
CSE 3318-003 Lab Assignment 2

Due February 22

Goal:

Implementation of mergesort using linked list manipulation concepts for tables.

Requirements:

1. Write a program to read an integer input sequence and then produce an array of links giving the values in ascending order.

The first line of the input file is the length of the sequence (n) and each of the remaining n lines is a non-negative integer.
The first line of the output indicates the subscript of the smallest input value. Each of the remaining output lines is a triple
consisting of a subscript along with the corresponding input sequence and link values.

2. Submit your C program on Canvas by 3:45 p.m. on Wednesday, February 22. One of the comment lines should include

the compilation command used on OMEGA (5 point penalty for omitting this).

Getting Started:

1. Your program should read the input files from stdin by using Unix shell redirection (e.g. a.out<lab1.dat). By

using redirection, it is unnecessary to explicitly open and close the input file, nor should your program prompt for a file
name. You should dynamically allocate tables for storing the input keys and the table of links. Unlike the mergesort in
Notes 1 and CLRS, the table of keys is never modified.

2. The link values are not initialized before the recursive mergesort begins. Each link will be initialized to -1 when its

sequence value is placed in a single-element list (at the bottom of the recursion’s “tree”).

3. The input sequence array and the link array may be global. Under this assumption, the following function prototype may

be used:

 int mergeSort(int start,int count)

 where start is the first subscript for a subarray of count elements. The returned int is the subscript of the first

element in the resulting sorted sublist. The last element in the sublist will have a link value of -1.

4. The critical part of the code is a linear-time merge of two subarrays that previously had their link values set for ordered

sublists. (Be sure to understand the merging concept from pp. 3-4 of Notes 1 before proceeding.) The merge will revise
the link values to give a single ordered list.

5. If an input value appears more than once, those elements should be ordered by subscripts in the final list, i.e. your sort

code will be stable.

6. Consider the following input file:

8
5
5
2
4
3
1
0
1

The output (as subscript/value/link triples) will be:

First element is at subscript 6
0 5 1
1 5 -1
2 2 4
3 4 0
4 3 3
5 1 7
6 0 5
7 1 2

Notice that the input sequence ordering has not changed.

7. Your code should NEVER scan a subarray to find the minimum key.

First element is at subscript 6
 0 1 2 3 4 5 6 7
 5 5 2 4 3 1 0 1
 1 -1 4 0 3 7 5 2

First element is at subscript 6
 4 5 6 7
 3 1 0 1
 -1 7 5 4

First element is at subscript 6
 6 7
 0 1
 7 -1

 7
 1
 -1

 6
 0
 -1

First element is at subscript 5
 4 5
 3 1
 -1 4

 5
 1
 -1

 4
 3
 -1

First element is at subscript 2
 0 1 2 3
 5 5 2 4
 1 -1 3 0

First element is at subscript 2
 2 3
 2 4
 3 -1

 3
 4
 -1

 2
 2
 -1

First element is at subscript 0
 0 1
 5 5
 1 -1

 1
 5
 -1

 0
 5
 -1

