CSE 3318 Notes 13: Graph Representations and Search

CLRS 20.1-20.5

(Last updated 1/5/24 11:39 AM)

Life Changing? https://en.wikipedia.org/wiki/Graphviz

13.A. GRAPH REPRESENTATIONS

Adjacency Matrices + for dense (E = Q(Vz)) classes of graphs

(“A sparse graph is onc whose number of cdges is reasonably viewed as being proportional to its
number of vertices” https://dl-acm-org.ezproxy.uta.edu/doi/10.1145/2492007.2492029)

Directed Graph

Diagonal: Zero edges allowed for paths? (reflexive, assumed self-loops)

0 L 2 3
0 0 a) 1
10 0 0 |
2 0 0 0 1
30 0 0 (0
Undircected Graph

0 L 2 3
0 e)1 o
1 (M0~ 0 1
T 0 Wl
30 1 1 0

Which is more general?

Y

(Adjacency Lists — for sparse (E = O(V)) classcs of graphs

Directed

]

Ordinary:
lails
0 -
i >
2 e 2
3 —-»-I N

i

Time to query for presence of an edge?

__“.

Inverted:
[leads
0 -1
1 o
2
"'I-....“H
3

._—{||

v
~

all

1. Time to query for presence of an edge?
2. Can convert between ordinary and in-\{s:rted in @V + E) time, assuming unordered lists.
3. Thesc two structurcs can be intcgrated using both tables and a common sct of nodes with two
linked lists through cach node.
Undirccted:
4 1
WL >
of Bl 7

1 === 0 3 K
a —_—
KE !

Weights — Used to represent distances, capacities, or costs.
Entrics in adjacency matrix.

Ficld in nodes of adjacency list.

4t

Compressed Adjacency Lists — useful “pointerless™ representation for sparse, static graphs (not in book,
" hetps://dl-acm-org.ezproxy.uta.edu/doi/10.1145/3230485 discusses similar Compressed Sparsc Row
format). (COdG and CXEIITI])[CS atl htips://ranger.uta.edu/~weems/NOTES3318/COMPADILIST/)

tailTab headTab
—=® e o
e ——ta
o O q\r 1
0 tailTab headTab taillab | headTab
0 [0 011 0 o1
112 113 2 1 |3
e 24 212 5 2 o
3@ 3|4, 7 3|2
__‘1' ‘6 4 2.- _.J,—u.";' “‘I‘ ? 4
516 5[4 12] 511
o ; 5 6|3
710
g |2
9 |4
10 |1
113

To process the edges with vertex i as the tail:

for (j=tailTab[i]; j<tailTab[i+l]; j++)
< Process edge€ 1\— headTabl[j] >

Time to query for presence of an edge?

3

Show the compressed adjacency list representation for this weighted, directed graph. (Answers using
conventional adjacency lists will receive no credit.) 10 points.——

@ 5 b@ 8 b@
4

=] ()
v v
O\“@@
co |9
v v
) O

~J]

uf/-m
!
Cy
-
!
C)

tail Tab headTab
head @ wt
19 o2 8
7|2 1] 5 6
3|3 211 7
;_1 4 310 5
516 41 3 4
515]
6}7 6|1 2
7

13.B. BREADTH-FIRST SEARCH (Traversal) — Queue-Based
1. Assume input is directed graph with path from source to every vertex
Sourcc vertex is designated (assumc 0)
Vertex colors and interpretations
———
a. White — undiscovered/unvisited
b. Gra?; — presently in queue
¢. Black — completely processed (all adjacent vertices have been discovered)
Possible outputs:
a. BFS numbecr (assigned scquentially)

b. Distance {hops) from source

¢c. Predecessor on BFS tree

-

Label node with a/b/c

SIS -y
w NG LD FHT &

Timc:
a. Initializatiﬁqn (BV)) b. Process cach edge once (O(E))

(An implcmcntatioﬁ of BFS is included in the Ford-Fulkerson network flow code on webpage.)

2. Remove assumption recgarding path from source to eve?r vertex: / [

w— [Initialize all vertices as whitc o

for (i=0; i<V; i++)
if vertex 1 is white ‘
C all BFS with 1 as source o o e o

X I =2 I C

Can also use on undirected graph. -
Number of BFS calls (“restarts™) is the number of connected components.

Each cdgc 18 yraccsscd twice, but cach vertex is discov crgd once. -
Dlamctcr of Trcu Apphcath of BES

1. Choose.arb:frary source for B.FS. Run BT'S and select any vertex X at maximum distance (“hops™)
from source (e.g. last vertex removed fro% queue).

2. Run second BFS using X as source. X will be at one end of a diameter and any vertex at maxmﬁum
distance from X can be the other end of the diameter.

