CSE 3318 Notes 14: Minimum Spanning Trees

(Last updated 1/5/24 11:41 AM)

CLRS 19.3, 21.1-21.2

14.A. CONCEPTS

Given a weighted, connected, undirected graph, find a minimum (total) weight free tree connecting the vertices. (AKA bottleneck shortest path tree)

Cut Property: Suppose S and T partition V such that

- 1. $S \cap T = \emptyset$
- 2. $S \cup T = V$
- 3. |S| > 0 and |T| > 0

then there is some MST that includes a minimum weight edge $\{s,t\}$ with $s\in S$ and $t\in T$.

Proof:

Suppose there is a partition with a minimum weight edge $\{s, t\}$.

A spanning tree without {s, t} must still have a path between s and t.

Since $s \in S$ and $t \in T$, there must be at least one edge $\{x,y\}$ on this path with $x \in S$ and $y \in T$.

By removing $\{x, y\}$ and including $\{s, t\}$, a spanning tree whose total weight is no larger is obtained.

Cycle Property: Suppose a given spanning tree does not include the edge $\{u, v\}$. If the weight of $\{u, v\}$ is no larger than the weight of an edge $\{x, y\}$ on the <u>unique</u> spanning tree path between u and v, then replacing $\{x, y\}$ with $\{u, v\}$ yields a spanning tree whose weight does not exceed that of the original spanning tree.

Proof: Including $\{u, v\}$ in the set of chosen edges introduces a cycle, but removing $\{x, y\}$ will remove the cycle to yield a modified tree whose weight is no larger.

The proof suggests a slow approach - iteratively find and remove a maximum weight edge from some remaining cycle:

14.B. PRIM'S ALGORITHM - Three versions

Prim's algorithm applies the cut property by having S include those vertices connected by a subtree of the eventual MST and T contains vertices that have not yet been included. A minimum weight edge from S to T will be used to move one vertex from T to S

1. "Memoryless" - Only saves partial MST and current partition. (https://ranger.uta.edu/-weems/NOTES3318/primMemoryless.c)

Place any vertex $x \in V$ in S

$$T = V - \{x\}$$

while $T \neq \emptyset$

Find the minimum weight edge $\{s, t\}$ over all $t \in T$ and all $s \in S$. (Scan adj. list for each t) Include $\{s, t\}$ in MST.

$$T = T - \{t\}$$

$$S = S \cup \{t\}$$

Since no substantial data structures are used, this takes $\Theta(EV)$ time.

Which edge does Prim's algorithm select next?

2. Maintains T-table that provides the closest vertex in S for each vertex in T.

(https://ranger.uta.edu/-weems/NOTES3318/primTable.c traverses adjacency lists)

Eliminates scanning all T adjacency lists in every phase, but still scans the adjacency list of the last vertex moved from T to S.

Place any vertex $x \in V$ in S.

$$T = V - \{x\}$$

for each $t \in T$

Initialize T-table entry with weight of $\{t, x\}$ (or ∞ if non-existent) and x as best-S-neighbor while $T \neq \emptyset$

Scan T-table entries for the minimum weight edge {t, best-S-neighbor[t]}

over all $t \in T$ and all $s \in S$.

Include edge {t, best-S-neighbor[t]} in MST

$$T = T - \{t\}$$

$$S = S \cup \{t\}$$

for each vertex x in adjacency list of t

if $x \in T$ and weight of $\{x, t\} < T$ -weight |x|

T-weight[x] = weight of $\{x, t\}$

$$best-S-neighbor[x] = t$$

What are the T-table contents before and after the next MST vertex is selected?

Analysis:

Initializing the T-table takes $\Theta(V)$.

Scans of T-table entries contribute $\Theta(V^2)$

Traversals of adjacency lists contribute $\Theta(E)$.

$$\Theta(V^2 + E) = \Theta(V^2)$$
 overall worst-case.

