CSE 3318 Notes 3: Summations

(Last updated 1/5/24 10:26 AM)

.. CLRS, appendix A

3.A. GEOMETRIC SERIES (review)
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3.B. HARMONIC SERIES
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Inn<Hp, = 2 % <lnn+.577...<lnn+1
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3.C. APPROXIMATION BY INTEGRALS (p. 1150-1151)
For a monotonically increasing (x <y= f(x)s f( y)) funetion:
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Since:
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in this situation.



3.D. BOUNDING SUMMATIONS USING MATH INDUCTION AND INEQUALITIES

2i2= 6

[Techniques are especially important for recurrences in Notes 04]
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[Trivial to show using integration or *—_n(n+ )( L ).]
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- Now go on to n + 1 and show that the bound still holds
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The bridging step (?27) separates the bounding term (c(n + 1)3) from everything else (x):
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Can drop [ . . . ] (through <) if it cannot become positive. .l-ﬁappen{s ifc=1
. f



b. Show Q(n3)
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(ii) Suppose this holds for n:

Now go on to  + 1 and show that the bound still holds

n+l , n

S 2= 3% +(n+1

i=1 =1 7
=

= 2i2+n2+2n+1

i=1

2cr_z3+n2+2n+1

=77

)2__

=c(n+ 1)3

The bridging step (???) involves the same algebra as before.

R

Candrop [ ... ] (through >) if it cannot become negative. Happens if 0<c<1/3
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Suppose we attempt to show 21 = @(n )
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(ii) Suppose this holds for 7:
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Now attempt to go onto n+ 1.



n+l n
D 2 = 2i2+(n+1)2
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The bridging step (?7??) separates the bounding term (c(n + 1)2) from everything else (x):
2 + n2 +2n+1

x=cn2+n2+2n+l—cn2—2cn—c=n2+(2—2c)n+1—c
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So 777 is now C(n+l)2+ n2+(2—2c)n+1—c.

Candrop [ ... ] (through <) if it cannot become positive. Fails as n grows.

b. Can still show Q(r%)
n=1 2
) S i =1=zcn” using any constant 0 < c <1

i=1

(ii) Suppose this holds for #:

Now goonton+ 1.
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The bridging step separates the bounding term ( c(n + 1)2) from everything else (x):
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S0 277 is now ¢(n+ l)2 Hn? 4 (2-2c)n+ I—c}

Candrop [ . . . ] (through 2) if it cannot become negative.

Happens if 0 <c < 1 (or for “sufficiently large” 7).