Takes O(V + E) time. Lr

W
/

13.C. DEPTH-FIRST SEARCH (Traversal) — Stack/Recursion-Based
Usually applied to a directed graph. P g OO
Vertex colors and interpretations

a. Whit¢ — }fgdiscovcrcd (ncither time assigned, i.c. valuc of both is still -1)

b." Gray — presently in stack (only discovery time assigned)

c. B}ack — completely processed (all adjacent vertices have been discovered, both times assigned)
Passible outputs:

a. Discovery (preorder) time :

b. Finish (postorder)time

¢ Prcdcccssor-on DFS tree

-. d\ Edge typces (these reflect ancestry possibilitics among vertices)

| P-rocessing:

a. Change vertex from white — gray the first time it enters stack and assign discovery time (using
counter),

b. When a vertex (and pointer to its adjacency list) is popped, check for next adjacent vertex and push

this vertex again.

¢. Ifno remaining adjacent vertices, then change vertex from gray — black and assign finish time.
Like BFS, DFS takes ©(V + E) time.

Relationship between vertex and adjacent vertex determines|the edge hype.

a. Unvisited (whitc) = tree edge

14

o = 7

b. On the st:xj&/l: (aray indiciting ancestor) =% back edge
| (D21 72
%
=\ @36
5

¢. Previously visited, not on stack (black), but known to be descendant {ijm’ard edge (AKA down
edge) _ = TN

1. Findpath of trec cdges? TEDIOUS
N>
2. d:iscovcry(taill')'< discovery(hcad)

-— o~ o
d. None of the above . . . Not on stack (black) and not a descendant =5 cross edge \V

Test using discovery(tai@covery(hcad)

Example:

3 5 o W12
(thd Can’t hav >.g< or fopward cdgEe -

273 45%7 of 2l

4 h—

C. C_ C—
O YAy &t

O f 2. }

Example — available from course web page (https://ranger.uta.edu/~weems/NOTES3318/dfsDir.c
https://ranger.uta.edu/~weems/NOTES3318/dfsl.dat)

- -~.‘ Vertex discovery finish predecessor
(0 1 28 -1
= 1 2 L7 0
2 18 27 0
3 3 16 1
(”') 4 4 15 3
ey c\‘_ .,‘-:) 5 19 26 2
A 6 20 23 5
e 1 \ 7 5 14 4
e, e 8 6 13 7
(1 (5)\ 9 24 25 5
~ el \ 10 21 22 6
1o, o7 N 11 7 12 8
W N N 12 8 11 11
H‘ ¢ 4"‘ Gl \ 13 9 10 12
L) (_(;' Edge Tail Head Type
7"* - “"ir‘ ., \ 0 0 1 tree
!/ | | e i 1 0 2 tree
— . |l ;\- " 2 1 3 tree
(. 7 \) | (o } 3 il 4 forward
‘ -~ | s - 4 2 5 tree
A 5 2 6 forward
"‘-! 5 i 6 3 4 tree
- = o £ 7 3 7 forward
\ k 4 :] (:‘ la } 8 4 7 tree
\ “\Li Pl 9 5 4 cross
- 10 5 6 tree
\" o 11 5 9 tree
z, 1l 5 12 3 10 tree
g 13 7 8 tree
14 7 11 forward
15 8 4 back
g - 16 8 11 tree
fh 12 J 17 9 6 cross
ol 18 9 11 cross
f 19 10 11 cross
. TR 20 11 12 tree
(i4 \J 21 12 13 tree
R 22 13 11 back

10

13.D. TOPOLOGICAL SORT OF A DIRECTED GRAPH

Lincar ordering of all vertices in a graph.

Vertex x precedes y in ordering if there is a path from x to y in graph.
Apply DFS:

1. Back edge < graph has a cycle (no topological ordering).

2. When vertex tunnsert at beginning of ordering (ordering is reverse‘.ﬁf finish times). 1
I'. L
H/ "é N

34726105
8/0/ SR XA

13.E. STRONGLY CONNECTED COMPONENTS

((Kosaraju's method, https://ranger.uta.edu/~weems/NOTES3318/d£sSCC.c)

—

— - —

Equivalenee Relation — definition (reflexive, symmetric, transitive)

11
7/14 8/9 2/5 16/19

11/12 10/13 3/4 1/6

P
.”
3
' 4
4

& Pl 7 \¢
L ¥a TN
1.) Perform DFS. When vertex turns black = insert at beginning of list. [(3 A 1{/'"1) 7_/4 .{01) 3)
© DA VARSIV Y

2. i{fv/eric edges. (Does not change the strongly connected equivalence relation)

g
J—— i W - i
A / 8 L ’ / 1™
/ q A J 3 / | %
\\

V.

Az N\ [134, g 34

S

\ \ / ((o
\. : 1 / ; \d \ ".‘
\"‘H-..__.s_/l,l__— 9/10 1l _16};1_9_ S . _l 5[20 J '-\\\‘.. 2/5’ 1/6

3(Perform DFS, but each restart chooses-the first whiite vertex-in-list from. 1. Vertices discovered
“withirthe same restart arc in the same strong component.

Observation: If there is a path from x to y and no path from y to x, then finish(x) > finish(y) (first DFS).

This implies that the reverse edge (y, x) corresponding to an original edge (x, y) without a “return path”
will be a cross edge during 2% DFS. The head vertex y will be in a SCC that has already been ouipul.

Takes @(V + E) time.

12
https://ranger.uta.edu/~weems/NOTES3318/dfsSCC.notesl3end.dat

@—(L5