3. Replace T-table by a min-heap.

(https://ranger.uta.edu/weems/NOTES3318/primHeap.cpp)

The time for updating for best-S-neighbor increases, but the time for selection of the next vertex to move from T to S improves.

Place any vertex $x \in V$ in S.

$$T = V - \{x\}$$

for each $t \in T$

Load T-heap entry with weight (as the priority) of $\{t, x\}$ (or ∞ if non-existent) and x as best-S-neighbor

minHeapInit(T-heap) // a fixDown at each parent node in heap

while $T \neq \emptyset$

Use heapExtractMin /* fixDown */ to obtain T-heap entry with the minimum weight edge over all $t \in T$ and all $s \in S$.

Include edge {t, best-S-neighbor[t] in MST

$$T = T - \{t\}$$

$$\sqrt{S} = S \cup \{t\}$$

for each vertex x in adjacency list of t

Analysis:

Initializing the T-heap takes $\Theta(V)$.

Total cost for heapExtractMins is $\Theta(V \log V)$.

Traversals of adjacency lists and minHeapChanges contribute $\Theta(E \log V)$.

 $\Theta(E \log V)$ overall worst-case, since $E \ge V$.

Which version is the fastest?

Sparse
$$(E = O(V))$$

Dense
$$\left(E = \Omega(V^2)\right)$$

1.

$$\Theta(EV)$$

 $\Theta(V^2)$

$$\Theta(V^3)$$

2.

$$\Theta(V^2)$$

 θ / v^2

$$\Theta(v^2)$$

3.

 $\Theta(E \log V)$

 $\Theta(V \log V)$

$$\Theta(V^2 \log V)$$

14.C. UNION-FIND TREES TO REPRESENT DISJOINT SUBSETS

Abstraction:

Set of n elements: 0 ... n - 1

Initially all elements are in n different subsets

find(i) - Returns integer ("leader") indicating which subset includes i

i and j are in the same subset \Leftrightarrow find(i)==find(j)

unionFunc(i, j) - Takes the set union of the subsets with leaders i and j.

Results of previous finds are invalid after a union.

Implementation 1: "Colored T-Shirts" (https://ranger.uta.edu/~weems/NOTES3318/uf1.c)

Initialization:

find(i):

return id[i];

unionFunc(i,j): for (k=0; k<n; k++) if (id[k]==i) id[k]=j

0		1	2	3	4			
0		1	12	3	X/			
union(2,3) union(4,1)								
union (3,1)								

Implementation 2: Trees with Parent Pointers (https://ranger.uta.edu/~weems/NOTES3318/uf2.c)

find(i):

unionFunc(i,j):

id[i]=j;

0	1	2	3	4
0	1	2	3	4
D		2		


```
Implementation 3: (https://ranger.uta.edu/~weems/NOTES3318/uf3.c)
```

unionFunc forces leader of smaller subset to point to leader of larger subset

Initialization:

```
for (i=0; i<n; i++)
        id[i]=i;
        sz[i]=1;
find(x):
      for (i=x;
           id[i]!=i;
           i=id[i])
      root=i;
      / path compression - make all nodes on path
      // point directly at the root
      for (i=x;
            id[i]!=i;
            j=id[i],id[i]=root,i=j)
      return root;
unionFunc(i,j):
      if (sz[i]<sz[j])
        id[i]=j;
        sz[j]+=sz[i];
     celse
        id[j]=i;
        sz[i]+=sz[j];
Best-case (shallow tree) and worst-case (deep tree) for a sequence of unions?
```

14.D. KRUSKAL'S ALGORITHM - A Simple Method for MSTs Based on Union-Find Trees (https://ranger.uta.edu/~weems/NOTES3318/kruskal.c)

Sort edges in ascending weight order.

Place each vertex in its own set.

Process each edge {x, y} in sorted order:

```
a=FIND(x)
b=FIND(y)
if a \neq b
UNION(a,b)
Include \{x, y\} in MST
```


Time to sort, $\Theta(E \log V)$, dominates computation