
CSE 2320 Lab Assignment 3

Due April 25, 2017

Goals:

1. Understanding of red-black trees.
2. Understanding of tombstones as a simple mechanism for supporting deletions in a data structure.

Requirements:

1. Modify the provided C code (http://ranger.uta.edu/~weems/NOTES2320/REDBLACKC/) for maintaining a red-black tree

to process a sequence of commands (standard input) from the following list:

 0 - Exit the program

 1 x - Insert positive integer key x, unless x is already present in the tree. Besides inserting the key, subtree sizes must be

updated. (Processing a duplicate x is handled as an update, even though there is no satellite data.) Also, see command 6
regarding the recycling list.

 2 x - Logically delete the item for positive integer key x by using a tombstone. If there is no item, then the operation is

ignored.

 3 x - Find the rank of x, i.e. the number of keys in the tree that are not larger than x (error message if x is not in the tree).

Tombstoned items are not included!

 4 k - Find the key with rank k (error message if k is not legal). Tombstoned items are not included!

 5 - Print statistics - number of live and dead nodes, along with the number of nodes in the recycling list (which is likely to

vary from the provided output).

 6 - Rebuild tree (unless it has no dead nodes) by collecting live nodes in an ascending order linked list and placing dead

nodes on a recycling list (to be used later when inserting). The tree is then (recursively) rebuilt using an inorder approach
without calling the insertion code.

 7 - Print the tree as is done in the sample code, but indicating dead keys with surrounding parentheses.

 8 - Perform an audit to check the tree for 1) red-black structral properties, 2) inorder traversal property, and 3) correct

subtree sizes (number of live nodes in each subtree) to give a final indication that the tree is “clean” or “corrupt”.

 Each command must be echoed to standard output. Commands 1, 2, 3, and 4 must be processed in

€

Θ logn() time, where
n is the total number of nodes. Commands 6 and 8 must be processed in

€

Θ n() time. Command 5 must be processed in

€

Θ 1() time.

2. Submit your C source files as a single zipped file on Blackboard by 3:15 pm on April 25. One of the comment lines

should include the compilation command used on OMEGA. You will lose points for putting all code in a single source
file.

Getting Started:

1. Command 6 must assign new colors to nodes. One approach is to make the shape of the new tree with n live nodes the

same as the shape of a binary heap with n entries in use.

2. You may modify the tracePrint() calls that occur, but tracing should be turned off in the code that you submit.

3. A suitable driver is available at http://ranger.uta.edu/~weems/NOTES2320/LAB/LAB3SPR17/

