pm on Thursday, October 3. Comments at the beginning of the source file should

include: your name, your ID number, and the command used to compile your code on Omega (5 point penalty for non-
compliance).

Getting Started:

1. Your program is to perform exactly one “heap assisted” merge of all n files simultaneously. At any time, there should be

no more than one string from each of the input files being processed by your code. It will be useful to have a table of file
pointers and a table of strings. Your heap implementation is not required to have “handles”.

 Under no circumstance should your program use multiple binary merges!

 Do not read entire files into a heap and then perform heapsort! That is WRONG!

2. You may use heap code (e.g. intPQi.c) from the course webpage or elsewhere to get started. Be sure to include

comment(s) regarding this.

3. Your program will be driven by a file in.dat:

a. The first line will contain the value for n.
b. Each of the remaining n lines will contain a simple file name, i.e. there will not be a directory path.
c. Each of the n files will contain at least one string. The strings will consist of no more than 50 letters and digits.

4. Pseudo-code:

a. Open in.dat, each of the n files, and out.dat.
b. Initialize the heap with the first string from each file. The strings will be the priorities, so you will have a minHeap

with the smallest (strcmp()) string conceptually at the root.
c. Processing to obtain the first output string:

1. Remove (conceptually) the minimum string from the heap.
2. k=1
3. Attempt to read in another string from the same file as the string just removed.
4. Put new string in heap (special case: there is no new string)

d. While at least one file still has unread strings:
1. Remove (conceptually) the minimum string from the heap.
2. if the minimum string is different from the previous minimum
 Output the previous minimum and k
 The string just removed from the heap becomes the new minimum
 k=1
 else
 k++
3. Attempt to read in another string from the same file as the string just removed from the heap.
 if EOF
 Heap gets smaller
 else
 Put string in heap

e. Final clean-up . . . including output of the last string.

in.dat

4
in0.dat
in1.dat
in2.dat
in3.dat

in0.dat

abc
ghi
hij
jkl
mno
p
uv
w

in1.dat

abc
efg
ghi
q
w

in2.dat

def
ghi
mno
rst
x

in3.dat

efg
ghi
mno
rst
w
y

out.dat

abc 2
def 1
efg 2
ghi 4
hij 1
jkl 1
mno 3
p 1
q 1
rst 2
uv 1
w 3
x 1
y 1

