CSE 2320 Lab Assignment 2

Due March 24, 2016

Goal:

- 1. Understanding of dynamic programming.
- 2. Understanding of subset sums.

Requirements:

1. a. Design, code, and test a C program that uses *dynamic programming* to solve the subset sum problem *with multiplicities*. This extends the subset sum problem in Notes 07 by allowing an S_j

value to be used up to a specified number of times (the multiplicity M_i of S_i).

b. The input should be read from standard input (which will be one of 1. keyboard typing, 2. a shell redirect (<) from a file, or 3. cut-and-paste. Do NOT prompt for a file name!). The first line of the input will first have n, the length of the sequences for S and M, followed by the target value m. Each of the remaining lines will include a positive S_i value and its multiplicity M_i . These pairs will be

in *strictly ascending* order by S_{i} .

c. The dynamic programming cost table should be printed only in those cases where m does not exceed 50. This may be done like the provided

http://ranger.uta.edu/~weems/NOTES2320/subsetSum.c, but must also include the number of occurences of the S_i that is used to reach a value.

d. If the target value *m* cannot be reached, then print a simple message. If a solution exists, a backtrace of the needed S_i values (and the number of occurrences for each) should be printed.

2. Submit your C program on Blackboard by 3:15 p.m. on March 24. Comment lines should include 1) the compilation command used on OMEGA and 2) the asymptotic worst-case time for the DP computation.

Getting Started:

- 1. Dynamic programming is the only acceptable method for doing this lab. You will need to be careful to assure that your approach is guaranteed to find a solution if one exists.
- 2. Arrays are to be dynamically allocated.
- 3. You may modify existing code (e.g. subsetSum.c).