CSE 3318 Notes 14: Minimum Spanning Trees
(Last updated 1/5/24 11:41 AM)
CLRS 19.3,21.1-21.2
14.A. CONCFEPTS

=

Given a weighted, conriéctcd, undirected graph, find a minimum (total) weight free trec connecting the
vertices. (AKA bottlencck shortest path tree)

; . N m

| Cut Property: Suppose S and T partition V such that Fe—— =
l. SAT=0
2. SuT=V

3. IS|>0and|T| >0
then there is some MST that includes a minimum weight edge {s, t} with seSandteT.
Proof:
Supposec there is a partition with a minimum weight cdge {s, t}.
A spanning tree without {s, t} must still have a path between s and t.
Sinces e Sand t e T, there must be at least one edge {x, y} on this path withx e Sandy € T.

By removing {x, y} and including {s, t}, a spanning tree whose total weight is no larger is
obtained. eee

{_ Cycle Property: Suppose a given spanning trec does not include the edge {u, v}. If the weight of {u, v}
is no larger than the weight of an edge {x, y} on the unique spanning tree path between u and v, then
replacing {x, y} with {u, v} yields a spanning tree whose weight does not exceed that of the original
spanning tree. '

2
Proof: Including {u, v} in the set of chosen edges introduces a cycle, but removing {x, y} will remove
the cycle to yield a modified trce whose weight is no larger.

The proof suggests a slow approach - iteratively find and remove a maximum weight edge from some
remaining cycle:

7 2
(c)
4 | -t
/ /
/'/ ’_'_,!
6 s/ P! A
D ‘}K\ j
\/ { J

A f\

14.B. PRIM’S ALGORITHM — Three versions

Prim’s algorithm applies the cut property by having S include those vertices connected by a subtree of
the cventual MST and T contains vertices that have not yet been included. A minimum weight cdge
from S to T will be used to move onc vertex from T to S

1. “Mcmorylcss” — Only saves partial MST and current partition.

(https://ranger.uta,edu/-weems/NOTES3318/primMemoryless.c)

Place any vertex x € Vin S.
T=V-IZIx
while' T # &
Find the minimum weight edge {s, t} overallt € Tand all s € S."(Scan adj. list for each t)
Include {s_t} in MST.
T=T- {i}™
S=Swu {t}

Since no substantial data structures arc used, this takes @(EV) time.

Which edge does Prim’s algorithm select next?

2. Maintains T-table that provides the closest vertex in S for each vertex in T.
{ https: //ranger.uta.edu/~weems/NOTES3318/prinTable.c (raverscs adjaccncy lists)

Eliminates scanning all T adjacency lists in every phase, but still scans the adjacency list of the last
vertex moved from T to S.

Place any vertexx € Vin S.
T=V-{x}
foreachte T -
Initialize T-table entry with weight of {t, x} (or o if non-existent) and x as best-S-neighbor
while T# &
(_ Scan T-table entries for the minimum weight edge {t, best-S-neighbor[t]}

“overallte Tandalls € S. —~
Includc cdge {t, best-S-neighbor(t]} in MST.
T=T-{t} e
S=8Su {t} = Y
for cach vertex x in adjacency list ¢ft ; :
/| ifx e T'and weight of {x, t] < T-weighyx] /
-[-' [—) 7 T-weight|x] = weight of {x, t} —

best-S-neighbor[x] =1t

What are the T-table contents before and after the next MST vertex is selecied?

(/6) 14
-~

7 16
8 20(4)
9 17 (5)
10 212

Analysis:

Initializing the T-tablc takes G(V).

Scans of T-tablc entrics contributc G)(Vz_'}_ .
Traversals of adjacency lists contribute ®(E).

@(V2 +E) = @(Vz) ovcrall worst-casc.

3. Replace T-table by & min-heap.

(https://ranger.uta . adu/-woems /NOTES3 318 /primHeap.cpp)

The time for updating for best-S-neighbor increases, but the time for selection of the next vertex to move
from T to S improves.

