
CSE 2320 Lab Assignment 5

Due April 19, 2018

Goals:

1. Understanding of red-black trees.
2. Understanding of recursive binary tree traversal.

Requirements:

1. Use C to implement 1) serialization/marshalling/unloading/flattening of a red/black tree to a string and

2) the inverse operation of deserializing/unmarshalling/loading/unflattening a string to a red/black
tree. Both operations are based on the recursive pre-order traversal of a binary tree.

 The input is 1) the number of bytes in a string (including the NULL terminator), 2) a string no longer

than the indicated length corresponding to a red-black tree, 3) n, the number of keys to be inserted
into the tree, and 4) the n integers to be inserted into the tree.

 The output is 1) the length (including the NULL terminator) of a string corresponding to the final red-

black tree (after insertions) and 2) the string corresponding to the final red-black tree.

 In the serialized version of a tree, . indicates the sentinel. Each key will be immediately followed by

a letter r or b indicating its color. Optionally, a key may include a sign (+ or -). Three examples
follow:

 40b20b10b..30b..100r60b50b..80r70b..90b..120b110b..140r130b..160b150r..170r..

40

20 60

10 30 50 70

 30 40b20b10r..30r..60b50r..70r..

40

100

60

50 80

70 90

75

140

150

160

170

120

110 130-10-30

-20

 86 100b40r-20b-30b..-10b..60b50b..80r70b.75r..90b..140r120b110b..130b..+160b150b..170b..

2. Submit all necessary source files on Blackboard by 3:15 p.m. on April 19, 2018. One of the

comment lines should include the compilation command used on OMEGA.

Getting Started:

1. Suitable driver and header files are available at

http://ranger.uta.edu/~weems/NOTES2320/LAB/LAB5SPR18/ . RB.c is available at
http://ranger.uta.edu/~weems/NOTES2320/REDBLACKC/ .

2. You must use separate compilation. Do not merge together implementation and header files.

3. The string representing a red-black tree will be free of spaces.

4. Be sure your code does not leak memory. If you malloc() it, you are obligated to free() it.

5. You should check the deserialized tree either while building it or by using verifyRBproperties().

6. Your deserialization code should check the input string for errors. Characters past the end of a tree

should result in a warning. Inappropriate characters elsewhere should result in a message and
exit() termination.

