
CSE 2320 Lab Assignment 3

Due April 11, 2013

Goals:

1. Understanding of red-black trees.

2. Understanding of recursive binary tree processing.

3. Understanding of subtree sizes in binary search trees for supporting ranking queries.

Requirements:

1. Modify the provided C code for maintaining a red-black tree to perform the following processing:

a. Read a value n and then read and process n values, one per line, by inserting into a red-black tree. There will be no
duplicates and a message should be printed for each insert. After completing all inserts, use printTree() to dump
the tree.

b. Read and process a sequence of retrieval commands on the tree that was created:

 0 - Exit the program

 1 x - sets the current node to the node with the smallest key that is not smaller than x. After processing, print 1) the

current key (not necessarily x) and 2) the current rank.

€

Θ logn() time

 2 k - sets the current node to the node with rank k. After processing, print 1) the current key and 2) the current rank.

€

Θ logn() time

 3 j k - performs j iterations of moving the current node pointer forward k nodes in an inorder traversal taking

advantage of subtree sizes. After each move, print 1) the current key and 2) the current rank.

€

Θ logn + j logk() time

 4 j k - performs j iterations of moving the current node pointer backward k nodes in an inorder traversal taking

advantage of subtree sizes. After each move, print 1) the current key and 2) the current rank.

€

Θ logn + j logk() time

 x, j, and k are non-negative values.

 If a command cannot be processed completely, print a message and terminate the entire execution. The sequence of

commands may not begin with a 3 or a 4.

2. Email your program source files to mdmehrab.shahriar@mavs.uta.edu by 3:15 p.m. on April 11.

Getting Started:

1. A small number of global variables are permissible for handling the retrieval commands.

2. The retrieval commands will be processed by one recursive function (a “treewalker”). After processing a command, you

will be nested within a number of function calls. At this point, get the next command. If the next command is a 1 or 2,
you may retreat out of the recursion before starting to search.