Place any vertex x € Vin S.
T=V-{x}
foreachte T
Load T-heap entry with weight (as the priority) of {t, x} (or o if non-existent) and x as
— Dbest-S-neighbor
4 mi_nHeapInitﬁ" -heap) // a fixDown at each parent node in heap
\\-‘hiL:_ T#O
Us¢ heapExtractMin [* £ixDown */ to obtain T-heap entry with the minimum weight edge
overallte Tandalls € S. .
Include edge {t, best-S-neighbor(t]} in MST.
T=T-{t}
S=Swu {t}
for cach vertex x in adjacency list of t :
if x € T and weight of {x, t} < T-weight|x]
T-weight|x] = weight of {x, t}
best-S-neighbor[x] =t
>~ minHeapChange(T-heap)-// £ixUp

£

Analysis:

Initializing the T-heap takes @(V).

Total cost for heapExtractMins is ®(V log V).

Traversals of adjacency lists and minHeapChanges contribute ©(E log V).
©(ElogV)overall worst-case, since E> V.

Which version is the fastest?

_ Theory \Jparse (E-0() e (E) Q(Vz))
L o) ofv?) o(’)
) ot @(sz | @(vz)

3. ©(ElogV) O(VlogV) 1y | -~ @(VzlogV)

MLC.UNK»FHNDTFEHSN)RHHUSHN#DWHHNTSUBSHW\
Abstraction: |
Setof # clements: 0, .n-1
Initially all clements are in » different subsets
find (1Y} - Returns integer (“leader’;) indicating which subset includes i
i and 7 arc in the same subset <> find (i))==£find(3])
i*unionFunc(i,j)—Tdmsﬂmsmunmnof&wsdmmswﬁhkmdmsiandj.
Results of previous £inds are invalid after a union.
Implementation 1: “Colored T-Shirts” (https://ranger.uta.edu/~veems/NOTESI318/ufl.c)

Initialization:

for (i=0; i<n; i++))
id[ij=i;

find(i):

-
-
)
w

return id[i}];

)

unionFunc(i,j)E () l i ;{;ﬂ

for (k=0; k<n;. kt+)
if (id[k]=%i)
idfk]F3;

Implementation 2: Trees with Parent Pointers (hitps://ranger.uta.edu/~weens/NOTES3318/uf2.c)
find(i):

hile (id[i]!=i) '
P e 0 1 2 3 4

return i;

unionFunc (i, j):

id[i}=3; U -)

Implementation 3: (https://ranger.uta.edu/~weems/NOTES3318/uf3.c)

unionFunc forces leader of smaller subset to point to leader of larger subset

Initialization:

for (i=0; i<n; i++)
{
id{il=i;
sz[i]=1; | - -

}
find(x):

for (i=x;
idriyt=i;
i=id[i])

root=i: -
// path compression - make all nodes on path
// point directly at the root
for (i=x;
id[i]t=4i;
j=id{i],id{i}=root,i=3})

’

return root;
unionFunc (i, j):
if (sz[i]<sz[j])

id[i]=3; .
sz[ji+=sz[il; <
} :
else
{
id[jI1=1;
sz{i]+=sz{j];

}

-

¥
=4)
il G v 5

Best-casc (shallow trec) and worst-casc (deep tree) for a sequence of unions?

14.D. KRUSKAL’S ALGORITHM — A Simple Method for MSTs Based on Union-Find Trees

(https://ranger.uta.edu/~weems/NOTES3318/kruskal.c)

Sort edges in ascending weight order.

Place each vertex in its own set.

Process each edge {x, y} in sorted order:

a=FIND(x)
b=FIND(y)
ifd#b
“~——TUNION(a,b)
Include {x, y} in MST

1o ::: 12 {Ls}ifij
2 (1,3 13 {89}

3 {031 .>< 14 2,60)—
3 R O ——

4 (0,4} L7 15 {78}

5 f34}></ 16 {470
6 v 17 {5,9)

7 M—ﬂ ></ 18 {5, 7}

8 6. 10} L 19 {6,9}

9 f910}v/// 20 {48

10 {1,5} 21 {2, 10}

11 le}L//” 22 {56}

Time to sort @(F logV), dominatcs computation

